JP3134942B2 - Wafer stage pretreatment method - Google Patents

Wafer stage pretreatment method

Info

Publication number
JP3134942B2
JP3134942B2 JP5179191A JP5179191A JP3134942B2 JP 3134942 B2 JP3134942 B2 JP 3134942B2 JP 5179191 A JP5179191 A JP 5179191A JP 5179191 A JP5179191 A JP 5179191A JP 3134942 B2 JP3134942 B2 JP 3134942B2
Authority
JP
Japan
Prior art keywords
plasma
electrostatic chuck
wafer stage
gas
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5179191A
Other languages
Japanese (ja)
Other versions
JPH04287343A (en
Inventor
光夫 佐々木
源一 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5179191A priority Critical patent/JP3134942B2/en
Publication of JPH04287343A publication Critical patent/JPH04287343A/en
Application granted granted Critical
Publication of JP3134942B2 publication Critical patent/JP3134942B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、基板への絶縁膜等の
薄膜形成、またはプラズマエッチング加工に用いる半導
体製造装置であって、基板を保持するためのウエーハス
テージの保持機構に静電チャックを用いているECRプ
ラズマCVD装置において、静電チャックの平坦な表面
を、該表面への被処理基板の吸着,保持に先立って清浄
化する静電チャック表面の前処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor manufacturing apparatus used for forming a thin film such as an insulating film on a substrate or for plasma etching, wherein an electrostatic chuck is attached to a holding mechanism of a wafer stage for holding the substrate. The present invention relates to a pretreatment method for an electrostatic chuck surface for cleaning a flat surface of an electrostatic chuck prior to adsorption and holding of a substrate to be processed on the surface in an ECR plasma CVD apparatus used.

【0002】[0002]

【従来の技術】まず、本発明におけるウエーハステージ
前処理方法の適用対象となるECRプラズマCVD装置
についてその概要を説明する。
2. Description of the Related Art First, an outline of an ECR plasma CVD apparatus to which a wafer stage pretreatment method according to the present invention is applied will be described.

【0003】ECRプラズマCVD装置は、ECRプラ
ズマCVD法、すなわち、所定強度の磁場中にガスを導
入し、ここに磁場強度に対応した周波数のマイクロ波を
入射することによってマイクロ波のエネルギーをガスに
共鳴吸収させ、これにより高密度に生成されたプラズマ
を反応ガスとともに基板上に導いて成膜する成膜方法、
を実現させる装置であり、図3に装置の一構成例を示
す。両端にそれぞれマイクロ波導入窓2とプラズマ引出
し窓7とを備えた半解放のマイクロ波共振器として形成
されたプラズマ生成室は、主磁気コイル4により同軸
に囲まれ、このコイル4に流す電流を調整することによ
り、プラズマ生成室内のマイクロ波導入窓近傍に電子
サイクロトロン共鳴(以下ECRと記す)条件を満足す
る磁場領域が形成される。このプラズマ生成室と隣接
し、プラズマ引出し窓7を介して内部空間がプラズマ生
成室の内部空間と連通する反応室が設けられ、反応
室内で基板を保持するウエーハステージとして、保持機
構に静電チャック10を用いたウエーハステージ11が、こ
こには特に図示していないが、軸方向移動可能に反応室
の上面側に配されている。また、反応室の外側で反
応室上面側に補助磁気コイル12が配置され、装置の運転
目的により、主磁気コイル4と対となって装置内にミラ
ー磁場またはカスプ磁場を形成する。基板に例えば絶縁
膜としてSiO2膜を形成する場合、プラズマ生成室内に
ECR磁場領域を形成してマイクロ波を導入した後、第
1ガス導入系3からプラズマ生成室内へN2O またはO2
ガスを導入するとともに、反応室内へ第2ガス導入系
8から、円環状ガスノズル8aの内径側に周方向等間隔
に形成された同一口径の複数のガス放出口を通し、周方
向均等なガス量でSiH4ガスを導入すると、プラズマ生成
内でプラズマ化されたN2O またはO2ガスが主磁気コ
イルが形成する発散磁場の磁力線に沿って反応室内へ
移動して反応室内のSiH4ガスを分解,活性化し、反応
内に形成されたカスプ磁場中で膜厚の均一なSiO2
が基板9の表面に形成される。
[0003] An ECR plasma CVD apparatus employs an ECR plasma CVD method, that is, a method in which a gas is introduced into a magnetic field having a predetermined intensity, and a microwave having a frequency corresponding to the magnetic field intensity is incident on the gas, thereby converting the energy of the microwave into the gas. A film formation method for forming a film by conducting resonance absorption, thereby guiding a plasma generated at high density on a substrate together with a reaction gas,
FIG. 3 shows a configuration example of the device. A plasma generation chamber 5 formed as a semi-open microwave resonator having a microwave introduction window 2 and a plasma extraction window 7 at both ends is coaxially surrounded by a main magnetic coil 4, and a current flowing through the coil 4 is formed. Is adjusted, a magnetic field region that satisfies the electron cyclotron resonance (hereinafter, referred to as ECR) condition is formed near the microwave introduction window in the plasma generation chamber 5 . A reaction chamber 6, which is adjacent to the plasma generation chamber 5 and whose internal space communicates with the internal space of the plasma generation chamber 5 through a plasma extraction window 7, is provided. As a wafer stage for holding a substrate in the reaction chamber, a holding mechanism is provided. Although not shown here, a wafer stage 11 using an electrostatic chuck 10 is capable of moving in an axial direction in a reaction chamber.
6 is arranged on the upper surface side. An auxiliary magnetic coil 12 is arranged outside the reaction chamber 6 on the upper side of the reaction chamber, and forms a mirror magnetic field or a cusp magnetic field in the apparatus in combination with the main magnetic coil 4 depending on the operation purpose of the apparatus. When an SiO 2 film is formed on the substrate as an insulating film, for example, an ECR magnetic field region is formed in the plasma generation chamber 5 and microwaves are introduced, and then N 2 O is introduced from the first gas introduction system 3 into the plasma generation chamber 5 . Or O 2
The gas is introduced, and a plurality of gas outlets having the same diameter formed at equal intervals in the circumferential direction are formed in the reaction chamber 6 from the second gas introduction system 8 on the inner diameter side of the annular gas nozzle 8a at equal intervals in the circumferential direction. When the SiH 4 gas is introduced in a gas amount, the N 2 O or O 2 gas plasmatized in the plasma generation chamber 5 moves into the reaction chamber 6 along the lines of magnetic force of the diverging magnetic field formed by the main magnetic coil and reacts. The SiH 4 gas in the chamber 6 is decomposed and activated, and an SiO 2 film having a uniform thickness is formed on the surface of the substrate 9 in a cusp magnetic field formed in the reaction chamber 6 .

【0004】このECRプラズマCVD法による成膜で
は、プラズマ生成室で生成された高活性,高密度のプラ
ズマが用いられるため、低温成膜が可能であり、また、
SiO2膜形成時に、ここには特に図示していないが、静電
チャック10を構成する吸引用内部電極にコンデンサを介
して高周波電源を接続すると、基板9の表面に負極性の
バイアス電位が生じ、プラズマ中のイオンが加速され、
イオン衝撃による膜の緻密化やスパッタリング作用によ
る段差部被膜性の改善、あるいはスパッタリングと成膜
との同時進行による配線間凹部の膜の平坦化等が可能で
ある。
[0004] In this film formation by the ECR plasma CVD method, high-activity, high-density plasma generated in a plasma generation chamber is used, so that low-temperature film formation is possible.
At the time of forming the SiO 2 film, a high-frequency power supply is connected to a suction internal electrode constituting the electrostatic chuck 10 via a capacitor, although not shown in the figure, and a negative bias potential is generated on the surface of the substrate 9. , The ions in the plasma are accelerated,
Densification of the film due to ion bombardment, improvement in film coverage at the stepped portion due to sputtering, or flattening of a film in a recess between wirings by simultaneous progress of sputtering and film formation are possible.

【0005】ところで、このように構成されるECRプ
ラズマCVD装置では、基板への成膜を繰り返すことに
より、反応生成物が装置の内壁面にも膜状に堆積し、膜
厚がある厚さ以上になると剥離が生じ、剥離時に生じた
パーティクルが基板表面の薄膜に付着して薄膜を汚染す
るため、一定回数成膜を繰り返した後、装置内部を大気
解放して内部の構造物を取り出し、装置の内壁面や取り
出した構造物の洗浄が行われる。このとき、静電チャッ
クも表面の付着物をアルコール等で拭き取り、あるいは
洗浄液で洗浄して清浄化され、表面の保持力が回復した
状態で再び装置内に組み込まれる。
By the way, in the ECR plasma CVD apparatus configured as described above, by repeatedly forming a film on a substrate, a reaction product is deposited on the inner wall surface of the apparatus in a film form, and the film thickness exceeds a certain thickness. When peeling occurs, particles generated at the time of peeling adhere to the thin film on the substrate surface and contaminate the thin film.Thus, after repeating film formation a certain number of times, the inside of the device is opened to the atmosphere to take out the internal structure, The inner wall surface and the removed structure are cleaned. At this time, the electrostatic chuck is cleaned again by wiping off the adhered substance on the surface with alcohol or the like, or by cleaning with a cleaning liquid, and re-introduced into the apparatus in a state where the holding power of the surface is restored.

【0006】[0006]

【発明が解決しようとする課題】しかし、静電チャック
は基板の保持力が弱く、上述のようにして表面を清浄化
しても、基板を吸着しなかったり、吸着後に基板が落下
したり、例えばSiO2膜の形成を行った場合に成膜速度が
成膜ごとに大きくばらついたりする等の問題があった。
従来は、静電チャックの吸着力の回復と成膜速度のばら
つき低減とのため、静電チャックの装置内への組込み
後、真空引きを数時間にわたり行っていた。このため、
装置の稼働率向上が制約される問題があった。
However, the electrostatic chuck has a weak holding power for the substrate, and does not adsorb the substrate even if the surface is cleaned as described above, or the substrate drops after the adsorption. When the SiO 2 film is formed, there has been a problem that the film forming speed greatly varies for each film formation.
Conventionally, in order to recover the attraction force of the electrostatic chuck and reduce the variation in the film forming speed, after the electrostatic chuck has been incorporated into the apparatus, vacuuming has been performed for several hours. For this reason,
There is a problem that the improvement of the operation rate of the apparatus is restricted.

【0007】この発明の目的は、この真空引きの時間
(真空中の放置時間)を短縮し、あるいは真空引き時間
を必要としない静電チャックの前処理方法を提供するこ
とである。
An object of the present invention is to provide a pretreatment method for an electrostatic chuck which shortens the evacuation time (time left in vacuum) or does not require the evacuation time.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明によれば、両端面にそれぞれマイクロ波導
入窓とプラズマ引出し窓とを備え内部にマイクロ波との
電子サイクロトロン共鳴を生じさせる磁場領域が形成さ
れるプラズマ生成室と、プラズマ引出し窓を介してプラ
ズマ生成室と連通し内部に反応ガスを吹き出させるガス
供給手段と,被処理基板を保持するウエーハステージと
が配される反応室と、を備えてなり、かつウエーハステ
ージの基板保持機構に静電チャックが用いられているE
CRプラズマCVD装置の前記静電チャックの平坦な表
面を、該表面への被処理基板の吸着,保持に先立って清
浄化するウエーハステージ前処理方法であって、プラズ
マ処理工程で発生堆積した装置の内壁面や内部構造物の
汚れは装置内部を大気開放して洗浄し、静電チャック表
面の汚れは、該表面への被処理基板の吸着,保持に先立
って、真空中において、プラズマ生成室内にAr,He
等の不活性ガス、またはH2,O2,N2等,静電チャッ
ク表面物質との反応生成物を生じない2原子分子の単体
ガスを導入してプラズマを生成し、このプラズマを静電
チャック表面に照射して清浄化することとする。
According to the present invention, a microwave introduction window and a plasma extraction window are provided on both end surfaces to generate electron cyclotron resonance with microwaves. A reaction in which a plasma generation chamber in which a magnetic field region to be formed is formed, gas supply means communicating with the plasma generation chamber through a plasma extraction window to blow out a reaction gas into the inside, and a wafer stage holding a substrate to be processed are arranged. And an electrostatic chuck is used for the substrate holding mechanism of the wafer stage.
A wafer stage pretreatment method for cleaning a flat surface of said electrostatic chuck of a CR plasma CVD apparatus prior to adsorption and holding of a substrate to be treated on said surface, wherein said apparatus is an apparatus formed and deposited in a plasma processing step. Dirt on the inner wall surface and internal structures is cleaned by opening the inside of the apparatus to the atmosphere, and dirt on the surface of the electrostatic chuck is placed in a plasma generation chamber in a vacuum prior to adsorption and holding of the substrate to be processed on the surface. Ar, He
Plasma is generated by introducing an inert gas such as H 2 , O 2 , N 2 , or the like, or a simple gas of diatomic molecules that does not generate a reaction product with the surface material of the electrostatic chuck, such as H 2 , O 2 , N 2. The surface of the chuck is irradiated for cleaning.

【0009】この場合、静電チャック表面へのプラズマ
照射を、静電チャックに高周波バイアスを印加した状態
で行うようにすれば好適である。
In this case, it is preferable to irradiate the surface of the electrostatic chuck with plasma while applying a high frequency bias to the electrostatic chuck.

【0010】またプラズマ生成室でプラズマ化されるガ
スをプラズマ生成室と反応室とに同時に導入しつつ静電
チャック表面をプラズマ照射するようにするのもよい。
[0010] It is also possible to irradiate the surface of the electrostatic chuck with plasma while simultaneously introducing a gas to be converted into plasma in the plasma generation chamber into the plasma generation chamber and the reaction chamber.

【0011】そして、上記各方法による静電チャック表
面の清浄化を、プラズマ生成室および反応室内のガス圧
力を1×10-4〜5×10-3Torr範囲の高真空度に保つとと
もに、反応室内に軸方向のミラー磁場を形成して行うよ
うにすればさらに好適である。
The cleaning of the surface of the electrostatic chuck by each of the above methods is carried out by maintaining the gas pressure in the plasma generation chamber and the reaction chamber at a high vacuum of 1 × 10 −4 to 5 × 10 −3 Torr, It is more preferable that an axial mirror magnetic field is formed in the room.

【0012】[0012]

【作用】このように、プラズマ生成室内にAr,He等の不
活性ガス、またはH2,O2,N2等,静電チャック表面物質
との反応生成物を生じない2原子分子の単体ガスを導入
してプラズマを生成し、このプラズマを静電チャック表
面に照射して清浄化する方法とすれば、プラズマ生成室
で生成されたプラズマが、主磁気コイルが作る発散磁束
密度の勾配により、基板を保持する静電チャック表面へ
と流れて該表面を照射し、該表面の水分のみでなく、ご
みもスパッタリング除去するため、短時間にかつ完全に
表面を清浄化することができる。
[Function] As described above, an inert gas such as Ar, He, or a single gas of diatomic molecules that does not generate a reaction product with an electrostatic chuck surface material, such as H 2 , O 2 , N 2 , in the plasma generation chamber. Is introduced to generate plasma, and this plasma is irradiated to the surface of the electrostatic chuck for cleaning.If the plasma generated in the plasma generation chamber is generated by the gradient of the divergent magnetic flux density generated by the main magnetic coil, The surface is irradiated onto the surface of the electrostatic chuck holding the substrate to irradiate the surface, and not only moisture on the surface but also dust is removed by sputtering, so that the surface can be completely cleaned in a short time.

【0013】この場合、プラズマ照射を、静電チャック
にRFバイアスを印加した状態で行うようにすれば、静
電チャック表面に現れた負極性のバイアス電位により形
成される電界分布により、プラズマが均等に分布して静
電チャック表面に到達するとともに、プラズマ中のイオ
ンが加速されてスパッタリング作用が強くなり、より均
一にかつより短時間に表面が清浄化される。
In this case, if the plasma irradiation is performed in a state where an RF bias is applied to the electrostatic chuck, the plasma is uniformly distributed due to an electric field distribution formed by a negative bias potential appearing on the surface of the electrostatic chuck. And reaches the surface of the electrostatic chuck, the ions in the plasma are accelerated, and the sputtering action is strengthened, and the surface is cleaned more uniformly and in a shorter time.

【0014】また、プラズマ生成室でプラズマ化される
ガスをプラズマ生成室と反応室とに同時に導入しつつ静
電チャック表面をプラズマ照射するようにすれば、主磁
気コイルが形成する発散磁場の磁力線に沿って広がろう
とするプラズマが、反応室内に配置され反応ガスを半径
方向内側へ周方向均等な量で吹き出させるガス供給手段
から吹き出されるガスにより、静電チャック表面へ向か
うように方向を修正され、静電チャック表面周辺部のプ
ラズマ密度が増し、静電チャック表面へプラズマが均一
にかつ多量に到達し、表面の清浄化がより短時間に行わ
れる。
Further, if the surface of the electrostatic chuck is irradiated with plasma while simultaneously introducing the gas to be converted into plasma in the plasma generation chamber into the plasma generation chamber and the reaction chamber, the magnetic field lines of the divergent magnetic field formed by the main magnetic coil can be obtained. The plasma which is about to spread along the gas is blown from gas supply means which is arranged in the reaction chamber and blows out the reaction gas radially inward in a circumferentially uniform amount, so that the direction is directed toward the electrostatic chuck surface. Corrected, the plasma density around the electrostatic chuck surface is increased, the plasma reaches the electrostatic chuck surface uniformly and in large amount, and the surface cleaning is performed in a shorter time.

【0015】そして、上記各方法による静電チャック表
面の清浄化を、プラズマ生成室および反応室内のガス圧
力を1×10-4〜5×10-3Torr範囲の高真空度に保つとと
もに、反応室内に軸方向のミラー磁場を形成して行うよ
うにすれば、プラズマ生成室で生成されるプラズマが高
活性,高密度になるとともに、プラズマ引出し窓から流
出したプラズマが反応室内で広がることなく静電チャッ
ク表面に集中し、清浄化がさらに短時間に終了する。
The cleaning of the surface of the electrostatic chuck by each of the above methods is performed by maintaining the gas pressure in the plasma generation chamber and the reaction chamber at a high vacuum of 1 × 10 −4 to 5 × 10 −3 Torr, If an axial mirror magnetic field is formed in the chamber, the plasma generated in the plasma generation chamber becomes highly active and dense, and the plasma flowing out of the plasma extraction window does not spread in the reaction chamber without spreading. The cleaning is concentrated on the surface of the electro-chuck, and the cleaning is completed in a shorter time.

【0016】[0016]

【実施例】図1に、本発明の方法を適用する際のECR
プラズマCVD装置構成の一実施例を示す。この構成が
図3の構成と異なる所は、静電チャック10に高周波電源
13が可変容量コンデンサ14を介して接続されている点で
ある。なお、装置の各構成部材中、図3と同一の部材に
は同一符号が付されている。
FIG. 1 shows an ECR for applying the method of the present invention.
1 shows an embodiment of a plasma CVD apparatus configuration. This configuration is different from the configuration of FIG.
13 is connected via a variable capacitor 14. Note that among the constituent members of the apparatus, the same members as those in FIG. 3 are denoted by the same reference numerals.

【0017】静電チャック表面の清浄化は次のように行
われる。まず、装置内を真空引きした後、主磁気コイル
4に流す電流を調整してECR条件を満足する磁束密度
領域をプラズマ生成室5内のマイクロ波導入窓2の近傍
に形成するとともに、補助磁気コイルにも通電して反応
室6内にミラー磁場を形成してマイクロ波を導入する。
しかる後,第1ガス導入系3からAr,He等の不活性ガ
ス、あるいはH2,O2,N2等、通常セラミックスからなる
静電チャック表層との間で反応生成物を生成しない2原
子分子の単体ガスを、装置内のガス圧力が1×10-4〜5
×10-3Torrに保たれるような流量で導入する。従って、
プラズマ生成室内へ導入されたガスは、高真空状態で
かつECR条件を満たす磁束密度領域で効率よくプラズ
マ化されるため、活性度が高くかつ高密度に生成され、
主磁気コイル4が作る発散磁束密度の勾配により、プラ
ズマ引出し窓7から反応室内へ流れ出す。一方、反応
内には、主磁気コイル4と補助磁気コイル12とでミ
ラー磁場が形成されており、一旦発散しかけたプラズマ
は、補助磁気コイル12の内側へ向けて再び集束するミラ
ー磁場の磁束に沿って静電チャック表面に到達する。
The cleaning of the electrostatic chuck surface is performed as follows. First, after the inside of the apparatus is evacuated, the current flowing through the main magnetic coil 4 is adjusted to form a magnetic flux density region satisfying the ECR condition in the vicinity of the microwave introduction window 2 in the plasma generation chamber 5 and the auxiliary magnetic field. The coil is also energized to form a mirror magnetic field in the reaction chamber 6 to introduce microwaves.
Thereafter, two atoms that do not generate a reaction product between the first gas introduction system 3 and an inert gas such as Ar or He or an electrostatic chuck surface layer such as H 2 , O 2 or N 2 which is usually made of ceramics. When the gas pressure in the apparatus is 1 × 10 -4 to 5
Introduce at a flow rate that keeps it at × 10 −3 Torr. Therefore,
Since the gas introduced into the plasma generation chamber 5 is efficiently converted into plasma in a high vacuum state and in a magnetic flux density region satisfying the ECR condition, the gas is generated with high activity and high density.
Due to the gradient of the divergent magnetic flux density created by the main magnetic coil 4, the magnetic flux flows out of the plasma extraction window 7 into the reaction chamber 6 . On the other hand, in the reaction chamber 6 , a mirror magnetic field is formed by the main magnetic coil 4 and the auxiliary magnetic coil 12, and once divergent plasma is generated by the mirror magnetic field that refocuses toward the inside of the auxiliary magnetic coil 12. The magnetic flux reaches the electrostatic chuck surface.

【0018】一方、静電チャック10には、周波数が400k
Hz,あるいは13.56MHzのような高周波電源13がコンデン
サ14を介して接続されており、静電チャック表面に負極
性のバイアス電位が現れているため、このバイアス電位
が作る電界分布により、静電チャック表面に到達するプ
ラズマの半径方向分布が均一化され、かつ負極性のバイ
アス電位によりプラズマ中のイオンが加速されて、静電
チャック表面を均一にかつ効果的にスパッタする。これ
により、静電チャック表面に吸着された水分やごみが効
果的にかつ短時間に除去され、かつ静電チャック表面が
微量ながら削られて吸着力が回復する。
On the other hand, the electrostatic chuck 10 has a frequency of 400 k
Since a high-frequency power source 13 such as Hz or 13.56 MHz is connected via a capacitor 14, a negative bias potential appears on the surface of the electrostatic chuck. The distribution of the plasma reaching the surface in the radial direction is made uniform, and the ions in the plasma are accelerated by the negative bias potential, so that the electrostatic chuck surface is sputtered uniformly and effectively. As a result, moisture and dust adsorbed on the surface of the electrostatic chuck are effectively and quickly removed, and the surface of the electrostatic chuck is scraped with a small amount to recover the attraction force.

【0019】図2に、従来の方法により表面が清浄化さ
れた静電チャックと、本発明の方法により表面が清浄化
された静電チャックとを用いて基板表面にSiO2膜を形成
したときの、成膜ごとの成膜速度のばらつき方のちがい
を示す。
FIG. 2 shows a case where an SiO 2 film is formed on a substrate surface using an electrostatic chuck whose surface has been cleaned by the conventional method and an electrostatic chuck whose surface has been cleaned by the method of the present invention. This shows the difference in how the film forming speed varies for each film forming.

【0020】従来の方法で表面が清浄化された静電チャ
ックで基板を吸着,保持した場合には、成膜ごとの成膜
速度が大きくばらつくのに対し、本発明の方法で表面を
清浄化した静電チャックを吸着,保持した場合には、成
膜ごとのばらつきがほとんど生じない。これは、従来の
方法で表面を清浄化した場合には、基板が全面密着状態
に吸着されず、かつ密着状態が成膜ごとに変動し、ウエ
ーハステージへの熱伝達の悪い非密着領域が成膜ごとに
変動するのに対し、本発明の方法で表面が清浄化された
ものでは、基板が全面密着状態に吸着され、従って吸着
状態が成膜ごとに変動しないことによるものと考えられ
る。
When a substrate is sucked and held by an electrostatic chuck whose surface has been cleaned by a conventional method, the film forming speed of each film greatly varies, whereas the method of the present invention cleans the surface. When the electrostatic chuck is sucked and held, there is almost no variation between film formations. This is because, when the surface is cleaned by a conventional method, the substrate is not adsorbed in a close contact state over the entire surface, and the close contact state fluctuates for each film formation, and a non-contact area where heat transfer to the wafer stage is poor is formed. On the other hand, in the case where the surface is cleaned by the method of the present invention, the substrate is adsorbed in a state of being in close contact with the entire surface, and thus the adsorption state is not changed for each film formation.

【0021】なお、プラズマ生成室内に導入するガス
を、第2ガス導入系8からも反応室内へプラズマ生成
と同時に導入しつつ静電チャック表面をプラズマ照
射すると、円環状ガスノズル8aから周方向均等な量で
半径方向内側へ吹き出されるガスにより、プラズマ引出
し窓7から流出したプラズマの広がりが抑えられ、プラ
ズマがより均一にかつ多量に静電チャック表面に到達
し、静電チャック表面の清浄化をより短時間に終了させ
ることができる。
[0021] Incidentally, the gas introduced into the plasma generating chamber 5 and also plasma irradiation the electrostatic chuck surface while introducing at the same time as the plasma generation chamber 5 into the reaction chamber 6 through the second gas introducing system 8, an annular gas nozzle The gas blown radially inward in the circumferential direction by a uniform amount from 8a suppresses the spread of the plasma flowing out from the plasma extraction window 7, and the plasma reaches the electrostatic chuck surface more uniformly and in a large amount. Cleaning of the chuck surface can be completed in a shorter time.

【0022】[0022]

【発明の効果】本発明では、基板を静電チャック表面に
吸着,保持する前の静電チャック表面の清浄化を以上の
ような方法で行うこととしたので、以下に記載する効果
を得ることができる。
According to the present invention, the cleaning of the electrostatic chuck surface before the substrate is attracted and held on the electrostatic chuck surface is performed by the above-described method. Can be.

【0023】請求項1の方法では、プラズマ生成室で生
成されたプラズマにより静電チャック表面が照射される
ため、静電チャック表面の水分やごみがスパッタリング
作用により短時間にかつ完全に除去され、かつ微量なが
ら静電チャック表面が削られるため、静電チャックの吸
着力が短時間に完全に回復し、装置の稼働率を上げるこ
とができる。また、基板が常に全面密着状態に吸着,保
持されるため、成膜ごとの成膜速度が常に安定して一定
に保たれ、形成された膜の品質が高レベルに均一化され
る。
According to the first aspect of the present invention, since the surface of the electrostatic chuck is irradiated with the plasma generated in the plasma generating chamber, moisture and dust on the surface of the electrostatic chuck are completely removed in a short time by the sputtering action. In addition, since the surface of the electrostatic chuck is shaved by a small amount, the chucking force of the electrostatic chuck is completely recovered in a short time, and the operation rate of the apparatus can be increased. Further, since the substrate is always adsorbed and held in a state of being in close contact with the entire surface, the film forming speed for each film forming is always stably kept constant, and the quality of the formed film is made uniform to a high level.

【0024】請求項2の方法では、静電チャックの表面
に負極性のバイアス電位が現れ、この電位により形成さ
れる電界分布により、プラズマが均等に分布して静電チ
ャックに到達するとともに、プラズマ中のイオンが加速
されるスパッタリング作用が強まり、より均一にかつよ
り短時間に表面が清浄化される。
According to the second aspect of the present invention, a negative bias potential appears on the surface of the electrostatic chuck, and the electric field distribution formed by this potential causes the plasma to uniformly distribute and reach the electrostatic chuck. The sputtering action for accelerating the ions therein is strengthened, and the surface is cleaned more uniformly and in a shorter time.

【0025】請求項3の方法では、プラズマ生成室のプ
ラズマ引出し窓から流出するプラズマ流の広がりが、周
方向均等な量で半径方向内側へガスを吹き出すガス供給
手段からのガスにより抑えられ、静電チャックへ向かう
プラズマ密度の半径方向分布が均一化されるとともに、
より多くのプラズマが静電チャック表面に到達し、反応
室内へガスを導入しない場合と比較して、より均一にか
つより短時間に表面が清浄化される。
According to the third aspect of the present invention, the spread of the plasma flow flowing out of the plasma extraction window of the plasma generation chamber is suppressed by the gas from the gas supply means which blows the gas radially inward in a uniform amount in the circumferential direction. Radial distribution of plasma density toward the electric chuck is made uniform,
More plasma reaches the electrostatic chuck surface and the surface is cleaned more uniformly and in a shorter time than when no gas is introduced into the reaction chamber.

【0026】請求項4の方法では、プラズマ生成室で生
成されるプラズマが高活性,高密度になるとともに、プ
ラズマ引出し窓から流出したプラズマが反応室内で広が
ることなく静電チャック表面に集中し、清浄化がさらに
短時間に終了する。
According to the method of the present invention, the plasma generated in the plasma generation chamber has high activity and high density, and the plasma flowing out of the plasma extraction window concentrates on the surface of the electrostatic chuck without spreading in the reaction chamber. Cleaning is completed in a shorter time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を適用する際のECRプラズマC
VD装置構成の一実施例を示す装置断面図
FIG. 1 shows an ECR plasma C when applying the method of the present invention.
Device cross-sectional view showing one embodiment of a VD device configuration

【図2】それぞれ本発明の方法と従来の方法とにより表
面が清浄化された静電チャックに基板を吸着,保持させ
て基板表面にSiO2膜を形成したときの成膜得度のばらつ
き方のちがいを対比させて示す図
FIG. 2 shows a variation in film formation yield when an SiO 2 film is formed on a substrate surface by adsorbing and holding a substrate on an electrostatic chuck whose surface has been cleaned by the method of the present invention and the conventional method, respectively. Diagram showing the differences

【図3】従来のECRプラズマCVD装置の構成例を示
す装置断面図
FIG. 3 is a cross-sectional view of a configuration example of a conventional ECR plasma CVD apparatus.

【符号の説明】[Explanation of symbols]

2 マイクロ波導入窓 4 主磁気コイル プラズマ生成室 反応室 7 プラズマ引出し窓 9 基板(被処理基板) 10 静電チャック 11 ウエーハステージ 12 補助磁気コイル 13 高周波電源2 Microwave introduction window 4 Main magnetic coil 5 Plasma generation chamber 6 Reaction chamber 7 Plasma extraction window 9 Substrate (substrate to be processed) 10 Electrostatic chuck 11 Wafer stage 12 Auxiliary magnetic coil 13 High frequency power supply

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−14223(JP,A) 特開 平2−42724(JP,A) 特開 平2−142126(JP,A) 特開 平1−98218(JP,A) 特開 昭62−92444(JP,A) 特開 平2−211626(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/68 H01L 21/205 H01L 21/302 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-3-14223 (JP, A) JP-A-2-42724 (JP, A) JP-A-2-142126 (JP, A) JP-A-1- 98218 (JP, A) JP-A-62-92444 (JP, A) JP-A-2-211626 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/68 H01L 21 / 205 H01L 21/302

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】両端面にそれぞれマイクロ波導入窓とプラ
ズマ引出し窓とを備え内部にマイクロ波との電子サイク
ロトロン共鳴を生じさせる磁場領域が形成されるプラズ
マ生成室と、プラズマ引出し窓を介してプラズマ生成室
と連通し内部に反応ガスを吹き出させるガス供給手段
と,被処理基板を保持するウエーハステージとが配され
る反応室と、を備えてなり、かつウエーハステージの基
板保持機構に静電チャックが用いられているECRプラ
ズマCVD装置の前記静電チャックの平坦な表面を、該
表面への被処理基板の吸着,保持に先立って清浄化する
ウエーハステージ前処理方法であって、プラズマ処理工
程で発生堆積した装置の内壁面や内部構造物の汚れは装
置内部を大気開放して洗浄し、静電チャック表面の汚れ
は、該表面への被処理基板の吸着,保持に先立って、真
空中において、プラズマ生成室内にAr,He等の不活
性ガス、またはH2,O2,N2等,静電チャック表面物
質との反応生成物を生じない2原子分子の単体ガスを導
入してプラズマを生成し、このプラズマを静電チャック
表面に照射して清浄化することを特徴とするウエーハス
テージ前処理方法。
1. A plasma generation chamber having a microwave introduction window and a plasma extraction window on both end surfaces, respectively, and a magnetic field region for generating electron cyclotron resonance with microwaves is formed therein. A reaction chamber in which a gas supply means communicating with the generation chamber and blowing out a reaction gas into the inside thereof; and a reaction chamber in which a wafer stage for holding the substrate to be processed is arranged, and wherein the substrate holding mechanism of the wafer stage has an electrostatic chuck. A wafer stage pretreatment method for cleaning a flat surface of the electrostatic chuck of an ECR plasma CVD apparatus in which is used prior to adsorption and holding of a substrate to be treated on the surface, wherein the plasma processing step comprises: Dirt on the inner walls and internal structures of the generated equipment is cleaned by opening the inside of the equipment to the atmosphere, and dirt on the surface of the electrostatic chuck is removed from the surface. Adsorption of the substrate, prior to the holding, in a vacuum, no Ar, inert gas such as He or H 2, O 2, N 2, etc., the reaction product of the electrostatic chuck surface material into the plasma generation chamber A wafer stage pretreatment method, wherein plasma is generated by introducing a single gas of diatomic molecules, and the plasma is irradiated to the surface of the electrostatic chuck for cleaning.
【請求項2】請求項第1項記載の方法において、静電チ
ャック表面へのプラズマ照射を、静電チャックに高周波
バイアスを印加した状態で行うことを特徴とするウエー
ハステージ前処理方法。
2. The wafer stage pretreatment method according to claim 1, wherein plasma irradiation on the surface of the electrostatic chuck is performed while applying a high-frequency bias to the electrostatic chuck.
【請求項3】請求項第1項に記載の方法において、プラ
ズマ生成室でプラズマ化されるガスをプラズマ生成室と
反応室とに同時に導入しつつ静電チャック表面をプラズ
マ照射することを特徴とするウエーハステージ前処理方
法。
3. A method according to claim 1, wherein the surface of the electrostatic chuck is irradiated with plasma while simultaneously introducing a gas to be plasmatized in the plasma generation chamber into the plasma generation chamber and the reaction chamber. Wafer stage pretreatment method.
【請求項4】請求項第1項,第2項または第3項に記載
の方法において、プラズマ生成室および反応室内のガス
圧力を1×10-4〜5×10-3Torr範囲の高真空度
に保つとともに、反応室内に軸方向のミラー磁場を形成
して静電チャック表面をプラズマ照射することを特徴と
するウエーハステージ前処理方法。
4. The method according to claim 1, wherein the gas pressure in the plasma generating chamber and the reaction chamber is set to a high vacuum in a range of 1 × 10 −4 to 5 × 10 −3 Torr. A wafer stage pretreatment method, comprising: forming a mirror magnetic field in an axial direction in a reaction chamber while irradiating the surface of an electrostatic chuck with plasma;
JP5179191A 1991-03-18 1991-03-18 Wafer stage pretreatment method Expired - Fee Related JP3134942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5179191A JP3134942B2 (en) 1991-03-18 1991-03-18 Wafer stage pretreatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5179191A JP3134942B2 (en) 1991-03-18 1991-03-18 Wafer stage pretreatment method

Publications (2)

Publication Number Publication Date
JPH04287343A JPH04287343A (en) 1992-10-12
JP3134942B2 true JP3134942B2 (en) 2001-02-13

Family

ID=12896765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5179191A Expired - Fee Related JP3134942B2 (en) 1991-03-18 1991-03-18 Wafer stage pretreatment method

Country Status (1)

Country Link
JP (1) JP3134942B2 (en)

Also Published As

Publication number Publication date
JPH04287343A (en) 1992-10-12

Similar Documents

Publication Publication Date Title
US10544505B2 (en) Deposition or treatment of diamond-like carbon in a plasma reactor
JP3917176B2 (en) Apparatus and method for in situ magnetron cleaning of a plasma reaction chamber
US20180277340A1 (en) Plasma reactor with electron beam of secondary electrons
JPH10335096A (en) Plasma processing device
US6335268B1 (en) Plasma immersion ion processor for fabricating semiconductor integrated circuits
JP2000156370A (en) Method of plasma processing
US6259105B1 (en) System and method for cleaning silicon-coated surfaces in an ion implanter
US5516369A (en) Method and apparatus for particle reduction from semiconductor wafers
JPH10144668A (en) Plasma treating method
JP3516523B2 (en) Plasma processing equipment
JP2000068227A (en) Method for processing surface and device thereof
JP3520577B2 (en) Plasma processing equipment
JP2002289582A (en) Neutral particle beam treatment device
JPH04271122A (en) Plasma processing equipment
JP3134942B2 (en) Wafer stage pretreatment method
JPH03153885A (en) Method and device for reducing contamination of wafer particle
JPH03263827A (en) Digital etching apparatus
JPH01207930A (en) Surface modification
JP2000164582A (en) Plasma processing system
JPH09148310A (en) Semiconductor device, its cleaning, and handling of wafer
JPS6380534A (en) Plasma processing apparatus
JP2000150487A (en) Plasma treatment method
JP2807674B2 (en) Processing apparatus and cleaning method for processing apparatus
JP3363040B2 (en) Fast atom beam source
JP3368743B2 (en) Plasma processing apparatus and plasma processing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees