JPS6380534A - Plasma processing apparatus - Google Patents

Plasma processing apparatus

Info

Publication number
JPS6380534A
JPS6380534A JP61225266A JP22526686A JPS6380534A JP S6380534 A JPS6380534 A JP S6380534A JP 61225266 A JP61225266 A JP 61225266A JP 22526686 A JP22526686 A JP 22526686A JP S6380534 A JPS6380534 A JP S6380534A
Authority
JP
Japan
Prior art keywords
chamber
discharge
substrate
cylindrical tube
insulating cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61225266A
Other languages
Japanese (ja)
Other versions
JPH07123121B2 (en
Inventor
Tetsuhisa Yoshida
哲久 吉田
Takashi Hirao
孝 平尾
Kentaro Setsune
瀬恒 謙太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61225266A priority Critical patent/JPH07123121B2/en
Priority to US07/100,148 priority patent/US4859908A/en
Publication of JPS6380534A publication Critical patent/JPS6380534A/en
Publication of JPH07123121B2 publication Critical patent/JPH07123121B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable ion doping or etching of impurities without using differential exhaust or the like and to prevent wafers from being contaminated with the impurities, by providing a high-frequency electrode and a magnetic field creating section on the outside of an insulating cylindrical tube and providing a first conducting bias section and a second conducting bias section opposed thereto within said cylindrical tube. CONSTITUTION:A high-frequency electrode 22 which causes highfrequency glow discharge in an insulating cylindrical tube 21 is provided on the outside of the insulating cylindrical tube 21. An electromagnet 24 arranged on the outside of the high-frequency electrode 22 generates a magnetic field, by which electrons are excited to move spirally. By utilizing high-frequency power effectively in this manner, polasma can be created stably in the insulating cylindrical tube 21 with a relatively low vacuum (10<-3>-10<-4> torr). Bias electrodes 29-a and 29-b are connected to DC high-voltage power supplies 33-a and 33-b, respectively. By applying a desired voltage to the bias electrodes, they are caused to eject charged particles from a discharge chamber A to a substrate chamber B and to accelerate them. In this manner, there is no need of producing impurities by sputtering the highfrequency electrode. The impurities can be implanted uniformly in a wafer having a large area without using differential exhaust or the like.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体工業における半導体素子製造等に用い
るプラズマ処理装置に関するものであり、特に半導体素
子や半導体薄膜等への不純物注入に用いるイオンドープ
装置や、半導体薄膜等のエツチングに用いるプラズマ処
理装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a plasma processing apparatus used in the manufacture of semiconductor elements in the semiconductor industry, and in particular to an ion doping apparatus and an ion doping apparatus used for implanting impurities into semiconductor elements, semiconductor thin films, etc. , relates to a plasma processing apparatus used for etching semiconductor thin films and the like.

従来の技術 半導体薄膜等に不純物をイオンの形で所望の量及び深さ
に注入する方法としては、(1)現在市販されている様
な、イオン源・イオン加速部・質量分離部・基板室等を
有するイオン注入装置を用いる方法、(2)  イオン
源として直流グロー放電を用い、質量分離部を有さすイ
オン加速部を経てイオンを注入する簡易型イオン注入装
置〔第4図J 、C,Mul ler、at、al:(
Proc、EuropeanPhotovoltaic
 5olar Enetgy Conf、)(プロミー
デング ヨーロピアン フォトポルチック ソーラー 
エネージイ コンフェレンス) (Luxemburg
)Sept、1977 、P897−909)を用いる
方法、基板室内に容量結合型高周波電極を設け、高周波
グロー放電による化学的気相反応を起こすプラズマCV
D装置の高周波電極に直流電圧を印加させる方法(第5
図)などがある。
Conventional Technology Methods for implanting impurities in the form of ions to a desired amount and depth into a semiconductor thin film, etc. include (1) an ion source, an ion accelerator, a mass separation unit, and a substrate chamber, such as those currently available on the market; (2) A simple ion implantation device that uses a direct current glow discharge as an ion source and implants ions through an ion acceleration section that has a mass separation section [Figure 4 J, C, Muller, at, al: (
Proc, European Photovoltaic
5olar Energy Conf, ) (Promeding European Photoportic Solar
Energy Conference) (Luxembourg)
) Sept, 1977, P897-909), a plasma CV method in which a capacitively coupled high-frequency electrode is provided in the substrate chamber and a chemical vapor phase reaction is caused by high-frequency glow discharge.
Method of applying DC voltage to the high frequency electrode of D device (fifth method)
Figure).

第4図、第5図において、1は放電室、2は直流グロー
放電用アノード電極、3は放電用直流電源、4は加速用
電極、5は加速用直流電源、6はガス導入管、7は絶縁
体、8はガス排出管、9は基板台、11は真空突器、1
2は基板台、13は高周波電極、14.15は絶縁体、
16はマツチングボックス、17は高周波発振器、18
は直流電源、19はガス導入管、20はガス排出管であ
る。また、エツチングに於いては、前記プラズマCVD
装置にCF4等の反応性気体を導入してエツチングを行
う方法などがあった。
In FIGS. 4 and 5, 1 is a discharge chamber, 2 is an anode electrode for DC glow discharge, 3 is a DC power source for discharge, 4 is an electrode for acceleration, 5 is a DC power source for acceleration, 6 is a gas introduction tube, and 7 is a DC glow discharge anode electrode. is an insulator, 8 is a gas exhaust pipe, 9 is a substrate stand, 11 is a vacuum protrusion, 1
2 is a substrate stand, 13 is a high frequency electrode, 14.15 is an insulator,
16 is a matching box, 17 is a high frequency oscillator, 18
19 is a gas introduction pipe, and 20 is a gas discharge pipe. In addition, in etching, the plasma CVD
There was a method of etching by introducing a reactive gas such as CF4 into the apparatus.

発明が解決しようとする問題点 イオンの形で不純物を半導体素子等に注入を行う従来の
技術において、(1)の市販されている様なイオン注入
装置を用いる方法は、質量分離部を有するなど装置構成
が複雑でメインテナンスや改造が行いにくく、さらに大
面積の試料への不純物の注入の為に、イオンビームを電
気的て走査したり試料を機械的に走査するなどの機構を
付加しなければならず、装置全体としての構成も複雑で
あり、メインテナンスや改造が困難であった。(2)の
直流グロー放電を用いた簡易型イオン注入装置に於いて
は、直流グロー放電が起こりイオン源として機能する圧
力(1〜10−”Torr)に放電室の圧力を保つため
、差動排気等を用いねればならず、また大面積の試料へ
の不純物の注入の為に放電電極を大きくすると電極の沿
面放電等による放電の不均一性や不安定性、さらに放電
電極がイオン源の内部にあるため、イオンシースにより
加速されたイオンによって電極のスパッタリングされて
発生する不純物汚染等の問題がある。(3)の容量結合
型高周波グロー放電を用いたプラズマCVD装置の高周
波電極に直流電圧を印加する方法は、簡素な方法で大面
積の試料への不純物注入に利用できるが、使用する圧力
が高周波グロー放電の起こる1〜10−3Torr の
領域の圧力であることから、高周波電極間−異常な放電
が起こらない100〜1Kvと(1)及び(2)の方法
と較べてイオン加速の電圧が小さい為、不純物が極表面
層に高濃度で注入されることによる半導体材料の極表面
層の欠陥や損傷の電極をスパッタリングすることで発生
する不純物汚染などの問題があった。
Problems to be Solved by the Invention In the conventional technique of implanting impurities in the form of ions into semiconductor elements, etc., the method (1) using a commercially available ion implantation device has a mass separation section, etc. The device configuration is complicated and difficult to maintain or modify, and in order to implant impurities into a large sample area, it is necessary to add a mechanism such as electrically scanning the ion beam or mechanically scanning the sample. In addition, the overall structure of the device was complicated, making maintenance and modification difficult. In a simple ion implantation device using direct current glow discharge (2), a differential In addition, if the discharge electrode is enlarged to inject impurities into a large sample area, the discharge may become uneven and unstable due to creeping discharge of the electrode, and furthermore, the discharge electrode may become the ion source. Since the electrode is located internally, there are problems such as impurity contamination caused by sputtering of the electrode by ions accelerated by the ion sheath. The method of applying impurities is a simple method that can be used to implant impurities into a large area sample, but since the pressure used is in the range of 1 to 10-3 Torr where high-frequency glow discharge occurs, it is difficult to apply Since the ion acceleration voltage is 100 to 1 Kv, which does not cause abnormal discharge, compared to methods (1) and (2), impurities are injected at a high concentration into the extreme surface layer of the semiconductor material. There were problems such as impurity contamination caused by sputtering defects and damaged electrodes.

また、エツチングに於いて、容量結合型高周波グロー放
電を用いたプラズマCVD装置に反応性気体を導入して
エツチングを行う方法も、高周波電極のスパッタリング
等によって発生する不純物汚染などの問題があった。
Further, in etching, a method in which reactive gas is introduced into a plasma CVD apparatus using capacitively coupled high-frequency glow discharge has problems such as impurity contamination caused by sputtering of the high-frequency electrode.

問題点を解決するための手段 以上の問題点を解決するだめに、本発明のプラズマ処理
装置は、ガス導入管に接続された絶縁性筒状管と、前記
絶縁性筒状管の外部に設けられた高周波電極及び磁場発
生源から構成される放電室、ガス排出管と接続された接
地電位の高真空室とその内部に設けられた接地電位の基
板台から構成される基板室、前記基板室及び前記放電室
と絶縁を保ち前記基板台と前記放電室の間に第1の直流
電源と接続された第1の導電性バイアス部、及び前記放
電室内に於いて前記第1の導電性バイアス部と対向する
位置に第1の直流電源又は第2の直流電源と接続して設
けた第2の導電性バイアス部を備えてなるものである。
Means for Solving the Problems In order to solve the problems above, the plasma processing apparatus of the present invention includes an insulating cylindrical tube connected to a gas introduction tube, and an insulating cylindrical tube provided outside the insulating cylindrical tube. a discharge chamber consisting of a high-frequency electrode and a magnetic field generation source; a substrate chamber consisting of a high vacuum chamber at ground potential connected to a gas exhaust pipe; and a substrate stand at ground potential provided inside the high vacuum chamber; and the substrate chamber. and a first conductive bias section that is insulated from the discharge chamber and connected to a first DC power source between the substrate stand and the discharge chamber, and the first conductive bias section that is located within the discharge chamber. A second conductive bias section is provided at a position facing the first DC power supply or the second DC power supply and connected to the first DC power supply or the second DC power supply.

すなわち、本発明は、イオン源として絶縁性筒状管の外
部に高周波電極及び磁場発生部を配したものを用い、絶
縁性筒状管の内部に荷電粒子を引き出し所望のエネルギ
ーに加速する第1の導電性バイアス部及び荷電粒子を第
1のバイアス部側に押し出す第2の導電性バイアス部を
前記第1の導電性バイアス部と対向する位置に設けると
いうものである。
That is, the present invention uses as an ion source an insulating cylindrical tube with a high-frequency electrode and a magnetic field generator arranged outside, and a first ion source that draws charged particles into the insulating cylindrical tube and accelerates them to a desired energy. A conductive bias section and a second conductive bias section for pushing charged particles toward the first bias section are provided at a position facing the first conductive bias section.

作  用 絶縁性筒状管の外部て高周波電極を設けることで、絶縁
性筒状管内に高周波放電により生成されるイオンが、イ
オンシースにより加速されて前記高周波電極をスパッタ
リングして発生させる不純物動(サイクロトロン運動:
室温と同程度の熱運動の平均運動エネルギーをもつ電子
が13.56MHzの高周波と同じ周期で旋回運動する
場合の旋回半径は約0.140)を励起し、高周波によ
って供給されるエネルギーを有効に用いてたとえば10
−3〜10  Torr の気体圧力でも安定かつ一様
に放電させることが可能となる。この10−5〜10−
4Torrの圧力下でのイオンの平均自白行程は、イオ
ン種によって異なるが、放電室から基板台までの距離と
同程度(数10備)或いはそれ以上となるため差動排気
等を用いずに放電室に配した第1及び第2の導電性バイ
アス部という簡素な構造で荷電粒子の押し出し及び加速
を行い、基板台上の半導体基板等の試料まで荷電粒子を
輸送し、前記試料に照射することが可能となる。さらに
、装置内の真空度か10〜10 Torrであること及
び放電用の高周波電極と加速用の導電性バイアス部を分
離していることから、真空度が低いことや雪圧が高いこ
とによる沿面放電やなだれ放電等の異常な放電を起こす
ことなく、かつ放電電極と加速電極の一致による放電の
不安定さがなく、11c6v以上に荷電粒子を加速する
ことが可能となる。また、放電の形式から、放電室とし
て口径の大きな絶縁性筒状管を用いることで、容易に基
板台上に設けられた大面積の試料に対して一様に不純物
の注入を行うことが可能となる。
Function: By providing a high-frequency electrode outside the insulating cylindrical tube, ions generated by high-frequency discharge inside the insulating cylindrical tube are accelerated by the ion sheath and sputter the high-frequency electrode to generate impurity movements ( Cyclotron motion:
When electrons with an average kinetic energy of thermal motion similar to that at room temperature rotate at the same frequency as the 13.56 MHz radio frequency, the radius of gyration is approximately 0.140), and the energy supplied by the radio frequency is effectively utilized. For example, 10
Stable and uniform discharge is possible even at a gas pressure of -3 to 10 Torr. This 10-5 to 10-
The average confession path of ions under a pressure of 4 Torr varies depending on the ion type, but it is about the same (several tens of meters) or longer than the distance from the discharge chamber to the substrate stand, so it is possible to discharge without using differential pumping etc. Pushing out and accelerating charged particles with a simple structure of first and second conductive bias parts arranged in a chamber, transporting the charged particles to a sample such as a semiconductor substrate on a substrate table, and irradiating the sample. becomes possible. Furthermore, since the degree of vacuum inside the device is 10 to 10 Torr and the high frequency electrode for discharge and the conductive bias part for acceleration are separated, creepage due to low degree of vacuum or high snow pressure may occur. Charged particles can be accelerated to 11c6v or more without causing abnormal discharge such as discharge or avalanche discharge, and without instability of discharge due to coincidence of the discharge electrode and accelerating electrode. Additionally, due to the type of discharge, by using an insulating cylindrical tube with a large diameter as the discharge chamber, impurities can be easily uniformly injected into a large area sample set on a substrate table. becomes.

実施例 以下、図面に基づいて本発明についてさらに詳しく説明
する。
EXAMPLES The present invention will be explained in more detail below based on the drawings.

第1図は本発明に係るプラズマ処理装置の第1実施例の
概略構成図を示したものである。放電室Aの絶縁性筒状
管21はセラミックスや石英ガラス等を用い、容量結合
型高周波グロー放電を前記絶縁性筒状管21内に発生さ
せる高周波電極22には導電性の良い銅・ニッケル等の
金属を用い、絶縁性筒状管21の外部に設ける。高周波
電極22の一方はマツチングボックス23を介して高周
波発振器24と接続し、他方を接地して絶縁性筒状管2
1内に高周波電力の供給を行う。さらに、高周波電極2
2の外部に配した電磁石26により発生する磁場によっ
て電子の旋回運動(サイクロトロン運動)を励起し、高
周波電力を有効に用いることで一比較的高い真空度(1
O−3−10−4Torr)で絶縁性筒状管1内部にプ
ラズマを安定に発生させる。放電室Aへの材料ガスの供
給は、ガスボンベ26からパルプ27・流景制装置28
及び石英ガラス・セラミックス・テフロン等で作られた
絶縁管31を経て絶縁性筒状管21内部の第2の導電性
バイアス部電極29−aの透孔3Qより行う。
FIG. 1 shows a schematic diagram of a first embodiment of a plasma processing apparatus according to the present invention. The insulating cylindrical tube 21 of the discharge chamber A is made of ceramics, quartz glass, etc., and the high-frequency electrode 22 that generates a capacitively coupled high-frequency glow discharge in the insulating cylindrical tube 21 is made of copper, nickel, etc. with good conductivity. It is provided on the outside of the insulating cylindrical tube 21. One side of the high-frequency electrode 22 is connected to the high-frequency oscillator 24 via a matching box 23, and the other side is grounded to the insulating cylindrical tube 2.
High frequency power is supplied within 1. Furthermore, high frequency electrode 2
By exciting the swirling movement (cyclotron movement) of electrons by the magnetic field generated by the electromagnet 26 placed outside the 2, and by effectively using high-frequency power, a relatively high degree of vacuum (1
Plasma is stably generated inside the insulating cylindrical tube 1 at a pressure of 0-3-10-4 Torr. Material gas is supplied to the discharge chamber A from a gas cylinder 26 to a pulp 27 and a flow scenery control device 28.
Then, it is conducted through the through hole 3Q of the second conductive bias portion electrode 29-a inside the insulating cylindrical tube 21 through the insulating tube 31 made of quartz glass, ceramics, Teflon, etc.

さらに第2の導電性バイアス部と対向した粒1で第1の
バイアス部電極29−bを、セラミックス・石英ガラス
・塩化ビニル・アクリル等で作られた絶縁フランジ32
を介して放電室Aと基板室Bの間に設ける。前記バイア
ス部電極29−a及び29−bは直流高圧電源32−a
及び32−bに各々接続され、所望の電圧を印加するこ
とによシ、放電室A内の荷電粒子を基板室Bへ押し出し
、加速を行う。基板室Bは、真空排気系34に通じるガ
ス排気管35に接続され、10−5−1O−6Torr
の圧力に保たれる。基板支持棒36及び石英・セラミッ
クス・アクリル・塩化ビニル等で作られた絶縁フランジ
37により基板室B内部に固定された基板台38は、ス
テンレス嗜銅−アルミなどの金属で作られ、この基板台
38上に試料が置かれる。基板台18は直流電源39に
接続することに     ゛より、第1のバイアス部2
9−bの透孔を通って加速された荷電粒子を追加速する
ことを行う。第1のバイアス部電極29−bと基板台3
8との電位差に応じた運動エネルギーを得た荷電粒子ビ
ームは基板台38上の半導体基板等の試料40に照射し
、所望の量の不純物注入或いはエツチングを試料に対し
て行う。
Further, the grain 1 facing the second conductive bias section connects the first bias section electrode 29-b to an insulating flange 32 made of ceramics, quartz glass, vinyl chloride, acrylic, etc.
It is provided between the discharge chamber A and the substrate chamber B via. The bias portion electrodes 29-a and 29-b are connected to a DC high voltage power source 32-a.
and 32-b, and by applying a desired voltage, the charged particles in the discharge chamber A are pushed out to the substrate chamber B and accelerated. The substrate chamber B is connected to a gas exhaust pipe 35 leading to a vacuum exhaust system 34, and has a pressure of 10-5-1O-6 Torr.
maintained at a pressure of A board stand 38 fixed inside the board chamber B by a board support rod 36 and an insulating flange 37 made of quartz, ceramics, acrylic, vinyl chloride, etc. is made of metal such as stainless steel brass and aluminum. The sample is placed on 38. By connecting the substrate stand 18 to the DC power supply 39, the first bias section 2
The accelerated charged particles are given an additional speed through the through hole 9-b. First bias section electrode 29-b and substrate stand 3
The charged particle beam, which has obtained a kinetic energy corresponding to the potential difference with respect to the charged particle beam 8, is irradiated onto a sample 40 such as a semiconductor substrate on the substrate table 38, and a desired amount of impurities is implanted or etched into the sample.

第2図は、本発明に係るプラズマ処理装置の第1の実施
例に於いて、電磁石26に流す電流(放電室A内の磁場
の強さ)を変化させた時の基板台38に流れる電流(基
板台に照射するイオンの電気量よりやや大きい)を示し
たものである。この場合の絶縁性筒状管の内径は130
i11’ll、基板台の直径は1QQ711ff、基板
台と第1の導電性バイアス部との距離15 Qff 、
気体は窒素ガス、供給する高周波の周波数は13.5o
MHz・電力はesoW。
FIG. 2 shows the current flowing through the substrate table 38 when the current flowing through the electromagnet 26 (the strength of the magnetic field in the discharge chamber A) is changed in the first embodiment of the plasma processing apparatus according to the present invention. (slightly larger than the amount of electricity of ions irradiated to the substrate stage). In this case, the inner diameter of the insulating cylindrical tube is 130
i11'll, the diameter of the substrate stand is 1QQ711ff, the distance between the substrate stand and the first conductive bias section is 15 Qff,
The gas is nitrogen gas, and the frequency of the high frequency supplied is 13.5o.
MHz/power is esoW.

第1の導電性バイアス部29−bに対する基板台38の
電位差は−a、sKV、放電の無い時に電磁石25を流
れる電流が1Aである場合の絶縁性筒状管21の中心軸
上の磁束密度は約tstsGである。
The potential difference of the substrate stand 38 with respect to the first conductive bias section 29-b is -a, sKV, and the magnetic flux density on the central axis of the insulating cylindrical tube 21 when the current flowing through the electromagnet 25 is 1 A when there is no discharge. is approximately tstsG.

本実施例に於いて基板室内の圧力が3.○×1O−4T
orr以下では電磁石に電流を流さない場合、放電室B
内の放電は起こらず、磁場による放電励起の効果が高い
ことが確かめられた。
In this embodiment, the pressure inside the substrate chamber is 3. ○×1O-4T
If the current does not flow through the electromagnet below orr, discharge chamber B
No discharge occurred, confirming that the discharge excitation effect by the magnetic field is highly effective.

第3図は、本発明に係るプラズマ処理装置の第2実施例
の概略構成図を示したものである。放電室Cの絶縁性筒
状管41はセラミックスや石英ガラス等を用い、誘導結
合壓高周波グロー放電用の高周波電極42には導電性の
良い銅・ニッケル等の金属を用い、絶縁性筒状管41の
外部に設ける。
FIG. 3 shows a schematic diagram of a second embodiment of the plasma processing apparatus according to the present invention. The insulating cylindrical tube 41 of the discharge chamber C is made of ceramics, quartz glass, etc., and the high frequency electrode 42 for inductively coupled glass high frequency glow discharge is made of a highly conductive metal such as copper or nickel. Provided outside of 41.

この高周波電極42をマツチングボックス43を介して
高周波発振器44と接続して絶縁性筒状管41内に高周
波電力の供給を行い、さらに高周波電極42の外側に配
した電磁石45−a、AS−bが発生する磁場によって
電子の旋回運動(サイクロトロン運動)を励起し、さら
に放電によシ生じたプラズマを閉じ込め一高周波電力を
有効に放電に用いることで、比較的高い真空度(1o−
3〜1O−4Torr)で絶縁性筒状管41内部にプラ
ズマを安定して発生させる。
This high-frequency electrode 42 is connected to a high-frequency oscillator 44 via a matching box 43 to supply high-frequency power into the insulating cylindrical tube 41, and electromagnets 45-a and AS- are placed outside the high-frequency electrode 42. By exciting the swirling movement of electrons (cyclotron movement) by the magnetic field generated by b, and further confining the plasma generated by the discharge, and by effectively using high-frequency power for the discharge, a relatively high degree of vacuum (1o-
3 to 1 O-4 Torr), plasma is stably generated inside the insulating cylindrical tube 41.

管41への材料ガスの供給は、ガスボンベ46からパル
プ47・流量制御装置48、石英・セラミックス・テフ
ロン等で作られた絶縁管49を経て絶縁性筒状管41上
部のステンレス等で作られた導電性フランジ50−aの
透孔51から行われる。導電性フランジ50−aの放電
プラズマにさらされる側に石英・セラミックス等を用い
た隔壁52を設け、透孔51を通った材料ガスは、隔壁
52の透孔53により放電室Cの高周波電極42の間に
導入される。さらに、第2の導電性フランジ50− a
と対向する位置に設けられた第1の導電性フランジ50
−bを、セラミックス・石英◆塩化ビニル・アクリル等
を用いた絶縁フランジ54を介して基板室り上に設け、
導電性フランジ50−bの放電により生じる荷電粒子に
さらされる表面に、石英・セラミックス等を用いた保護
の被覆55を設ける。この導電性フランジ50− a及
び5o−bを直流高圧源56−a及び56−bに各々接
続し、所望の電位を印加することにより、放電室C内の
荷電粒子を基板室りへ押し出し、加速全行う。基板室り
は真空排気系57に通ずるガス排気管58に接続され、
10−3−10−6Torrの圧力に保たれる。また、
石英・セラミックス・アクリル・塩化ビニル等で作られ
た絶縁フランジ59及び基板支持棒60により基板室り
内部に固定された基板台61はステンレス・銅・アルミ
などの金属で作られ、この基板台61上に試料62が置
かれる。さらに基板台61を直流電源63に接続し電位
を印加することてより、導電性フランジ5o−bを通り
加速された荷電粒子を追加速成いは減速することを行う
。導電性フランジ50−bと基板台61との電位差に応
じた運動エネルギーを得た荷電粒子は基板台61上の試
料62に照射し、所望の量の不純物注入或いはエツチン
グを行う。
Material gas is supplied to the tube 41 from a gas cylinder 46 through a pulp 47, a flow rate control device 48, an insulating tube 49 made of quartz, ceramics, Teflon, etc. This is done through the through hole 51 of the conductive flange 50-a. A partition wall 52 made of quartz, ceramics, etc. is provided on the side of the conductive flange 50-a exposed to discharge plasma, and the material gas that has passed through the through hole 51 is transferred to the high frequency electrode 42 of the discharge chamber C through the through hole 53 of the partition wall 52. introduced between. Furthermore, a second conductive flange 50-a
a first conductive flange 50 provided at a position facing the
-b is provided on the substrate chamber via an insulating flange 54 made of ceramics, quartz, vinyl chloride, acrylic, etc.,
A protective coating 55 made of quartz, ceramics, or the like is provided on the surface of the conductive flange 50-b that is exposed to charged particles generated by discharge. By connecting the conductive flanges 50-a and 5o-b to DC high voltage sources 56-a and 56-b and applying a desired potential, charged particles in the discharge chamber C are pushed out to the substrate chamber, Perform full acceleration. The substrate chamber is connected to a gas exhaust pipe 58 leading to a vacuum exhaust system 57,
A pressure of 10-3-10-6 Torr is maintained. Also,
A board stand 61 fixed inside the board chamber by an insulating flange 59 made of quartz, ceramics, acrylic, vinyl chloride, etc. and a board support rod 60 is made of metal such as stainless steel, copper, aluminum, etc. A sample 62 is placed on top. Furthermore, by connecting the substrate pedestal 61 to a DC power source 63 and applying a potential, the charged particles accelerated through the conductive flanges 5o-b are accelerated or decelerated. The charged particles, which have obtained kinetic energy according to the potential difference between the conductive flange 50-b and the substrate pedestal 61, are irradiated onto the sample 62 on the substrate pedestal 61, thereby implanting or etching a desired amount of impurities.

発明の効果 本発明は、放電室内の気体放電を、高周波の電力と、静
磁場により励起される電子の旋回運動(サイクロトロン
運動)、並びに放電して生成されるプラズマの磁気的な
閉じ込めによって1o−6〜10−4Torr  と比
較的低い圧力で安定に起こすことを可能とするものであ
り、低い圧力であることから、荷電粒子の平均自由行程
が放電室から基板白息の距離に相等、或いは長くなるた
め、第1の導電性バイアス部、及び対向する第2の導電
性バイアス部という簡素な構造で、差動排気等を要せず
に1 key以上のエネルギーに荷電粒子を加速し、基
板台上の半導体等の試料に照射し、不純物のイオンドー
プやエツチングを行うことが可能となる。また、高周波
電極を放電室の外側に設けていることにより、放電電極
がスパッタリングやエツチングされて発生する不純物に
よる試料の汚染を防ぐことが可能となる。さらに、放電
の形式から、同じ構造で大口径の放電室を用いることに
より、大面積の試料に対して一様に荷電粒子を照射する
ことが可能である・以上の効果は、基板台に電圧を印加
すること、ガス導入管を基板室に接続すること、ガス排
出管を放電室に接続すること、導電性バイアス部に保護
の被覆或いは隔壁を設けることを行うことによっても同
様に得られる。本発明によるプラズマ処理装置は、半導
体等への不純物のイオンドープやエツチングを行う装置
として、極めて簡単でかつ有用性の高いものである。
Effects of the Invention The present invention generates 1o- This enables stable generation at a relatively low pressure of 6 to 10-4 Torr, and because the pressure is low, the mean free path of the charged particles is equal to or longer than the distance from the discharge chamber to the white of the substrate. Therefore, with a simple structure of a first conductive bias section and an opposing second conductive bias section, charged particles can be accelerated to an energy of 1 key or more without requiring differential pumping, etc. By irradiating a sample such as a semiconductor above, it becomes possible to perform ion doping and etching of impurities. Further, by providing the high frequency electrode outside the discharge chamber, it is possible to prevent the sample from being contaminated by impurities generated by sputtering or etching of the discharge electrode. Furthermore, due to the type of discharge, by using a discharge chamber with the same structure and large diameter, it is possible to uniformly irradiate a large area of the sample with charged particles. The same effect can be obtained by applying a gas, connecting the gas inlet tube to the substrate chamber, connecting the gas exhaust tube to the discharge chamber, and providing a protective coating or partition on the conductive bias section. The plasma processing apparatus according to the present invention is extremely simple and highly useful as an apparatus for ion doping and etching of impurities into semiconductors and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るプラズマ処理装置の第1実施例の
概略構成図、第2図は本発明に係るプラズマ処理装置の
第1実施例において、電磁石25に流す電流と基板台3
8に流れる電流の関係を、基板室B内の圧力が3.5X
10 .3.0X10  。 2.5X10  Torrの場合について示したグラフ
、第3図は本発明に係るプラズマ処理装置の第2実施例
の概略構成図である。第4図は従来の技術のうち直流グ
ロー放電を用いた簡易型イオン注入装置(参考文献1)
の概略構成図、第5図は従来の技術のうち高周波グロー
放電を用いたプラズマCVD装置でイオンドープを行う
方法の概略構成図である。 A・・・・・・放電室、B・・・・・・基板室、21・
・・・・絶縁性筒状管、22・・・・・・高周波電極、
31・・・・・絶縁管、32.37・・・、絶縁性フラ
ンジ、40−・・・・試料。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 を拉石電流(A) 第3図 第4図
FIG. 1 is a schematic configuration diagram of a first embodiment of a plasma processing apparatus according to the present invention, and FIG.
8, the pressure inside the substrate chamber B is 3.5X.
10. 3.0X10. The graph shown in FIG. 3 for the case of 2.5×10 Torr is a schematic diagram of the second embodiment of the plasma processing apparatus according to the present invention. Figure 4 shows a simple ion implantation device using DC glow discharge among conventional techniques (Reference 1)
FIG. 5 is a schematic diagram of a method of performing ion doping with a plasma CVD apparatus using high-frequency glow discharge among conventional techniques. A...discharge chamber, B...substrate chamber, 21.
...Insulating cylindrical tube, 22...High frequency electrode,
31... Insulating tube, 32.37... Insulating flange, 40-... Sample. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 3: Laseki current (A) Figure 3: Figure 4

Claims (5)

【特許請求の範囲】[Claims] (1)ガス導入管に接続された絶縁性筒状管と、前記絶
縁性筒状管の外部に設けられた高周波電極及び磁場発生
源から構成される放電室、ガス排出管と接続された接地
電位の高真空室とその内部に設けられた接地電位の基板
台から構成される基板室、前記基板室及び前記放電室と
絶縁を保ち前記基板台と前記放電室の間に第1の直流電
源と接続された第1の導電性バイアス部、及び前記放電
室内に於いて前記第1の導電性バイアス部と対向する位
置に第1の直流電源又は第2の直流電源と接続して設け
た第2の導電性バイアス部を備えてなることを特徴とす
るプラズマ処理装置。
(1) A discharge chamber consisting of an insulating cylindrical pipe connected to the gas introduction pipe, a high frequency electrode and a magnetic field generation source provided outside the insulating cylindrical pipe, and a ground connected to the gas exhaust pipe. A substrate chamber consisting of a high-potential vacuum chamber and a ground potential substrate stand provided therein; a first DC power source that is insulated from the substrate chamber and the discharge chamber and provided between the substrate stand and the discharge chamber; a first conductive bias section connected to the first conductive bias section, and a first conductive bias section connected to the first DC power supply or the second DC power supply provided in the discharge chamber at a position facing the first conductive bias section. 1. A plasma processing apparatus comprising two conductive bias sections.
(2)高真空室と絶縁を保って基板台を第1及び第2の
直流電源と独立した直流電源と接続して設けることを特
徴とする特許請求の範囲第1項記載のプラズマ処理装置
(2) The plasma processing apparatus according to claim 1, wherein the substrate table is connected to a DC power source independent of the first and second DC power sources while maintaining insulation from the high vacuum chamber.
(3)ガス導入管を前記基板室に接続することを特徴と
する特許請求の範囲第1項又は第2項記載のプラズマ処
理装置。
(3) The plasma processing apparatus according to claim 1 or 2, wherein a gas introduction pipe is connected to the substrate chamber.
(4)ガス排出管を前記放電室に接続することを特徴と
する特許請求の範囲第1項又は第2項又は第3項記載の
プラズマ処理装置
(4) The plasma processing apparatus according to claim 1, 2, or 3, characterized in that a gas exhaust pipe is connected to the discharge chamber.
(5)第1の導電性バイアス部及び第2の導電性バイア
ス部の放電して生ずる荷電粒子にさらされる側に、隔壁
或いは表面被覆を設けることを特徴とする特許請求の範
囲第1項又は第2項又は第3項又は第4項記載のプラズ
マ処理装置。
(5) A partition wall or a surface coating is provided on the sides of the first conductive bias section and the second conductive bias section that are exposed to charged particles generated by discharge, or The plasma processing apparatus according to item 2, 3, or 4.
JP61225266A 1986-09-24 1986-09-24 Plasma processing device Expired - Lifetime JPH07123121B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61225266A JPH07123121B2 (en) 1986-09-24 1986-09-24 Plasma processing device
US07/100,148 US4859908A (en) 1986-09-24 1987-09-23 Plasma processing apparatus for large area ion irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61225266A JPH07123121B2 (en) 1986-09-24 1986-09-24 Plasma processing device

Publications (2)

Publication Number Publication Date
JPS6380534A true JPS6380534A (en) 1988-04-11
JPH07123121B2 JPH07123121B2 (en) 1995-12-25

Family

ID=16826625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61225266A Expired - Lifetime JPH07123121B2 (en) 1986-09-24 1986-09-24 Plasma processing device

Country Status (1)

Country Link
JP (1) JPH07123121B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4910544A (en) * 1988-02-15 1990-03-20 Asahi Kogaku Kogyo K.K. Focus adjusting apparatus in zoom lens camera
US5144493A (en) * 1988-06-03 1992-09-01 Asahi Kogaku Kogyo Kabushiki Kaisha Zoom lens barrel and camera incorporating such barrel
US5231449A (en) * 1988-06-03 1993-07-27 Asahi Kogaku Kogyo Kabushiki Kaisha Zoom lens barrel and camera incorporating such barrel
US5262898A (en) * 1988-06-03 1993-11-16 Asahi Kogaku Kogyo Kabushiki Kaisha Zoom lens barrel and camera incorporating such barrel
JPH0645094A (en) * 1992-03-31 1994-02-18 Matsushita Electric Ind Co Ltd Method for generating plasma and device therefor
US5393986A (en) * 1991-09-09 1995-02-28 Sharp Kabushiki Kaisha Ion implantation apparatus
KR970030287A (en) * 1995-11-27 1997-06-26 제임스 조셉 드롱 Slotted RF Coil Shield for Plasma Deposition Systems

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4910544A (en) * 1988-02-15 1990-03-20 Asahi Kogaku Kogyo K.K. Focus adjusting apparatus in zoom lens camera
US5144493A (en) * 1988-06-03 1992-09-01 Asahi Kogaku Kogyo Kabushiki Kaisha Zoom lens barrel and camera incorporating such barrel
US5164757A (en) * 1988-06-03 1992-11-17 Asahi Kogaku Kogyo Kabushiki Kaisha Zoom lens barrel and camera incorporating such barrel
US5231449A (en) * 1988-06-03 1993-07-27 Asahi Kogaku Kogyo Kabushiki Kaisha Zoom lens barrel and camera incorporating such barrel
US5262898A (en) * 1988-06-03 1993-11-16 Asahi Kogaku Kogyo Kabushiki Kaisha Zoom lens barrel and camera incorporating such barrel
US5270868A (en) * 1988-06-03 1993-12-14 Asahi Kogaku Kogyo Kabushiki Kaisha Zoom lens barrel and camera incorporating such barrel
US5393986A (en) * 1991-09-09 1995-02-28 Sharp Kabushiki Kaisha Ion implantation apparatus
JPH0645094A (en) * 1992-03-31 1994-02-18 Matsushita Electric Ind Co Ltd Method for generating plasma and device therefor
KR970030287A (en) * 1995-11-27 1997-06-26 제임스 조셉 드롱 Slotted RF Coil Shield for Plasma Deposition Systems

Also Published As

Publication number Publication date
JPH07123121B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
EP0510401B1 (en) Processing apparatus using plasma
EP0271341B1 (en) Method and apparatus for ion etching
EP0148504A2 (en) Method and apparatus for sputtering
JPH09129172A (en) Self-cleaning ion beam neutrizing apparatus and method for cleaning contaminant sticking to inside surface thereof
JP3499104B2 (en) Plasma processing apparatus and plasma processing method
JPS6380534A (en) Plasma processing apparatus
JP2003077904A (en) Apparatus and method for plasma processing
JP3064214B2 (en) Fast atom beam source
JPH0770512B2 (en) Low energy ionized particle irradiation device
JP2689419B2 (en) Ion doping equipment
JPS63157868A (en) Plasma treatment device
JPH0687440B2 (en) Microwave plasma generation method
JPH11335832A (en) Ion implantation and ion implantation device
JP3577785B2 (en) Ion beam generator
JP2590502B2 (en) Impurity doping method
JPH0798145B2 (en) Plasma processing device
JPH0378954A (en) Ion source
JP2003077903A (en) Apparatus and method for plasma processing
JPS63213345A (en) Plasma processing device
JPH10106478A (en) Ion implanting device
JPH0627340B2 (en) Hybrid plasma thin film synthesis method and device
JPS59121747A (en) Method of ion milling
JPS63234519A (en) Plasma processor
JPH0816271B2 (en) Plasma processing device
JPH03129652A (en) Ion source device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term