JPH07105346B2 - Radical beam photo CVD equipment - Google Patents

Radical beam photo CVD equipment

Info

Publication number
JPH07105346B2
JPH07105346B2 JP60211099A JP21109985A JPH07105346B2 JP H07105346 B2 JPH07105346 B2 JP H07105346B2 JP 60211099 A JP60211099 A JP 60211099A JP 21109985 A JP21109985 A JP 21109985A JP H07105346 B2 JPH07105346 B2 JP H07105346B2
Authority
JP
Japan
Prior art keywords
chamber
radicals
film formation
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60211099A
Other languages
Japanese (ja)
Other versions
JPS6272114A (en
Inventor
俊雄 林
成史 五戸
Original Assignee
日本真空技術株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本真空技術株式会社 filed Critical 日本真空技術株式会社
Priority to JP60211099A priority Critical patent/JPH07105346B2/en
Publication of JPS6272114A publication Critical patent/JPS6272114A/en
Publication of JPH07105346B2 publication Critical patent/JPH07105346B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は主として高密度集積、高性能の半導体デバイス
の製作に適用されるラジカルビーム光CVD装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention mainly relates to a radical beam photo-CVD apparatus applied to the production of high-density integrated and high-performance semiconductor devices.

(従来の技術) 従来、半導体デバイスの製作の手法として基板を設けた
真空の処理室内に反応ガスを導入し、該基板に光を当て
分解した反応ガスの成分を該基板上に薄膜状に形成する
光CVD法及び反応ガスを分解させて得たラジカルを処理
室内の基板上にビーム状に当ててそこに薄膜を形成する
ラジカルビームCVD法が知られている。
(Prior Art) Conventionally, as a method of manufacturing a semiconductor device, a reaction gas is introduced into a vacuum processing chamber in which a substrate is provided, and the components of the reaction gas decomposed by irradiating the substrate with light are formed into a thin film on the substrate. There are known a photo-CVD method and a radical-beam CVD method in which radicals obtained by decomposing a reaction gas are applied in a beam shape on a substrate in a processing chamber to form a thin film thereon.

(発明が解決しようとする問題点) 前記した光CVDやラジカルビームCVD法は夫々高密度集積
の半導体デバイスを特に低温、低損傷で製作するための
技術として夫々開発されたもので、プラズマCVDで見ら
れるような荷電粒子による膜の損傷を引き起こさない利
点はあるが、成膜温度はあまり低温ではなく、成膜速度
がプラズマCVD等に比べて遅い不都合がある。例えば光C
VD法では成膜温度は比較的低いがラジカルCVD法では効
率よく成膜出来るプロセス温度は500〜600℃であり熱CV
D法に比べれば低いものの、要求される温度に対しては
高く基板損傷を生じ易い。また成膜速度は、光CVD法で
は平均100Å/min、ラジカルCVD法では2.0Å/minであり
いずれもプラズマCVD法や熱CVD法に比べ1〜2桁程小さ
い。このような状況は光CVD法では光照射によるラジカ
ル生成が非常に選択的で且つラジカル生成量が少ないこ
と、またラジカルビームCVD法においてはラジカルのみ
が成膜の前駆種として使用されるため、核形成、核成長
に対する活性度が少ないということに起因する。従って
光CVD法のみを使用し或はラジカルビームCVD法のみを使
用して実用的な成膜を行なうことは難しい。
(Problems to be Solved by the Invention) The above-mentioned optical CVD and radical beam CVD are respectively developed as a technique for manufacturing high-density integrated semiconductor devices at particularly low temperature and low damage. Although there is an advantage that the film is not damaged by the charged particles as seen, the film forming temperature is not so low that the film forming speed is slower than that of plasma CVD or the like. For example light C
The VD method has a relatively low film formation temperature, but the radical CVD method has an effective process temperature of 500 to 600 ° C.
Although lower than the D method, it is high at the required temperature and easily causes substrate damage. Further, the film forming rate is 100 Å / min on average in the photo-CVD method and 2.0 Å / min in the radical CVD method, both of which are about 1 to 2 orders of magnitude lower than those of the plasma CVD method and the thermal CVD method. In such a situation, in the photo-CVD method, radical generation by light irradiation is very selective and the amount of radical generation is small, and in the radical-beam CVD method, only radicals are used as precursors for film formation. This is due to its low activity against formation and nuclear growth. Therefore, it is difficult to practically form a film by using only the optical CVD method or only the radical beam CVD method.

本発明の目的は低温でしかも比較的早く成膜出来る装置
を提供することにある。
An object of the present invention is to provide an apparatus capable of forming a film at a low temperature and relatively quickly.

(問題点を解決するための手段) 本発明では、反応ガスをプラズマ放電等により分解して
ラジカルを生成させる真空の分解室と、成膜形成処理が
施される基板を設けた真空の成膜室とを備え、該分解室
で生成したラジカルを成膜室へ導入すべく該分解室と成
膜室を多数のオリフィスを介して連結し、該成膜室内の
基板とオリフィスの間に、該オリフィスを通過するラジ
カル以外の荷電粒子を除去するための該オリフィスの中
心軸と交差した磁界を形成する磁石を設け、該成膜室の
外部に設けた光源から該成膜室の透窓を介してその室内
の該基板の表面反応を励起し該ラジカルを励起イオン化
する光を導入して前記目的が達成されるようにした。
(Means for Solving Problems) According to the present invention, a vacuum decomposition chamber in which a reaction gas is decomposed by plasma discharge or the like to generate radicals, and a vacuum film formation provided with a substrate on which a film formation process is performed. A chamber and the radicals generated in the decomposition chamber are introduced into the film forming chamber, the decomposition chamber and the film forming chamber are connected via a number of orifices, and A magnet that removes charged particles other than radicals passing through the orifice and forms a magnetic field intersecting the central axis of the orifice is provided, and a light source provided outside the film deposition chamber passes through a window of the film deposition chamber. Then, light for exciting the surface reaction of the substrate in the chamber to excite and ionize the radicals is introduced to achieve the above-mentioned object.

(作 用) 分解室に例えばSiH4ガスを導入し、プラズマ放電を発生
させると、該ガスは電離されてイオン、電子、ラジカル
等を生ずるが、生成されたラジカルはオリフィスにより
ビーム状として成膜室へと導入される。該オリフィスに
ラジカル以外の電荷粒子が侵入することを磁界の作用に
より取除き、成膜室内のラジカルが光源からの光の照射
により励起及びイオン化されると該光源により表面反応
が励起された基板の表面に膜状に付着する。ラジカルは
不対電子をもつため親分子に比べ非常に反応性に富んで
おり、これらを光照射により高い励起状態やイオン化状
態に押し上げると膜形成に必要な適度の活性化エネルギ
ーが与えられる。このようなラジカルの高励起状態やイ
オン化状態は核形成時の臨界凝縮圧を低下させ、核形
成、核成長を促進させ、基板表面における付着分子の捕
獲断面積を増大させることになる。
(Operation) When, for example, SiH 4 gas is introduced into the decomposition chamber and a plasma discharge is generated, the gas is ionized to generate ions, electrons, radicals, etc. The generated radicals are formed into a beam by an orifice. Introduced into the room. The entry of charged particles other than radicals into the orifice is removed by the action of a magnetic field, and when the radicals in the film formation chamber are excited and ionized by irradiation with light from a light source, the surface reaction of the substrate is excited by the light source. It adheres to the surface like a film. Since radicals have unpaired electrons, they are much more reactive than the parent molecule, and when these are pushed up by light irradiation to a highly excited or ionized state, they give the appropriate activation energy necessary for film formation. Such a highly excited state or ionized state of radicals lowers the critical condensation pressure during nucleation, promotes nucleation and nucleus growth, and increases the trapping cross section of attached molecules on the substrate surface.

従って、この装置によれば、低温で緻密な均一性のすぐ
れた膜を形成することができると同時に膜の成長速度も
大幅に増加させることができ、更に分解室に於いて分解
されなかった親分子を光によって成膜室に於いて分解
し、ラジカルを生成させることもでき、親分子の有効な
利用が出来る。また照射する光のエネルギを変えれば、
基板表面に吸着する成分の制御もでき選択的な膜形成を
行なえる。
Therefore, according to this apparatus, a dense and highly uniform film can be formed at a low temperature, and at the same time, the growth rate of the film can be greatly increased, and further, the parent film that has not been decomposed in the decomposition chamber can be formed. The molecules can be decomposed by light in the film forming chamber to generate radicals, and the parent molecule can be effectively used. Also, if you change the energy of the light to irradiate,
The components adsorbed on the substrate surface can be controlled, and selective film formation can be performed.

(実施例) 本発明の実施例を別紙図面に基き説明する。(Example) An example of the present invention will be described based on the attached sheet.

第1図示の実施例はRF放電を用いてSiH4の反応ガスを分
解し、基板にSi膜に成膜するようにした例を示し、同図
に於いて符号(1)は反応ガスの分解室、(2)は基板
(3)が設置され且つ真空ポンプに連なる排気孔(2a)
を備えた成膜室、(4)は該分解室(1)と成膜室
(2)を結び該分解室(1)を真空化すると共に該室
(1)で生成されたラジカルをビーム状にして成膜室
(2)へ導入するオリフィス、(5)は該オリフィス
(4)を通過したラジカル以外の荷電粒子を取除くため
の磁石である。
The first embodiment shown in the figure shows an example in which the reaction gas of SiH 4 is decomposed by RF discharge to form a Si film on the substrate. In the figure, reference numeral (1) is the decomposition of the reaction gas. Chamber, (2) exhaust hole (2a) where substrate (3) is installed and is connected to vacuum pump
A film forming chamber (4), which connects the decomposition chamber (1) and the film forming chamber (2) to evacuate the decomposition chamber (1) and forms radicals generated in the chamber (1) into a beam. An orifice (5) introduced into the film forming chamber (2) is a magnet for removing charged particles other than radicals that have passed through the orifice (4).

該分解室(1)の外周には高周波コイル(6)及び円形
磁場を形成する磁石(7)が配置され、該分解室(1)
の一端にはSiH4の反応ガスの導入口(8)が設けられ、
他端には前記成膜室(2)が真空密封して一連に形成さ
れる。該高周波コイル(6)に流される高周波は誘導結
合型高周波(13.56MHZ)であり、磁石(7)には分解室
(1)に於いて生成されるラジカル濃度を高くするため
に約800ガウスの円形磁場を使用した。該分解室(1)
内に形成されるプラズマは該磁石(7)による円形磁場
の作用で該分解室(1)の中心軸上に集中するので分解
室(1)の内壁との反応が押えられ、ラジカル濃度が高
まるる。該オリフィス(4)は多数個を均等に分散配置
するようにして形成するものとし、分解室(1)に於い
て生成されたラジカルは各オリフィス(4)を介して成
膜室(2)に導かれるようにした。該オリフィス(4)
で分解室(1)と成膜室(2)を分離することにより、
放電の際に生ずる荷電粒子が基板(3)を直撃して損傷
させることを減少出来る。また多数のオリフィス(4)
を均等に配置形成することにより成膜の均一性を得るこ
とが出来る。(9)は分解室(1)から成膜室(2)へ
導入されるラジカルの消失を防ぐためにオリフィス
(4)の表面にコーティングした石英製テフロンコーテ
ィング、(10)は処理される基板(3)を支持する基板
ホルダでその内部には導管(11)を設けて該ホルダ(1
0)に熱媒体が供給されるようにした。
A high frequency coil (6) and a magnet (7) for forming a circular magnetic field are arranged around the decomposition chamber (1), and the decomposition chamber (1) is disposed.
An inlet (8) for the reaction gas of SiH 4 is provided at one end of
The film forming chamber (2) is vacuum-sealed at the other end to form a series. The high frequency applied to the high frequency coil (6) is an inductively coupled high frequency (13.56MHZ), and the magnet (7) has about 800 gauss to increase the concentration of radicals generated in the decomposition chamber (1). A circular magnetic field was used. The decomposition chamber (1)
The plasma formed inside is concentrated on the central axis of the decomposition chamber (1) by the action of the circular magnetic field by the magnet (7), so that the reaction with the inner wall of the decomposition chamber (1) is suppressed and the radical concentration is increased. It The orifices (4) are formed so that a large number of them are evenly arranged, and the radicals generated in the decomposition chamber (1) enter the film formation chamber (2) through each orifice (4). I was guided. The orifice (4)
By separating the decomposition chamber (1) and the film formation chamber (2) with
It is possible to reduce that the charged particles generated during the discharge directly hit the substrate (3) and damage it. Multiple orifices (4)
By uniformly arranging and forming, it is possible to obtain uniformity of film formation. (9) is a quartz Teflon coating coated on the surface of the orifice (4) to prevent the radicals introduced from the decomposition chamber (1) into the film formation chamber (2), and (10) is the substrate (3) to be treated. ) Supporting a substrate (1) with a conduit (11) provided inside the holder (1).
The heat medium is supplied to the (0).

オリフィス(4)を通過してくる粒子の中には高エネル
ギの電子やイオンが含まれているので、これを永久磁石
(5)により取り除き、中性ラジカルだけが成膜室
(2)に取り出せるようにした。
Since the particles passing through the orifice (4) contain high-energy electrons and ions, they are removed by the permanent magnet (5), and only neutral radicals can be taken out to the film forming chamber (2). I did it.

(12)は成膜室(2)内の基板(3)に向けて光源(1
3)(14)(15)の光線を導入する透窓を示し、各光源
の光は夫々ラジカルのイオン化、親分子SiH4の分解及び
基板の表面反応の励起に使用される。ラジカルのイオン
化のための光源(13)はSiH4の放電分解で生成するSiHn
(n=0〜3)ラジカルのイオン化ポテンシャルが7.4
〜9.5eVであるから、Xe、Krの共鳴線が最も適する。従
ってこれらの光を透過せしめるように透窓(12)として
LiF、MgF2或はCaF2を使用する。またラジカルのイオン
化を過不足のない適度のものとするために種々の焦点距
離のレンズを用いてフォーカス度を変化させ、光を成膜
室に導入する。SiH4の光分解のための光源(14)は前記
光源(13)と反対側から導入され、SiH4の分解には150
〜160nmの光が有効であり、エキシマーレーザ、(ArF)
かXeの共鳴線が用いられる。エキシマーレーザの場合、
効率のよい分解のため約10MW/cm2以上のパワーが必要で
ある。さらに基板(3)の表面反応の励起のための光源
(15)としてはKrF(249nm)エキシマーレーザを用いる
と効率よく成膜できる。
(12) is a light source (1) toward the substrate (3) in the film formation chamber (2)
3) Shows a window through which the light rays of (14) and (15) are introduced, and the light of each light source is used for ionizing radicals, decomposing the parent molecule SiH 4 and exciting the surface reaction of the substrate. The light source (13) for ionization of radicals is SiHn produced by discharge decomposition of SiH 4.
(N = 0 to 3) Radical ionization potential is 7.4
Since it is ~ 9.5 eV, the resonance lines of Xe and Kr are most suitable. Therefore, as a transparent window (12) so that these lights can be transmitted.
LiF, MgF 2 or CaF 2 is used. Further, in order to make the ionization of radicals moderate and proper, the degree of focus is changed using lenses having various focal lengths, and light is introduced into the film forming chamber. A light source (14) for photodecomposition of SiH 4 is introduced from the side opposite to the light source (13), and 150 for decomposition of SiH 4.
~ 160nm light is effective, excimer laser, (ArF)
Or Xe resonance line is used. For excimer lasers,
Power of about 10 MW / cm 2 or more is required for efficient decomposition. Furthermore, if a KrF (249 nm) excimer laser is used as the light source (15) for exciting the surface reaction of the substrate (3), the film can be efficiently formed.

第1図示の装置に於いて、1mmのオリフィス(4)が7
個で流量Qが40sccmの場合、分解室(1)に於ける圧力
は6.2×102Pa(4.66Torr)となる。成膜室(2)の有効
排気速度は2/sであると、該室(2)の圧力は34Pa
(0.25Torr)となり、一般に用いられているプラズマCV
Dのプロセス条件とほぼ同じ圧力にでき、ラジカルを有
効に該室(2)に導入することによりプラズマCVDと同
程度の成膜速度が得られ、光CVDと同程度の200℃程度の
低い成膜温度で成膜出来る。この装置により成膜したア
モスファルシリコン成膜速度は150Å/minであり、光CVD
やラジカルビームCVDで行なった場合よりも大きな値が
得られた。
In the device shown in FIG. 1, the 1 mm orifice (4) has 7
When the flow rate Q is 40 sccm for each piece, the pressure in the decomposition chamber (1) is 6.2 × 10 2 Pa (4.66 Torr). When the effective evacuation speed of the film forming chamber (2) is 2 / s, the pressure in the chamber (2) is 34 Pa.
(0.25 Torr), which is a commonly used plasma CV
The pressure can be made almost the same as the process condition of D, and by effectively introducing the radicals into the chamber (2), a film formation rate similar to that of plasma CVD can be obtained, and a low deposition rate of about 200 ° C. similar to that of optical CVD can be obtained. The film can be formed at the film temperature. The deposition rate of amosphal silicon deposited by this equipment is 150Å / min,
A larger value was obtained than that obtained by radical beam CVD.

第2図は本発明の第2実施例を示すもので、これに於い
てはオリフィス(4)を通過した荷電粒子を取り除く磁
石(5)を各オリフィス(4)の下部に配置するように
した。これによれば中心磁場を高めるために大型の磁石
を使用すると装置が大型化することや、各オリフィスを
通る各ラジカルビームに均一に磁場をかけることが出来
ない不都合を解消出来る。即ち各オリフィス(4)に磁
石(5)を設けることにより各ビームに対し強い磁場を
与え、荷電粒子を効率よく取り除くことが出来る。この
実施例により成膜した膜は第1図示の装置で行なったも
のよりも膜質の欠陥が少ないものが得られた。
FIG. 2 shows a second embodiment of the present invention in which a magnet (5) for removing charged particles passing through the orifices (4) is arranged below each orifice (4). . According to this, when a large magnet is used to increase the central magnetic field, the size of the apparatus becomes large, and it is possible to eliminate the disadvantage that the magnetic field cannot be uniformly applied to each radical beam passing through each orifice. That is, by providing a magnet (5) at each orifice (4), a strong magnetic field can be applied to each beam and charged particles can be efficiently removed. The film formed by this example had less film quality defects than the film formed by the apparatus shown in FIG.

分解室(1)に於ける反応ガスの分解にはプラズマ放電
の他に、熱による分解を適用することも可能である。
For the decomposition of the reaction gas in the decomposition chamber (1), it is possible to apply thermal decomposition as well as plasma discharge.

(発明の効果) 以上のように本発明では、反応ガスを分解する真空の分
解室と、基板を設けた真空の成膜室を多数のオリフィス
を介して連結し、該成膜室内の基板と該オリフィスの間
に設けた磁石の該オリフィスの中心軸と交差する磁界に
より該オリフィスを通過するラジカル以外の荷電粒子を
除去し、該成膜室の透窓を介して導入した光により該室
内のラジカルをイオン化して基板へと付着させるように
したので、成膜室内は基板にダメージを与える荷電粒子
がなく、反応性に富むラジカルの雰囲気となり、光で効
率良く励起して成膜を行えるから成膜速度が向上し、大
面積の基板の多数の箇所に向けて多数のオリフィスから
ラジカルが均等に分散して均一な成膜を行え、基板温度
を低温として比較的速く大面積の基板にダメージなく成
膜出来、半導体デバイス等の製造に実用的に適用出来る
等の効果がある。
(Effects of the Invention) As described above, in the present invention, a vacuum decomposition chamber for decomposing a reaction gas and a vacuum film formation chamber in which a substrate is provided are connected through a large number of orifices, and The charged particles other than the radicals passing through the orifices are removed by the magnetic field that intersects the central axis of the orifices of the magnet provided between the orifices, and the light introduced through the transparent window of the film forming chamber Since the radicals are ionized and attached to the substrate, there are no charged particles that damage the substrate in the film formation chamber, and a highly reactive atmosphere of radicals is created, so that the film can be efficiently excited by light to form a film. The film formation speed is improved, radicals are evenly distributed from many orifices to a large number of locations on a large-area substrate, and uniform film formation is possible. Without film formation It has the effect of being practically applicable to the manufacture of semiconductor devices and the like.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1実施例の截断側面図、第2図は本
発明の第2実施例の截断側面図である。 (1)……分解室 (2)……成膜室 (3)……基板 (4)……オリフィス (5)……磁石 (13)(14)(15)……光源
FIG. 1 is a cutaway side view of a first embodiment of the present invention, and FIG. 2 is a cutaway side view of a second embodiment of the present invention. (1) …… Decomposition chamber (2) …… Film forming chamber (3) …… Substrate (4) …… Orifice (5) …… Magnet (13) (14) (15) …… Light source

フロントページの続き (56)参考文献 特開 昭59−188913(JP,A) 特開 昭59−144133(JP,A) 1.Extended Abstrac ts 16th Int.Conf.SoL ID STATE DEVICES AN D MATERIALS,1984,P.L 865〜L867 2.JAPANESE JOURNAL OF APPLIED PHYSIC S,23[11],(1984−11),P.447− 450Continuation of the front page (56) References JP-A-59-188913 (JP, A) JP-A-59-144133 (JP, A) 1. Extended Abstracts 16th Int. Conf. SoL ID STATE DEVICES AND MATERIALS, 1984, P.I. L865-L867 2. JAPANESE JOURNAL OF APPLIED PHYSICS, 23 [11], (1984-11), P.P. 447-450

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】反応ガスをプラズマ放電等により分解して
ラジカルを生成させる真空の分解室と、薄膜形成処理が
施される基板を設けた真空の成膜室とを備え、該分解室
で生成したラジカルを成膜室へ導入すべく該分解室と成
膜室を多数のオリフィスを介して連結し、該成膜室内の
基板と該オリフィスの間に、該オリフィスを通過するラ
ジカル以外の荷電粒子を除去するための該オリフィスの
中心軸と交差した磁界を形成する磁石を設け、該成膜室
の外部に設けた光源から該成膜室の透窓を介してその室
内の該基板の表面反応を励起しラジカルを励起イオン化
する光を導入したことを特徴とするラジカルビーム光CV
D装置。
1. A vacuum decomposition chamber in which a reaction gas is decomposed by plasma discharge or the like to generate radicals, and a vacuum film formation chamber in which a substrate on which a thin film is formed are provided are provided. The decomposition chamber and the film formation chamber are connected to each other through a large number of orifices to introduce the radicals into the film formation chamber, and charged particles other than the radicals passing through the orifice are provided between the substrate and the orifice in the film formation chamber. A magnet for forming a magnetic field that intersects the central axis of the orifice for removing the gas, and a surface reaction of the substrate in the film formation chamber from a light source provided outside the film formation chamber through a transparent window of the film formation chamber. Radiation beam light CV characterized by the introduction of light that excites light and excites radicals into ions
D device.
JP60211099A 1985-09-26 1985-09-26 Radical beam photo CVD equipment Expired - Lifetime JPH07105346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60211099A JPH07105346B2 (en) 1985-09-26 1985-09-26 Radical beam photo CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60211099A JPH07105346B2 (en) 1985-09-26 1985-09-26 Radical beam photo CVD equipment

Publications (2)

Publication Number Publication Date
JPS6272114A JPS6272114A (en) 1987-04-02
JPH07105346B2 true JPH07105346B2 (en) 1995-11-13

Family

ID=16600391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60211099A Expired - Lifetime JPH07105346B2 (en) 1985-09-26 1985-09-26 Radical beam photo CVD equipment

Country Status (1)

Country Link
JP (1) JPH07105346B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5018479A (en) * 1987-09-24 1991-05-28 Reserach Triangle Institute, Inc. Remote plasma enhanced CVD method and apparatus for growing an epitaxial semconductor layer
US5180435A (en) * 1987-09-24 1993-01-19 Research Triangle Institute, Inc. Remote plasma enhanced CVD method and apparatus for growing an epitaxial semiconductor layer
US5485313A (en) * 1993-10-27 1996-01-16 Polaroid Corporation Zoom lens systems

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188913A (en) * 1983-04-11 1984-10-26 Semiconductor Energy Lab Co Ltd Photo cvd device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1.ExtendedAbstracts16thInt.Conf.SoLIDSTATEDEVICESANDMATERIALS,1984,P.L865〜L867
2.JAPANESEJOURNALOFAPPLIEDPHYSICS,23[11,(1984−11),P.447−450

Also Published As

Publication number Publication date
JPS6272114A (en) 1987-04-02

Similar Documents

Publication Publication Date Title
EP0477890B1 (en) Processing method and apparatus
KR100220132B1 (en) Microwave plasma treating device and method thereof
JPH0422985B2 (en)
US4798739A (en) Plasma-assisted method for thin film fabrication
JPH07105346B2 (en) Radical beam photo CVD equipment
JPS63224233A (en) Surface treatment
US4732793A (en) Method and apparatus for laser-induced CVD
JP3211480B2 (en) Dry cleaning method
JP2913671B2 (en) ECR plasma CVD apparatus and method for manufacturing semiconductor device using the same
JP2608456B2 (en) Thin film forming equipment
JPH0717146Y2 (en) Wafer processing equipment
JPH1018042A (en) Thin film forming device
JPH05283346A (en) Semiconductor manufacturing device
JPH03155621A (en) Dry etching method
JPS61230326A (en) Vapor growth apparatus
JPH0517291A (en) Treatment of substrate for deposition of diamond thin film
JPS60236215A (en) Laser cvd method
JP2001115267A (en) Plasma treatment system and method
JP3134942B2 (en) Wafer stage pretreatment method
JPS62278284A (en) Surface treatment device
JP2667930B2 (en) Fine processing method and device
JPH01306567A (en) Formation of thin film
JP3091466B2 (en) Thin film manufacturing method
JPH04130628A (en) Dry etching method
JPS62127472A (en) Apparatus for forming thin film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term