JPS6178436A - Optical exciting process apparatus - Google Patents

Optical exciting process apparatus

Info

Publication number
JPS6178436A
JPS6178436A JP19849984A JP19849984A JPS6178436A JP S6178436 A JPS6178436 A JP S6178436A JP 19849984 A JP19849984 A JP 19849984A JP 19849984 A JP19849984 A JP 19849984A JP S6178436 A JPS6178436 A JP S6178436A
Authority
JP
Japan
Prior art keywords
reaction
gas
light
reaction gas
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19849984A
Other languages
Japanese (ja)
Other versions
JPS6340574B2 (en
Inventor
Yutaka Matsumi
松見 豊
Toshio Hayashi
俊雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP19849984A priority Critical patent/JPS6178436A/en
Publication of JPS6178436A publication Critical patent/JPS6178436A/en
Publication of JPS6340574B2 publication Critical patent/JPS6340574B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/121Coherent waves, e.g. laser beams

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To conserve reaction gas, by providing a reaction gas introducing apparatus and a beam incident apparatus for irradiating reaction gas with laser pulse beam to generate optical reaction and performing the introduction of the reaction gas into a reaction chamber and the irradiation of beam in definite time relation. CONSTITUTION:When either one of reaction gas pulse jet valves 7, 8 is turned ON by a control apparatus 16 and the pressure in a reaction chamber 1 is raised by the introduction of reaction gas, laser pulse beam is irradiated through a beam incident window 6. When the pulse jet valve 7 or 8 is turned OFF and unreacted gas in the reaction chamber 1 is exhausted and the pressure in the reaction chamber 1 is lowered, the analysis of the surface state of a substrate 3 is performed by in-process monitors 13, 14. By shortening the ON- time of each pulse jet valve, the flow amount of reaction gas can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超LSIの、ような半導体プロセス技術に用
いられる光CVD、光エッチングや光エピタキシ等の光
励起プロセス装ffK関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a photo-excited process equipment ffK such as photo-CVD, photo-etching and photo-epitaxy used in semiconductor process technology such as VLSI.

従来の技術 超LSI技術の発展と共に新しい半導体製造技術として
、低温、無損傷および反応選択性と言った特長をもつ光
励起プロセスが注目されてさている。
BACKGROUND OF THE INVENTION With the development of VLSI technology, a photoexcitation process, which has features such as low temperature, no damage, and reaction selectivity, is attracting attention as a new semiconductor manufacturing technology.

ところで現在研究の進められている光励起プロセスにお
いては種々の光計が用いられているが、その中でもエキ
ンマレーサー、パルスC02レーザーを用いた研究が多
くなされている。これらのレーザーは毎秒数回から数百
[DIの繰返し敢で間欠的に発光し、従ってレーザーが
実際に光を出している時間は毎秒百万分の一秒程度とな
る。しかし従来研究されている光励起プロセス装置では
レーザーからの発光が間欠的で毎秒当りの発光時間が極
めて短かいにもかかわらず反応室へ反応ガスを連続して
供給するようにしている。レーザーの発光時間(毎秒当
りの)が極めて短かくそれに続く反応時間も極めて短か
いので、連続的に流されている反応ガスのほとんどは光
照射に預からず無駄に流れており、ポンプの負荷がその
分大きくなるだけでなく、通常使用される反応ガスは有
毒ガスであるのでその処理も問題となる。そして定常的
に反応ガスが10−′〜10’ Pa以上存在する雰囲
気では、RWE)i:D%表面分析器、質量分析器等の
高真空を必要トスるインプロセスモニタを使用すること
ができない。また4ノ良形成の場合には基板上での膜成
形の他に装置イへの光導入窓上に腺が形成されてし甘い
、その結果光の透過率が悪くなって基板付近まで十分に
光が到達しなくなるという問題が生じる。をらに二種類
以上の反応ガスを用い組成を変えて膜形成する場合に、
通常の手動または圧空バルブの操作では急速に反応室内
の反応ガスを入れ替えることは困難であり、基板上での
膜の組成の急峻な変化をつけ妬くい。さらにまた反応室
内に反応ガスが充満した状1席でレーザー照射すると、
気相中で反応が必要以上に進んで微粒子まで成長し、そ
れが基板上に堆積して形成すべき膜質を劣化させるとい
う問題がある。
Incidentally, various optical meters are used in the optical excitation process that is currently being researched, and among them, many studies are being conducted using an ekinmarer laser and a pulsed C02 laser. These lasers emit light repeatedly and intermittently, ranging from several times to hundreds of times per second. Therefore, the time during which the laser actually emits light is approximately one millionth of a second per second. However, in conventionally researched photoexcitation process devices, the reaction gas is continuously supplied to the reaction chamber even though the laser emits light intermittently and the light emission time per second is extremely short. Since the laser emission time (per second) is extremely short and the subsequent reaction time is also extremely short, most of the reaction gas that is continuously flowing is wasted without being irradiated with light, which increases the load on the pump. Not only does this increase accordingly, but the normally used reaction gas is a toxic gas, so its disposal also becomes a problem. In an atmosphere where a reaction gas is constantly present at 10-' to 10' Pa or higher, in-process monitors that require high vacuum, such as RWE) i:D% surface analyzers and mass spectrometers, cannot be used. . In addition, in the case of 4-no-good formation, in addition to film formation on the substrate, glands are formed on the light introduction window into the device, resulting in poor light transmittance and insufficient light transmission to the vicinity of the substrate. A problem arises in that light no longer reaches the target. When forming a film by changing the composition using two or more types of reactive gases,
It is difficult to rapidly replace the reaction gas in the reaction chamber by normal manual operation or by operating a pneumatic valve, and it is difficult to rapidly change the composition of the film on the substrate. Furthermore, when the reaction chamber is filled with reaction gas and laser is irradiated in one seat,
There is a problem in that the reaction proceeds more than necessary in the gas phase and grows into fine particles, which are deposited on the substrate and deteriorate the quality of the film to be formed.

発明が解決しようとする問題点 そこで本発明は、従来の光励起プロセス装置における反
応ガスの連続定常供給に伴なう無駄、ポンプ負荷の増大
、光導入窓への膜の付着および気相中での粒子生成の問
題を解決することを目的とする。
Problems to be Solved by the Invention Therefore, the present invention solves the problems associated with the continuous and steady supply of reaction gas in conventional photoexcitation process equipment, the increase in pump load, the adhesion of films to the light introduction window, and the The purpose is to solve the problem of particle generation.

′また本発明の別の目的は急峻な組成変化をもつ膜を形
成できるようにすることにある。
'Another object of the present invention is to make it possible to form a film having a steep compositional change.

上記目的を達成するために、本発明によれば、反応室内
へ反応ガスを導入する反応ガス導入装置と、反応室内に
導入される反応ガスにレーザーパルス光を照射して光化
学反応を生じさせる光導入装置とを有“し、反応室への
反応ガスの導入と光照射とを一定の時間関葆をもって行
なう工うにしたことを特徴とする光励起プロセス装置が
提供される。
In order to achieve the above object, the present invention provides a reaction gas introduction device that introduces a reaction gas into a reaction chamber, and a laser pulse light that irradiates the reaction gas introduced into the reaction chamber to cause a photochemical reaction. A photoexcitation process apparatus is provided, which is characterized in that it has an introduction device, and is configured to carry out the introduction of a reaction gas into a reaction chamber and the light irradiation for a certain period of time.

本発明の光励起プロセス装置においては、好ましくけ反
応ガス導入装置は、それぞれ異なった反応ガスを反応室
へ尋人するため複数個設けられ得、・光導入装置からの
一つまたは数個の゛レーザーパルスの照射毎に異なった
反応ガス導入装置から具なった反応ガスを6人するよう
にされ得る。また本発明によるプロセス装(けでは、反
応ガス導入装置から導入された反応ガスを基板に吸着さ
せ、非吸着ガスを排気した後、光導大義a(からレーザ
ーパルス光を!&射するようにされイj多る。
In the optical excitation process apparatus of the present invention, it is preferable that a plurality of reaction gas introduction devices be provided to introduce different reaction gases into the reaction chamber, and one or several "lasers" from the light introduction device may be provided. For each pulse irradiation, six reactant gases can be delivered from different reactant gas introduction devices. In addition, in the process apparatus according to the present invention, the reactive gas introduced from the reactive gas introducing device is adsorbed onto the substrate, and after exhausting non-adsorbed gas, laser pulse light is emitted from the optical guide a. There are many.

さらに本゛発明によれば上記光励起プロセス装置におい
て上記光導入装置の光導入窓に窓清浄ガスを吹き付ける
窓清浄ガス供給装置を設け、反応室内の基板に導入され
た反応ガスと反応室内の光導入窓へ吹き付けられる窓清
浄ガスとが混り合う前に光照射を行なうようにされる。
Further, according to the present invention, the optical excitation process apparatus is provided with a window cleaning gas supply device that sprays a window cleaning gas onto the light introduction window of the light introduction device, so that the reaction gas introduced to the substrate in the reaction chamber and the light introduced into the reaction chamber are provided. The light irradiation is performed before the window cleaning gas is mixed with the window cleaning gas that is blown onto the window.

作    用 このように構成することによって本発明による装置にお
いては、反応ガスの供給は、レーザーパルスと同期して
制御されるので、反応ガスの流量を減らすことができ、
反応ガスの節約およびポンプ負荷の軽減が得られる。
Effect: With this configuration, in the apparatus according to the present invention, the supply of the reaction gas is controlled in synchronization with the laser pulse, so the flow rate of the reaction gas can be reduced.
Reactant gas savings and pump load reduction are achieved.

反応ガスの停止時にガス排気して反応室内の圧力を下げ
ることによりRHEEDや表面分析装置を用いて膜形成
状態をインプロセスモニタすることができる。
By lowering the pressure inside the reaction chamber by exhausting gas when the reaction gas is stopped, the state of film formation can be monitored in-process using RHEED or a surface analyzer.

また基板に反応ガスを吸着させ、吸着してないガスを排
気してからレーザーパルスを照射することにより、反応
rri基板の表面上に制限でき、それにより気相中で生
成する微粒子の堆積を避けることができる。
In addition, by adsorbing the reaction gas onto the substrate and irradiating the laser pulse after exhausting the unadsorbed gas, the reaction can be restricted to the surface of the substrate, thereby avoiding the deposition of fine particles generated in the gas phase. be able to.

さらに、一つまたは叙個のレーザーパルス毎に反応ガス
の種類を変えて光照射を行なうことによって急砂な組成
変化をもつ膜を形成することができる。
Furthermore, by performing light irradiation while changing the type of reactant gas for each laser pulse or for each laser pulse, a film having a rapid change in composition can be formed.

さらにまた、窓清浄ガスを光導入窓へ吹き付けて光導入
窓における膜形成を防ぐことにより、光透過率を予定の
レベルに維持することができる。
Furthermore, the light transmittance can be maintained at a predetermined level by spraying window cleaning gas onto the light introduction window to prevent film formation on the light introduction window.

実  施  例 以下硲附1面を参照して本発明の実施例について説明す
る。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to page 1 of the appendix.

第1図には本発明の一実施例による装置の構成を概略的
に示し、1は反応室で、排気ボート2を介して排気でき
るようにされている。この反応室1内には図示したよう
に基板5を保持する基板ホルタ4が配置されており、ま
た反応室1には、内部の処理すべき基板3にレーザー光
源5からのレーザー光を導入する光導入窓6が設けられ
ている。
FIG. 1 schematically shows the configuration of an apparatus according to an embodiment of the present invention, in which 1 is a reaction chamber, which can be evacuated via an exhaust boat 2. As shown in the figure, a substrate holder 4 for holding a substrate 5 is disposed in the reaction chamber 1, and a laser beam from a laser light source 5 is introduced into the substrate 3 to be processed inside the reaction chamber 1. A light introduction window 6 is provided.

反応室1内に示す7,8.9はそれぞれ例えばソレノイ
ド、ピエゾ素子、ロータリースリット等のような1u速
でオン、オフできるパルス噴射バルブで、バルブ7.8
は反応ガス尋人’fF 10 、11を介して図示して
ない異なった反応ガス源に連結され、またバルブ9Fi
導入管12を介して図示してない清浄ガス源に連結され
、このバルブ9は光導入窓6に向けられ、−万反応ガス
パルス噴射バルブ7゜8は基板6に向けられている。ま
た符号13.14は基板5における反応処理(例えば膜
形成)状態を監視するためのインプロセスモニタであり
、符号15はヒーターである。基板ホルダ4は図示して
ないが温度制御できるよりに構成されている。
Reference numerals 7 and 8.9 shown in the reaction chamber 1 are pulse injection valves such as a solenoid, piezo element, rotary slit, etc. that can be turned on and off at a speed of 1 u, respectively.
is connected to different reactant gas sources (not shown) via reactant gas Hirojin'fF 10, 11, and valve 9Fi.
It is connected via an inlet pipe 12 to a clean gas source (not shown), the valve 9 of which is directed towards the light introduction window 6, and the -10,000 reaction gas pulse injection valve 7.8 directed towards the substrate 6. Further, numerals 13 and 14 are in-process monitors for monitoring the state of reaction processing (for example, film formation) on the substrate 5, and numeral 15 is a heater. Although not shown, the substrate holder 4 is configured to allow temperature control.

レーザー光源5および各噴射バルブ7.8.9はブロッ
ク16を示す制御装置に接続されている。制御装置16
はレーザー光源5からのレーザーパルスの照射および各
噴射バルブの動作を同期的に制御する。
The laser light source 5 and each injection valve 7.8.9 are connected to a control device, represented by block 16. Control device 16
synchronously controls the irradiation of laser pulses from the laser light source 5 and the operation of each injection valve.

このように構成した装置の動作を第2図を参照して説明
する。
The operation of the apparatus configured as described above will be explained with reference to FIG.

動作例1 第2図の(a)に示すように反応ガスパルス噴射バルブ
7.8のいずれか一方が制御装置16によってオンされ
、反応室1内の圧力が反応ガスの導入によって高くなる
と、レーザー、2ルスが光導入窓6を通って照射される
。そして該パルス噴射バルブ7または8はオフとなり、
反応室1内の非反応ガスは排出され、こうして反応室1
内の圧力が低下したとき、インプロセスモニタ15.1
4によって基板50表面状態の分析が行なわれる。
Operation example 1 As shown in FIG. 2(a), when either one of the reaction gas pulse injection valves 7.8 is turned on by the control device 16 and the pressure inside the reaction chamber 1 increases due to the introduction of the reaction gas, the laser, 2 lus is irradiated through the light introduction window 6. Then the pulse injection valve 7 or 8 is turned off,
The non-reacting gas in the reaction chamber 1 is exhausted, and thus the reaction chamber 1
In-process monitor 15.1
4, the surface condition of the substrate 50 is analyzed.

パルス噴射バルブのオン時間(すなわちlj+1放時間
)を短かくすることにより反応ガスの流量を減少するこ
とができる。例えば/くルブの開放時間を1ミリ秒に設
定して毎秒10回開閉すると、従米の連続流に比べて反
応ガス對はス。。となる。またバルブの開により反応室
1内の圧力が10’ Pa  となったとする。反応室
10谷°団を10!、排気速度を1onol/sとする
と、反応室1内の圧力は4秒後に10Paになる。従っ
てこの計、q例では毎秒10回パルプを開閉した場合に
は最低圧力は1U−3Paとなり、その時点で表面分析
を行なうことができる。
By shortening the pulse injection valve on time (ie, lj+1 release time), the flow rate of the reactant gas can be reduced. For example, if the valve opening time is set to 1 millisecond and the valve is opened and closed 10 times per second, the reactant gas will be much faster compared to the conventional continuous flow. . becomes. It is also assumed that the pressure inside the reaction chamber 1 becomes 10' Pa when the valve is opened. 10 reaction chambers and 10 groups! When the pumping speed is 1 onol/s, the pressure inside the reaction chamber 1 becomes 10 Pa after 4 seconds. Therefore, in this total, in example q, when the pulp is opened and closed 10 times per second, the minimum pressure will be 1 U-3 Pa, and the surface analysis can be performed at that point.

を幼 1’r=tクリ 2゜ 、’l入2図の(b)に示すように反応ガスパルスfl
?t ’$Iバルブ7または8および清浄ガスパルス噴
射バルブ9を開放して反応ガスおよび清浄ガスを入れ、
両ガスが混り台ないうちにレーザーパルスが照射δれる
As shown in Figure 2 (b), the reaction gas pulse fl
? Open the $I valve 7 or 8 and the clean gas pulse injection valve 9 to admit the reaction gas and the clean gas,
Laser pulse δ is applied before both gases mix.

動作例3゜ 第2図の(c) K示すようにバルブ7または8を開け
て反応ガスを噴出させて基板3の表面に吸着させ、吸着
してないガスを排気してから、すなわち反応室1内の圧
力が予定のレベルまで低下した後レーザーパルスを照射
し、吸着ガスを反応させる。
Operation example 3゜ As shown in Fig. 2 (c) K, open the valve 7 or 8 to eject the reaction gas and adsorb it onto the surface of the substrate 3. After exhausting the unadsorbed gas, the reaction chamber is After the pressure inside 1 has decreased to a predetermined level, a laser pulse is irradiated to cause the adsorbed gas to react.

動作例4゜ 第2図の(d)に示すように、レーザーパルス−っ(ま
たVi数個)毎にバルブ7.8を交互に開放1−てl]
11出ガスの種類を変え、それにより急峻な組成変化を
もつ膜が形成される。
Operation example 4゜As shown in Fig. 2 (d), the valve 7.8 is opened alternately for every laser pulse (also several Vi).
11 By changing the type of gas emitted, a film with a steep compositional change is formed.

また第1図の装置の動作においてヒーター15を作動し
て光導入窓6を加熱することによって、窓6上における
反応ガスの吸着を防ぎ、それにより窓面上での膜形成を
効果的に避けることができる。
In addition, in the operation of the apparatus shown in FIG. 1, by activating the heater 15 to heat the light introduction window 6, adsorption of the reaction gas on the window 6 is prevented, thereby effectively avoiding film formation on the window surface. be able to.

このように本装置々1−おいてはレーザーパルスの繰返
しと同期させて、各パルス噴射バルブ7〜9をオン、オ
フ制御し、そして各バルブの開時間およびバルブの背圧
を調a6シてガスの流htおよび流状を制御する。
In this way, in this device 1-, each pulse injection valve 7 to 9 is controlled on and off in synchronization with the repetition of laser pulses, and the opening time of each valve and the back pressure of the valve are adjusted. Control the gas flow ht and flow condition.

効    果 以上説明してきたように本発明によれば、次のような効
果が得られ得る。
Effects As explained above, according to the present invention, the following effects can be obtained.

11)各噴射バルブのオン時間を短かく設定すること罠
より、反応ガスの流量を減少し、反応ガスのhi約、ポ
ンプ負荷の軽減および装にの反応ガスによる腐食(特に
光エッチングの場合)の焼滅が1!tられる。
11) By setting the on-time of each injection valve to be short, the flow rate of the reactant gas can be reduced, reducing the reactant gas hi, reducing the pump load, and preventing corrosion caused by the reactant gas (especially in the case of photo-etching). Burning down is 1! t be beaten.

(2)光照射と反応ガスの尋人との同Jrlj化により
効率的な光化学反応を行なうことができる。
(2) Efficient photochemical reactions can be carried out by light irradiation and reaction gas conversion.

1;()  バルブの閉止時に反応室の圧力を下げてイ
ンプロセスモニタを行なつことができる。
1; () In-process monitoring can be performed by lowering the pressure in the reaction chamber when the valve is closed.

・1; 福成表面上に11着したガスだけにレーザー元
を四制して気r目中での粒子生成ケ防ぎ1回員を向上さ
せることができる。
・1; By controlling the laser source only for the gas that has arrived on the surface of Fukusei, it is possible to prevent particle generation in the atmosphere and improve the one-time efficiency.

+51  光ζを大窓における反応ガスによる膜形成を
防ぎ、光透過率を予定のレベルに保持することができる
+51 The light ζ can be prevented from forming a film by the reactive gas in the large window, and the light transmittance can be maintained at the desired level.

・61  レーザーパルスの照射毎に反応ガスの植頌を
変えて急故な組成変化をもつ膜を形成することができる
・61 It is possible to form a film with a sudden change in composition by changing the amount of reactive gas used each time a laser pulse is irradiated.

i71  反応ガスの流量を減らすことによって排出ガ
スの処理量が減少し、装置の運転コストを大幅に低減さ
せることができろ。
i71 By reducing the flow rate of the reaction gas, the amount of exhaust gas processed can be reduced, and the operating cost of the device can be significantly reduced.

瓜図面の11′i卓な説明 第1図は、本発明の一実施例による装置イを示すη!、
′tV6図、432図は動作説明図である。
11'i Table of Contents Figure 1 shows an apparatus according to an embodiment of the present invention. ,
'tV6 and 432 are operation explanatory diagrams.

図中、1:反応室、 3:基板、 5:レーザー光源、
6:光導入窓、 7〜9:バルブ。
In the figure, 1: reaction chamber, 3: substrate, 5: laser light source,
6: Light introduction window, 7-9: Bulb.

13.14:インプロセスモニタ、 16:制御装置F
(。
13.14: In-process monitor, 16: Control device F
(.

第2図 :、レーか一ハ゛ルス −−−−−−−−−−−−△−
−−−−−−−−−、N−−一一一一一一一一力りしf
f’−y、)t、x
Figure 2: Ray or one pulse
−−−−−−−−−, N−−1111111 force f
f'-y,)t,x

Claims (1)

【特許請求の範囲】 1、反応室内へ反応ガスを導入する反応ガス導入装置と
、反応室内に導入される反応ガスにレーザーパルス光を
照射して光化学反応を生じさせる光導入装置とを有し、
反応室への反応ガスの導入と光照射とを一定の時間関係
をもつて行なうようにしたことを特徴とする光励起プロ
セス装置。 2、反応ガス導入装置が、それぞれ異なつた反応ガスを
反応室へ導入するため複数個設けられ、光導入装置から
の一つまたは数個のレーザーパルスの照射毎に異なつた
反応ガス導入装置から異なつた反応ガスを導入するよう
にした特許請求の範囲第1項に記載の装置。 3、反応ガス導入装置から導入された反応ガスを基板に
吸着させ、非吸着ガスを排気した後光導入装置からレー
ザーパルス光を照射するようにした特許請求の範囲第1
項に記載の装置。 4、反応室内へ反応ガスを導入する反応ガス導入装置と
、反応室内に導入される反応ガスにレーザーパルス光を
照射して光化学反応を生じさせる光導入装置と、上記光
導入装置の光導入窓に窓清浄ガスを吹き付ける窓清浄ガ
ス供給装置とを有し、反応室内の基板に導入された反応
ガスと反応室内の光導入窓へ吹き付けられる窓清浄ガス
とが混り合う前に光照射を行なうようにしたことを特徴
とする光励起プロセス装置。
[Claims] 1. A reaction gas introduction device that introduces a reaction gas into a reaction chamber, and a light introduction device that irradiates the reaction gas introduced into the reaction chamber with laser pulse light to cause a photochemical reaction. ,
A photoexcitation process device characterized in that the introduction of a reaction gas into a reaction chamber and the irradiation of light are performed with a certain time relationship. 2. A plurality of reaction gas introduction devices are provided to introduce different reaction gases into the reaction chamber, and a different reaction gas is introduced from the different reaction gas introduction devices each time one or several laser pulses are irradiated from the light introduction device. 2. The apparatus according to claim 1, wherein a reactive gas is introduced. 3. The reactive gas introduced from the reactive gas introducing device is adsorbed onto the substrate, and after the non-adsorbed gas is exhausted, laser pulse light is irradiated from the light introducing device.
Equipment described in Section. 4. A reaction gas introduction device that introduces a reaction gas into the reaction chamber, a light introduction device that irradiates the reaction gas introduced into the reaction chamber with laser pulse light to cause a photochemical reaction, and a light introduction window of the light introduction device. and a window cleaning gas supply device that sprays window cleaning gas onto the substrate, and performs light irradiation before the reaction gas introduced into the substrate in the reaction chamber and the window cleaning gas blown onto the light introducing window in the reaction chamber mix. A photoexcitation process device characterized by:
JP19849984A 1984-09-25 1984-09-25 Optical exciting process apparatus Granted JPS6178436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19849984A JPS6178436A (en) 1984-09-25 1984-09-25 Optical exciting process apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19849984A JPS6178436A (en) 1984-09-25 1984-09-25 Optical exciting process apparatus

Publications (2)

Publication Number Publication Date
JPS6178436A true JPS6178436A (en) 1986-04-22
JPS6340574B2 JPS6340574B2 (en) 1988-08-11

Family

ID=16392143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19849984A Granted JPS6178436A (en) 1984-09-25 1984-09-25 Optical exciting process apparatus

Country Status (1)

Country Link
JP (1) JPS6178436A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514927A (en) * 2006-12-26 2010-05-06 コーウィン ディーエスティー カンパニー リミテッド Raw material gas supply apparatus and residual gas treatment treatment and method for thin film deposition apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60172347A (en) * 1984-02-17 1985-09-05 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for chemical reaction induced by laser light

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60172347A (en) * 1984-02-17 1985-09-05 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for chemical reaction induced by laser light

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514927A (en) * 2006-12-26 2010-05-06 コーウィン ディーエスティー カンパニー リミテッド Raw material gas supply apparatus and residual gas treatment treatment and method for thin film deposition apparatus

Also Published As

Publication number Publication date
JPS6340574B2 (en) 1988-08-11

Similar Documents

Publication Publication Date Title
US6631726B1 (en) Apparatus and method for processing a substrate
EP1125321B1 (en) Chemical deposition reactor and method of forming a thin film using the same
US5154945A (en) Methods using lasers to produce deposition of diamond thin films on substrates
JPS61231716A (en) Filming apparatus
JPH0787115B2 (en) High flux energy-atomic source
RU2702669C2 (en) Method and device for atomic layer deposition
US5554257A (en) Method of treating surfaces with atomic or molecular beam
JPS6178436A (en) Optical exciting process apparatus
JP2588508B2 (en) Processing equipment
JPS62128528A (en) Laser surface treating device
JP2680644B2 (en) Photo-excited etching method
JPS61183921A (en) Apparatus for treating semiconductor or metal with laser beam or light
JP2003007625A (en) Substrate-processing apparatus
JP2634119B2 (en) Metal organic chemical vapor deposition equipment
JPH01172574A (en) Optical cvd device
JP3168276B2 (en) Crystal growth equipment
JPS62136813A (en) Treater
JPS60236215A (en) Laser cvd method
JPH03271372A (en) Method for forming oxide thin film using excimer laser
JPS61208213A (en) Photochemical vapor deposition apparatus
JPH08250483A (en) Method and device for treatment
JPS61183920A (en) Apparatus for treating semiconductor or metal with laser beam or light
JPS6271218A (en) Thin film forming apparatus
JPS60124816A (en) Thin film growth method
JPS6128443A (en) Photochemical gaseous phase growing apparatus