JP2680644B2 - Photo-excited etching method - Google Patents

Photo-excited etching method

Info

Publication number
JP2680644B2
JP2680644B2 JP63292878A JP29287888A JP2680644B2 JP 2680644 B2 JP2680644 B2 JP 2680644B2 JP 63292878 A JP63292878 A JP 63292878A JP 29287888 A JP29287888 A JP 29287888A JP 2680644 B2 JP2680644 B2 JP 2680644B2
Authority
JP
Japan
Prior art keywords
substrate
etching
reaction
excitation light
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63292878A
Other languages
Japanese (ja)
Other versions
JPH01295424A (en
Inventor
伸悟 寺門
茂雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Publication of JPH01295424A publication Critical patent/JPH01295424A/en
Application granted granted Critical
Publication of JP2680644B2 publication Critical patent/JP2680644B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、光励起エッチング方法に関し、特に半導体
装置の製造に有用である。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a photoexcitation etching method, and is particularly useful for manufacturing a semiconductor device.

(ロ) 従来の技術 超LSIの微細化が進む中、プラズマによる照射損傷が
懸念され、荷電粒子を用いない光励起による光化学反応
プロセスが盛んに研究されている。例えば、光励起プロ
セス技術調査報告1(61−M−255)、日本電子工業振
興協会刊である。
(B) Conventional technology As the miniaturization of VLSI progresses, irradiation damage due to plasma is a concern, and photochemical reaction processes by photoexcitation without using charged particles are being actively studied. For example, Optical Excitation Process Technology Survey Report 1 (61-M-255), published by Japan Electronic Industry Development Association.

そして、微細化が更に進み、1μm以下の加工になる
と、可視光や紫外光は、もはやその波長が長すぎて使用
できない。従って現在では、それらの光より波長の短い
(数100〜2000Å)真空紫外線を出すレーザ等が使用さ
れているが、その場合、光励起反応が気相で起こるた
め、エッチング反応が等方的となり微細化にも限界があ
る。
Further, when the miniaturization further progresses and the processing becomes 1 μm or less, the wavelengths of visible light and ultraviolet light are too long to be used. Therefore, at present, lasers that emit vacuum ultraviolet rays whose wavelengths are shorter than those of light (several hundred to 2000 Å) are used, but in this case, the photoexcitation reaction occurs in the gas phase, and the etching reaction becomes isotropic and minute There is a limit to the conversion.

(ハ) 発明が解決しようとする課題 本発明は、等方的なエッチング反応をもたらすことな
く、光励起反応によるエッチングを行い得る方法を提供
するものである。
(C) Problem to be Solved by the Invention The present invention provides a method capable of performing etching by a photoexcitation reaction without causing an isotropic etching reaction.

(ニ) 課題を解決するための手段 本発明の光励起エッチング方法は、第1図に示す如
く、反応ガス中に置かれた基板(1)を冷却することに
より基板(1)の表面に反応ガス(2)を吸着せしめ、
斯る基板に励起光(3)を照射することを特徴とする。
(D) Means for Solving the Problems In the photoexcited etching method of the present invention, as shown in FIG. 1, the reaction gas is applied to the surface of the substrate (1) by cooling the substrate (1) placed in the reaction gas. Adsorb (2),
It is characterized in that such a substrate is irradiated with excitation light (3).

基板(1)の温度は、反応ガス吸着率を上げるために
室温以下、より好ましくは0℃以下に設定されるべきで
ある。
The temperature of the substrate (1) should be set to room temperature or lower, more preferably 0 ° C. or lower in order to increase the reaction gas adsorption rate.

本発明の他の特徴は、反応ガス中に置かれた基板を冷
却することにより前記基板表面に反応ガスを吸着せし
め、斯る基板に励起光を照射させる光励起エッチング方
法であって、上記基板への反応ガス吸着工程と、上記基
板への励起光照射工程とをこの順序で含む一連の工程
を、斯る工程中に生じる反応生成物を上記基板から除去
する除去工程を挟んでくり返すことにある。
Another feature of the present invention is a photo-excited etching method in which a reaction gas is adsorbed on the surface of the substrate by cooling the substrate placed in the reaction gas, and the substrate is irradiated with excitation light. The process of adsorbing the reaction gas and the step of irradiating the substrate with excitation light in this order are repeated with a removal process for removing the reaction product generated during the process from the substrate. is there.

本発明の更に他の特徴によれば、上記除去工程は上記
基板表面を不活性イオンでスパッタすることを含む。
According to yet another feature of the invention, the removing step includes sputtering the surface of the substrate with inert ions.

(ホ) 作用 本発明によれば、基板(1)の表面に吸着されたガス
(2)に励起光(3)が当ることにより、基板表面で反
応が生じ、その表面のエッチングが行われる。このと
き、耐エッチングマスク(4)で基板(1)の露出表面
を限定しておけば、第2図に示す如く選択エッチングが
実施される。
(E) Action According to the present invention, the gas (2) adsorbed on the surface of the substrate (1) is exposed to the excitation light (3), whereby a reaction occurs on the surface of the substrate and the surface is etched. At this time, if the exposed surface of the substrate (1) is limited by the etching resistant mask (4), selective etching is carried out as shown in FIG.

エッチングの進行に伴い、側壁(5)が生じ、この部
分にも反応ガスが吸着するが、励起光(3)はほぼ直進
し、側壁(5)に向う光は少ないため、側壁部分でのエ
ッチング速度は極めて遅く、サイドエッチングの影響は
ほとんど無視できる。即ち、これにより等方的エッチン
グでなくなる。
As the etching progresses, the side wall (5) is generated, and the reaction gas is also adsorbed to this part, but the excitation light (3) is almost straight and little light is directed to the side wall (5). The speed is extremely slow and the effect of side etching is almost negligible. That is, this eliminates isotropic etching.

上記励起光照射時に0.01〜0.1torr程度の低圧の反応
ガスの残留を可とするも、サイドエッチの原因となる。
気相でのガス反応を完全に無くするためには、励起光照
射時には反応室内を10-4torrより高真空に排気すべきで
ある。
Although it is possible to leave a low-pressure reaction gas of about 0.01 to 0.1 torr at the time of irradiating the excitation light, it causes side etching.
In order to completely eliminate the gas reaction in the gas phase, the inside of the reaction chamber should be evacuated to a vacuum higher than 10 -4 torr during irradiation with excitation light.

エッチングの進行に伴い、使用材料によっては第3図
に示す如く、基板表面に反応生成物(6)が堆積する。
生成物(6)はエッチングに対する一種の保護膜作用を
なし、エッチング速度を低下せしめ、やがてはエッチン
グ停止をもたらす。
As the etching progresses, a reaction product (6) is deposited on the substrate surface as shown in FIG. 3 depending on the material used.
The product (6) acts as a kind of protective film against etching, reduces the etching rate, and eventually causes etching stop.

このため、本発明では、エッチング操作を中断し、反
応生成物(6)の除去工程が挿入される。
Therefore, in the present invention, the etching operation is interrupted and the step of removing the reaction product (6) is inserted.

斯る除去工程は、基板(1)の表面を不活性イオンで
スパッタすることである。
Such a removal step is to sputter the surface of the substrate (1) with inert ions.

これにより、反応生成物(6)は蒸発消散して基板表
面がクリーニングされる。従って再び基板への反応ガス
吸着と励起光照射とを実行すれば、反応生成物のない状
態から再びエッチングが行われる。
As a result, the reaction product (6) is evaporated and dissipated to clean the surface of the substrate. Therefore, if the reaction gas adsorption to the substrate and the excitation light irradiation are performed again, the etching is performed again from the state without the reaction product.

(ヘ) 実施例 第4図に本発明方法を実施するための装置を示す。反
応室(10)は、当初10-7〜10-8torr程度まで排気口(1
1)を通じて排気される。エッチングを行わんとする基
板(1)はコールドヘッド(12)に載置され、室温から
−150℃の範囲で冷凍システムとヒータ(13)により温
度制御される。反応ガスは導入管(14)より反応室(1
0)内に入り排気口(11)より排出されるが、反応室(1
0)内での圧力が0.01〜0.1torrになる様に、その流量が
調整される。励起光(3)は、基板(1)にその表面直
上より照射される。
(F) Example FIG. 4 shows an apparatus for carrying out the method of the present invention. The reaction chamber (10) is initially 10 -7 to 10 -8 torr approximately to the exhaust port (1
Exhausted through 1). The substrate (1) to be etched is placed on the cold head (12) and its temperature is controlled by the refrigeration system and the heater (13) in the range of room temperature to -150 ° C. The reaction gas is introduced from the introduction pipe (14) into the reaction chamber (1
0) and exhaust from the exhaust port (11), but the reaction chamber (1
The flow rate is adjusted so that the pressure in (0) is 0.01 to 0.1 torr. The excitation light (3) is applied to the substrate (1) right above the surface thereof.

以下は、上記装置を用いてエッチングを行った具体例
である。
The following is a specific example of etching using the above apparatus.

励起光(3):105nmより長波長の真空紫外線 強度0.1mW 基板(1):n型GaAs(100)面 耐エッチングマスク(4):レジストOFPR(1.8μm
厚) 基板(1)の温度:−20℃ 反応ガス:Cl2ガス(0.1torr) エッチング速度:約10Å/分 上記エッチングにおいて、サイドエッチングの影響は
ほとんど見られない。
Excitation light (3): Vacuum ultraviolet light with a wavelength longer than 105 nm Intensity 0.1 mW Substrate (1): n-type GaAs (100) surface Etching-resistant mask (4): Resist OFPR (1.8 μm
Thickness) Substrate (1) temperature: -20 ° C Reaction gas: Cl 2 gas (0.1 torr) Etching rate: about 10Å / min In the above etching, the influence of side etching is hardly seen.

第5図に本発明方法を実施するための他の装置を示
す。
FIG. 5 shows another apparatus for carrying out the method of the present invention.

反応室(20)は当初10-7〜10-8torr程度まで排気装置
(21)を通じて排気される。エッチングを行わんとする
基板(1)は反応室(20)内にて可変位型基板ホルダ
(22)に保持され、基板ホルダ内蔵のヒータ、及び/又
はランプ(23)で約200℃に加熱されている。尚、これ
ら加熱手段は温度コントローラ(24)で制御される。本
実施例においては基板(1)としてn型GaAs(100)面
のものが使用され、その表面には第2図に示したのと同
様の耐エッチングマスクが被着されて、基板表面の所定
領域のみ露出状態にある。
The reaction chamber (20) is initially evacuated to about 10 −7 to 10 −8 torr through the exhaust device (21). The substrate (1) to be etched is held in the variable position substrate holder (22) in the reaction chamber (20) and heated to about 200 ° C. by the heater and / or the lamp (23) built in the substrate holder. Has been done. These heating means are controlled by the temperature controller (24). In this embodiment, an n-type GaAs (100) surface is used as the substrate (1), and an etching resistant mask similar to that shown in FIG. Only the area is exposed.

斯る準備状態において以下の各工程が実行される。 In the preparation state, the following steps are executed.

第1工程ではガス供給装置(25)から反応ガスを反応
室(20)内に導入する。反ガスとしては今の場合塩素ガ
スであり、その導入圧力は数〜十数torrである。
In the first step, the reaction gas is introduced from the gas supply device (25) into the reaction chamber (20). In the present case, the anti-gas is chlorine gas, and its introduction pressure is several to ten and several torr.

第2工程では、励起光源(26)より励起光(27)が基
板(1)近傍に指向される。励起光(27)は紫外〜真空
紫外線であり、このとき気相反応が生ずるため、基板の
所定の露出表面が1〜20nm/分の速度で等方的にエッチ
ングされ、従って基板表面のクリーニングが果される。
尚基板ホルダ(22)を変位させて基板(1)を励起光
(27)と平行配置にすることを可とする。
In the second step, the excitation light source (26) directs the excitation light (27) to the vicinity of the substrate (1). The excitation light (27) is ultraviolet to vacuum ultraviolet light, and at this time, a gas phase reaction occurs, so that the predetermined exposed surface of the substrate is isotropically etched at a rate of 1 to 20 nm / min, so that the cleaning of the substrate surface is performed. To be fulfilled.
The substrate holder (22) can be displaced to place the substrate (1) in parallel with the excitation light (27).

第3の工程では、上記基板加熱、反応ガス供給及び励
起光照射を全て停止し、十分排気した後、基板(1)を
基板ホルダ(22)に内蔵の冷却機構で−25〜−50℃にて
冷却保持すると共に、反応ガスとして、今の場合塩素ガ
スをガス供給装置(25)から数〜十数torrの圧力で導入
する。このとき、反応ガス分子が基板表面に吸着する。
In the third step, the substrate heating, the reaction gas supply and the excitation light irradiation are all stopped and exhausted sufficiently, and then the substrate (1) is cooled to -25 to -50 ° C by the cooling mechanism built in the substrate holder (22). In this case, chlorine gas is introduced as a reaction gas from the gas supply device (25) at a pressure of several to ten and several torr in addition to cooling and holding. At this time, the reactive gas molecules are adsorbed on the substrate surface.

尚、上記基板ホルダ内蔵の冷却機構には、冷媒供給装
置(28)より液体窒素が供給される。
Liquid nitrogen is supplied from the refrigerant supply device (28) to the cooling mechanism built in the substrate holder.

第4の工程では上記反応ガス吸着状態を数分〜十数分
間保持した後、反応室を10-4torrより高い真空状態に排
気し、気相状態で残っていた反応ガスを排気する。
In the fourth step, after the reaction gas adsorption state is maintained for several minutes to several tens of minutes, the reaction chamber is evacuated to a vacuum state higher than 10 −4 torr, and the reaction gas remaining in the gas phase state is evacuated.

第5の工程では、励起光源(26)より励起光(27)が
基板(1)表面に垂直に照射される。励起光(27)は第
2工程と同様、紫外〜真空紫外線である。従って、基板
表面での反応が生じ、サイドエッチのない異方性エッチ
ングが生じる。エッチング速度は数〜数+Å/分であ
る。
In the fifth step, the excitation light source (26) irradiates the surface of the substrate (1) with the excitation light (27) vertically. The excitation light (27) is ultraviolet light to vacuum ultraviolet light as in the second step. Therefore, a reaction occurs on the substrate surface, and anisotropic etching without side etching occurs. The etching rate is several to several + Å / min.

この状態を30分〜1時間続けるとGaCl3からなる反応
生成物の堆積量が多くなりエッチング速度が低下する。
If this state is continued for 30 minutes to 1 hour, the amount of the reaction product composed of GaCl 3 deposited increases and the etching rate decreases.

そこで、第6の工程として、励起光照射を停止し、第
5工程と同様の真空度を維持しつつ、基板ホルダ内蔵の
ヒータやランプ(23)で基板(1)を約200℃で十〜数
十分間加熱する。これにより上記反応生成物は蒸発消散
し、基板表面のクリーニングがなされる。
Therefore, in the sixth step, the excitation light irradiation is stopped, and while maintaining the same degree of vacuum as in the fifth step, the substrate (1) is heated at about 200 ° C. to about 10 ° C. by a heater or lamp (23) built in the substrate holder. Heat for several tens of minutes. As a result, the reaction product is evaporated and dissipated, and the substrate surface is cleaned.

以降、上記第3工程乃至第6工程を必要回数くり返
し、所望のエッチング深さを得る。
After that, the above-mentioned third to sixth steps are repeated a necessary number of times to obtain a desired etching depth.

上記一連の工程における基板加熱、冷却、ガス導入、
排気、光照射等はコンピュータ制御機構(29)の制御の
下に、自動的に実行される。
Substrate heating, cooling, gas introduction in the above series of steps,
Exhaust, light irradiation, etc. are automatically executed under the control of the computer control mechanism (29).

第6図に本発明方法を実施するための更に他の装置を
示す。
FIG. 6 shows still another apparatus for carrying out the method of the present invention.

反応室(30)は当初10-7〜10-8Torr程度まで排気装置
(31)を通じて排気される。エッチングを行わんとする
基板(1)は反応室(30)内にて基板ホルダ(32)に保
持されている。本実施例においては基板(1)としてn
型GaAs(100)面のものが使用され、その表面には第2
図に示したのと同様な耐エッチングマスクが被着され
て、基板表面の所定領域のみ露出状態にある。
The reaction chamber (30) is initially exhausted to about 10 −7 to 10 −8 Torr through the exhaust device (31). The substrate (1) to be etched is held by the substrate holder (32) in the reaction chamber (30). In this embodiment, the substrate (1) is n
Type GaAs (100) surface is used, and the second
An etching resistant mask similar to that shown in the figure is applied so that only a predetermined region of the substrate surface is exposed.

斯る準備状態において以下の各工程が実行される。 In the preparation state, the following steps are executed.

第1工程では不活性ガスをガス供給装置(33)から反
応室(30)に導入する。不活性ガスとしては今の場合ア
ルゴンガスであり、その導入圧力は数〜数十mTorrであ
る。
In the first step, an inert gas is introduced into the reaction chamber (30) from the gas supply device (33). In this case, the inert gas is argon gas, and its introduction pressure is several to several tens mTorr.

第2工程では、励起光源(34)より励起光(35)が照
射される。励起光は紫外〜軸X線領域にかけての連続光
であり、このとき気相反応によりアルゴンイオンが生じ
る。そこへ数十〜数百Vの電圧を電圧源(36)から電線
(37)を介して基板ホルダ(32)と電極(34)との間に
加えると、アルゴンイオンが加速され基板(1)表面に
衝突し、基板の所定の露出表面がスパッタクリーニング
される。尚電極(34)はリング状をなし励起光(34)を
遮断しない。
In the second step, excitation light (35) is emitted from the excitation light source (34). The excitation light is continuous light from the ultraviolet region to the axial X-ray region, and at this time, argon ions are generated by the gas phase reaction. When a voltage of several tens to several hundreds of V is applied from the voltage source (36) to the substrate holder (32) and the electrode (34) through the electric wire (37), argon ions are accelerated and the substrate (1) is accelerated. The surface is impacted and the predetermined exposed surface of the substrate is sputter cleaned. The electrode (34) has a ring shape and does not block the excitation light (34).

第3の工程では、上記アルゴンガス供給及び励起光照
射を全て停止し、十分排気した後、基板(1)を基板ホ
ルダ(32)に内蔵の冷却機構で−25〜−50℃程度に冷却
保持すると共に、反応ガスとして今の場合塩素ガスを供
給装置(33)から数〜数百mTorrの圧力で導入する。こ
のとき、反応ガス分子が基板表面に吸着する。
In the third step, after the argon gas supply and the excitation light irradiation are all stopped and exhausted sufficiently, the substrate (1) is cooled and held at about -25 to -50 ° C by the cooling mechanism built in the substrate holder (32). At the same time, chlorine gas is introduced as the reaction gas from the supply device (33) at a pressure of several to several hundred mTorr. At this time, the reactive gas molecules are adsorbed on the substrate surface.

上記基板ホルダ内蔵の冷却機構には、冷媒供給装置
(38)より液体窒素が供給される。
Liquid nitrogen is supplied from the refrigerant supply device (38) to the cooling mechanism built in the substrate holder.

第4の工程では上記反応ガス吸着状態を数分〜+数分
間保持した後、反応室(30)を10-4Torrより高い真空状
態に排気し、気相状態で残っていた反応ガスを排気す
る。
In the fourth step, after holding the above reaction gas adsorption state for several minutes to + several minutes, the reaction chamber (30) is evacuated to a vacuum state higher than 10 -4 Torr, and the reaction gas remaining in the gas phase state is evacuated. To do.

第5の工程では励起光源(34)より励起光(35)が基
板(1)表面に垂直に照射される。励起光(35)は第2
工程と同様、紫外〜軟X線領域の光である。従って基板
表面での反応が生じサイドエッチングのない異方性エッ
チングが生じる。エッチング速度は数〜数+Å/分であ
る。
In the fifth step, the excitation light source (34) irradiates the surface of the substrate (1) with the excitation light (35) vertically. Excitation light (35) is second
As in the process, the light is in the ultraviolet to soft X-ray region. Therefore, a reaction occurs on the substrate surface and anisotropic etching without side etching occurs. The etching rate is several to several + Å / min.

この状態を30分〜1時間続けるとGaの塩化物からなる
反応生成物の堆積量が多くなりエッチング速度が低下す
る。
If this state is continued for 30 minutes to 1 hour, the deposition amount of the reaction product composed of Ga chloride increases and the etching rate decreases.

そこで、第6の工程として、反応ガスの導入を停止
し、第2工程と同様にアルゴンガスを導入し、電場を加
えると、上記反応生成物はスパッタ消散し、基板表面の
クリーニングがなされる。
Therefore, in the sixth step, when the introduction of the reaction gas is stopped, the argon gas is introduced in the same manner as in the second step, and an electric field is applied, the reaction product is sputter-dissipated and the substrate surface is cleaned.

以降、上記第3工程乃至第6工程を必要回数繰り返
し、所望のエッチング深さを得る。上記一連の工程にお
ける基板の冷却、ガス導入、排気、光照射、電場印加等
はコンピュータ制御機構(39)の制御の下に、自動的に
実行される。
After that, the above third to sixth steps are repeated a necessary number of times to obtain a desired etching depth. Substrate cooling, gas introduction, exhaust, light irradiation, electric field application and the like in the above series of steps are automatically executed under the control of the computer control mechanism (39).

本発明の反応生成物除去工程としては、第5図の場合
の如き、基板温度の上昇と、第6図の場合のスパッタと
の両者を併用することも可能である。
In the reaction product removing step of the present invention, it is possible to use both the rise of the substrate temperature as in the case of FIG. 5 and the sputtering in the case of FIG.

(ト) 発明の効果 本発明によれば、等方的エッチングの起こりやすい光
励起エッチングにおいて、サイドエッチングが抑制さ
れ、方向性の良いエッチングが可能となり、更に、光励
起エッチングに際し生じる反応生成物の影響をもなく
し、所望深さのエッチングを行い得る。
(G) Effect of the Invention According to the present invention, in photoexcited etching where isotropic etching is likely to occur, side etching is suppressed, etching with good directionality is possible, and further, the influence of reaction products generated during photoexcited etching is reduced. Alternatively, the desired depth of etching can be performed.

【図面の簡単な説明】[Brief description of the drawings]

第1図乃至第3図は本発明を説明するための断面図、第
4図乃至第6図は本発明方法を実施するための夫々異な
る装置の断面図である。
1 to 3 are cross-sectional views for explaining the present invention, and FIGS. 4 to 6 are cross-sectional views of different devices for carrying out the method of the present invention.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】反応ガス中に置かれた基板を冷却すること
により前記基板表面に反応ガスを吸着せしめ、斯る基板
に励起光を照射する光励起エッチング方法であって、上
記基板への反応ガス吸着工程と、上記基板への励起光照
射工程とをこの順序で含む一連の工程を、斯る工程中に
生じる反応生成物を上記基板を不活性イオンでスパッタ
することにより基板から除去する除去工程を挟んでくり
返すことを特徴とする光励起エッチング方法。
1. A photo-excited etching method in which a reaction gas is adsorbed on the surface of the substrate by cooling the substrate placed in the reaction gas, and the substrate is irradiated with excitation light. A series of steps including an adsorption step and a step of irradiating the substrate with excitation light in this order, a removal step of removing the reaction product generated during the step from the substrate by sputtering the substrate with inert ions. A photo-excited etching method characterized by repeating with sandwiching.
JP63292878A 1988-01-14 1988-11-18 Photo-excited etching method Expired - Fee Related JP2680644B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP635988 1988-01-14
JP3796788 1988-02-19
JP63-6359 1988-02-19
JP63-37967 1988-02-19

Publications (2)

Publication Number Publication Date
JPH01295424A JPH01295424A (en) 1989-11-29
JP2680644B2 true JP2680644B2 (en) 1997-11-19

Family

ID=26340475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63292878A Expired - Fee Related JP2680644B2 (en) 1988-01-14 1988-11-18 Photo-excited etching method

Country Status (1)

Country Link
JP (1) JP2680644B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7323699B2 (en) * 2005-02-02 2008-01-29 Rave, Llc Apparatus and method for modifying an object

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041229A (en) * 1983-08-17 1985-03-04 Fujitsu Ltd Manufacture of semiconductor device and manufacturing equipment thereof
JPS6154631A (en) * 1984-08-24 1986-03-18 Jeol Ltd Etching process
JPS62153198A (en) * 1985-12-27 1987-07-08 Nec Corp Method for gaseous-phase etching of iii-v compound semiconductor
JP2545786B2 (en) * 1986-02-12 1996-10-23 富士通株式会社 Photo-excited etching method

Also Published As

Publication number Publication date
JPH01295424A (en) 1989-11-29

Similar Documents

Publication Publication Date Title
EP0714119B1 (en) Pattern forming process and process for preparing semiconductor device utilizing said pattern forming process
JPS631097B2 (en)
EP0425419A2 (en) Methods and apparatus for contamination control in plasma processing
JPS6175529A (en) Dry etching method and apparatus therefor
JPH0622212B2 (en) Dry etching method
JPH04218914A (en) Reactive ion etching device and reac- tive ion etching method
JP2005354048A (en) High-rate etching using high pressure f2 plasma with argon diluent
JPH0228322A (en) Preliminary treatment of semiconductor substrate
US5178721A (en) Process and apparatus for dry cleaning by photo-excited radicals
JPH0622222B2 (en) Light processing equipment
US4844774A (en) Phototreating method and apparatus therefor
JP6877581B2 (en) Plasma processing equipment and sample processing method using it
JP2680644B2 (en) Photo-excited etching method
JPH01179410A (en) Method and apparatus for forming thin film by cvd
KR20210110579A (en) Light-assisted chemical vapor etching for selective removal of ruthenium
JPH0831441B2 (en) Surface treatment method
JPH0796259A (en) Apparatus and method for gaseous phase removal of refuse from surface of substrate and process apparatus and line
EP0546493B1 (en) Photochemical dry etching method
JPH03276719A (en) Digital etching method
JPH02185030A (en) Surface treating method
TWI835981B (en) Photo-assisted chemical vapor etch for selective removal of ruthenium
JP7452992B2 (en) Plasma processing equipment and operating method of plasma processing equipment
JPS6154631A (en) Etching process
JPH07105346B2 (en) Radical beam photo CVD equipment
JP2002252212A (en) Surface processing method, and method and apparatus for manufacturing photovoltaic power generator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees