JPH0798145B2 - Plasma processing device - Google Patents

Plasma processing device

Info

Publication number
JPH0798145B2
JPH0798145B2 JP61304186A JP30418686A JPH0798145B2 JP H0798145 B2 JPH0798145 B2 JP H0798145B2 JP 61304186 A JP61304186 A JP 61304186A JP 30418686 A JP30418686 A JP 30418686A JP H0798145 B2 JPH0798145 B2 JP H0798145B2
Authority
JP
Japan
Prior art keywords
conductive
chamber
substrate
plasma processing
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61304186A
Other languages
Japanese (ja)
Other versions
JPS63156535A (en
Inventor
哲久 吉田
謙太郎 瀬恒
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61304186A priority Critical patent/JPH0798145B2/en
Priority to US07/100,148 priority patent/US4859908A/en
Publication of JPS63156535A publication Critical patent/JPS63156535A/en
Publication of JPH0798145B2 publication Critical patent/JPH0798145B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/20Doping by irradiation with electromagnetic waves or by particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体工業における半導体素子製造等に用い
るプラズマ処理装置に関するものであり、特に大面積の
半導体素子や半導体薄膜等への不純物注入、大面積の半
導体薄膜形成やエッチング等に用いるプラズマ処理装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus used for manufacturing semiconductor elements in the semiconductor industry, and particularly to the implantation of impurities into large-area semiconductor elements and semiconductor thin films. The present invention relates to a plasma processing apparatus used for semiconductor thin film formation, etching, etc.

従来の技術 半導体薄膜等に不純物をイオンの形で所望の量及び深さ
に注入してドーピングを行う方法或は薄膜形成或はエッ
チングの方法としては、(1):イオン源として直流グ
ロー放電を用い、質量分離部を有さずイオン加速部を経
てイオンを半導体基板等に注入する簡易型イオン注入装
置[第2図、J.C.Muller,et al.:Proc.European Photov
oltaic Solar Energy Conf.(プロシーディング ヨー
ロピアン フォトボルティック ソーラー エナジー
コンファレンス)(Lexemberg)Sept.1977,p897-909]
を用いる方法や、(2):イオン源として絶縁性筒状管
内に高周波と静磁場を重畳させて発生するプラズマを用
い、質量分離部を有さずイオンを注入、ドーピングを行
うイオンドープ装置[第3図]、(3):基板室内に容
量結合型高周波電極をもうけて高周波グロー放電により
化学的気相反応を起こすプラズマCVD装置の高周波電極
に直流電圧を印加させる方法[第4図]などがある。第
2,3,4図において、1は放電室、2は直流グロー放電用
アノード電極、3は放電用直流電源、4は加速用電極、
5は加速用直流電源、6はガス導入管、7は絶縁体、8
はガス排出管、9は基板台、Aは放電室、Bは基板室、
11は絶縁性筒状管、12は高周波電極、13は電磁石、14は
マッチングボックス、15は高周波発振器、16−aは第1
の導電性バイアス部、16−bは第2の導電性バイアス
部、17−aは第1の直流電源、17−bは第2の直流電
源、18はガス導入管、19はガス排出管、20は基板台、21
は試料、22は真空容器、23は高周波電極、24はマッチン
グボックス、25は高周波発振器、26は直流電源、27はガ
ス導入管、28はガス排出管、29は試料である。
2. Description of the Related Art As a method for doping a semiconductor thin film or the like with impurities in the form of ions to a desired amount and depth for doping, or for forming a thin film or etching, (1): direct current glow discharge as an ion source is used. A simple ion implanter that uses a mass separation unit and does not have a mass separation unit to implant ions into a semiconductor substrate or the like through an ion acceleration unit [Fig. 2, JC Muller, et al .: Proc. European Photov
oltaic Solar Energy Conf. (Proceeding European Photovoltic Solar Energy
Conference) (Lexemberg) Sept. 1977, p897-909]
Or (2): An ion doping apparatus that uses plasma generated by superposing a high frequency and a static magnetic field in an insulating cylindrical tube as an ion source and implants and does ions without a mass separation unit [ [Fig. 3], (3): Method of applying a DC voltage to the high-frequency electrode of the plasma CVD apparatus in which a capacitively coupled high-frequency electrode is provided in the substrate chamber and a chemical vapor phase reaction is caused by high-frequency glow discharge [Fig. 4], etc. There is. First
In FIGS. 2, 3 and 4, 1 is a discharge chamber, 2 is a DC glow discharge anode electrode, 3 is a discharge DC power supply, 4 is an acceleration electrode,
5 is a DC power source for acceleration, 6 is a gas introduction pipe, 7 is an insulator, 8
Is a gas discharge pipe, 9 is a substrate stand, A is a discharge chamber, B is a substrate chamber,
11 is an insulating tubular tube, 12 is a high frequency electrode, 13 is an electromagnet, 14 is a matching box, 15 is a high frequency oscillator, and 16-a is the first
Conductive bias portion, 16-b is a second conductive bias portion, 17-a is a first DC power source, 17-b is a second DC power source, 18 is a gas introduction pipe, 19 is a gas discharge pipe, 20 is a board stand, 21
Is a sample, 22 is a vacuum container, 23 is a high frequency electrode, 24 is a matching box, 25 is a high frequency oscillator, 26 is a DC power supply, 27 is a gas introduction pipe, 28 is a gas discharge pipe, and 29 is a sample.

発明が解決しようとする問題点 不純物をイオンの形で半導体薄膜等に注入しドーピング
を行う従来の技術において、(1)のイオン源として直
流グロー放電を用い、質量分離部を有さずイオン加速部
を経てイオンを半導体基板等に注入する第2図の簡易型
イオン注入装置は、直流グロー放電が起こりイオン源と
して機能する圧力(1〜0.01torr)にイオン源の圧力を
保ちさらに基板室をイオンの平均自由行程がイオン源か
ら基板までの距離以上になる圧力(〜10-3torr以下)に
保つため差動排気等を用いねばならず、また大面積の試
料への不純物の注入のために放電電極を大きくすると電
極の沿面放電等による放電の不均一性や不安定性、さら
に放電電極がイオン源の内部にイオンに対し直接さらさ
れて設けていることからプラズマのセルフバイアスによ
り加速されたイオンによって電極がスパッタリングされ
て発生する不純物による試料の汚染等の問題があった。
(2)のイオン源として絶縁性筒状管内に高周波と静磁
場を重畳させて発生するプラズマを用い、質量分離部を
有さずイオンを注入、ドーピングを行うイオンドープ装
置による第3図の方法は、比較的大口径の筒状管内で安
定に放電が行え、かつ放電時の圧力が10-3〜10-4torrと
低いことから差動排気等を要せずに簡素な構造でドーピ
ングを行うことができるが、例えば口径130mmの絶縁管
を用い、3インチの単結晶シリコンウェハーにリンを注
入した場合、900℃・30分の熱処理後のウェハー内のシ
ート抵抗(注入されたリンの量に関係する)のばらつき
σ(Rs)/Rs(Rs:シート抵抗の平均値,σ(Rs):シー
ト抵抗の標準偏差)が20%程度であるため,大面積の試
料に対して一様に不純物を注入することが困難であっ
た。(3)の基板室内に容量結合型高周波電極をもうけ
て高周波グロー放電による化学的気相反応を起こすプラ
ズマCVD装置の高周波電極に直流電圧を印加させる第4
図の方法は、基板室の圧力が直流グロー放電が起こりイ
オン源として機能する圧力(1〜0.01torr)に保たれて
いることや印加出来る電圧が100〜1000Vと低くいことか
ら所望のイオン以外の中性粒子等を試料表面への堆積が
起こり、不純物の濃度を規定した高精度の不純物のドー
ピングが困難であった。さらに放電電極と加速電極の一
致による放電の不安定さのため、大面積の試料に極めて
一様な不純物のドーピング或はプラズマ処理等を行うこ
とが困難であり、さらに放電電極がイオン源の内部にイ
オンに対し直接さらされて設けていることからプラズマ
のセルフバイアスにより加速されたイオンによって電極
がスパッタリングされて発生する不純物による試料の汚
染等の問題があった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In the conventional technique of implanting impurities in the form of ions into a semiconductor thin film or the like for doping, DC glow discharge is used as the ion source of (1), and ion acceleration is performed without a mass separation part. The simple ion implanter shown in FIG. 2, which injects ions into the semiconductor substrate through the chamber, keeps the pressure of the ion source at the pressure (1 to 0.01 torr) at which direct current glow discharge occurs and functions as an ion source. Differential evacuation must be used in order to maintain the pressure at which the mean free path of ions is more than the distance from the ion source to the substrate (up to 10 -3 torr or less), and because of the injection of impurities into a large area sample. If the discharge electrode is made larger, the non-uniformity and instability of the discharge due to the creeping discharge of the electrode, etc., and because the discharge electrode is installed inside the ion source directly exposed to the ions There was a problem such as contamination of the sample by impurities generated by the electrode being sputtered by the ions accelerated by the asbestos.
The method of FIG. 3 by an ion doping apparatus that uses a plasma generated by superposing a high frequency wave and a static magnetic field in an insulating cylindrical tube as an ion source of (2) and implants and does ions without a mass separation section. Is capable of stable discharge in a relatively large-diameter cylindrical tube, and the pressure during discharge is as low as 10 -3 to 10 -4 torr, so doping is possible with a simple structure without the need for differential evacuation. This can be done, for example, if phosphorus is implanted into a 3-inch single crystal silicon wafer using an insulating tube with a diameter of 130 mm, the sheet resistance (the amount of implanted phosphorus) in the wafer after heat treatment at 900 ° C for 30 minutes Variation of σ (Rs) / Rs (Rs: average sheet resistance, σ (Rs): standard deviation of sheet resistance) is about 20%, so it is uniform for large area samples. It was difficult to implant impurities. A capacitive coupling type high frequency electrode is provided in the substrate chamber of (3), and a DC voltage is applied to the high frequency electrode of the plasma CVD apparatus which causes a chemical vapor phase reaction by the high frequency glow discharge.
In the method shown in the figure, the pressure in the substrate chamber is maintained at a pressure (1 to 0.01 torr) at which DC glow discharge occurs and functions as an ion source, and the voltage that can be applied is 100 to 1000 V Accumulation of neutral particles and the like on the surface of the sample occurred, and it was difficult to dope the impurity with high accuracy by defining the concentration of the impurity. Furthermore, it is difficult to do very uniform doping of impurities or plasma treatment on a large sample due to the instability of the discharge due to the coincidence of the discharge electrode and the acceleration electrode. Since it is directly exposed to the ions, the electrodes are sputtered by the ions accelerated by the self-bias of plasma, so that there is a problem such as contamination of the sample by impurities.

問題点を解決するための手段 以上の問題点を解決するために本発明に係るプラズマ処
理装置は、絶縁性筒状管と、前記絶縁性筒状管の外部に
設けられた高周波電極及び磁場発生源から構成される放
電室、ガス排出管と接続された接地電位の高真空室とそ
の内部に設けられた基板台から構成される基板室、前記
基板室及び前記放電室と絶縁を保ち前記基板台と前記放
電室との間に第1の直流電源と接続して設けられた第1
の導電性バイアス部、及び第1の直流電源又は第2の直
流電源と接続して前記第1の導電性バイアス部と対向す
る位置に放電により生じるプラズマを挟んで設けられた
第2の導電性バイアス部を備え、前記第1の導電性バイ
アス部の開口部に導電性多孔板或は導電性網を設けてな
るものである。すなわち本発明は、イオン源を絶縁性筒
状管と、前記絶縁性筒状管の外部に設けられた高周波電
極及び磁場発生源を配したものを用い、前記絶縁性の真
空槽の内部に荷電粒子を引き出して所望のエネルギーに
加速する第1の導電性バイアス部及び荷電粒子を第1の
導電性バイアス部側に押し出す第2の導電性バイアス部
を第1の導電性バイアス部と対向する位置に放電により
生じるプラズマを挟んで設け、さらに前記第1の導電性
バイアス部の開口部に導電性多孔板或は導電性網を設け
るというものである。
Means for Solving the Problems In order to solve the above problems, a plasma processing apparatus according to the present invention includes an insulating cylindrical tube, a high-frequency electrode provided outside the insulating cylindrical tube, and a magnetic field generator. Source chamber, a high-vacuum chamber at a ground potential connected to a gas discharge pipe, and a substrate chamber formed of a substrate stand provided therein, the substrate chamber and the discharge chamber, and the substrate A first direct current power supply provided between the stand and the discharge chamber;
And a second DC power supply connected to the first DC power supply or the second DC power supply, the second conductivity being provided at a position facing the first conductive bias part with the plasma generated by the discharge interposed therebetween. A bias portion is provided, and a conductive porous plate or a conductive net is provided in the opening of the first conductive bias portion. That is, the present invention uses an ion source in which an insulating cylindrical tube and a high-frequency electrode and a magnetic field source provided outside the insulating cylindrical tube are arranged, and the inside of the insulating vacuum chamber is charged. A position where a first conductive bias portion that draws out particles and accelerates to a desired energy and a second conductive bias portion that pushes out charged particles toward the first conductive bias portion side are opposed to the first conductive bias portion. And a conductive porous plate or a conductive net is provided in the opening of the first conductive bias portion.

作用 絶縁性の真空槽の外部に高周波電極を設けることによ
り、プラズマのセルフバイアスにより加速されたイオン
が高周波電極をスパッタリングすることが無くなるため
高周波電極がスパッタリングされた発生する金属等の不
純物イオンによる汚染が防げ、さらに磁場発生源を配す
ることで放電室内に印加された磁場による電子の閉じ込
め及び旋回運動の励起を行い、高周波によって供給され
るエネルギーを有効に用いて例えば10-3〜10-4torrの気
体圧力でも安定かつ一様に放電させる。この10-3〜10-4
torrの気体圧力下でイオンの平均自由工程はイオン種に
よって異なるが,放電室から基板台までの距離(約10c
m)と同程度あるいはそれ以上となるために放電室に配
した第1の導電性バイアス部及び第2の導電性バイアス
部でプラズマを挟むという簡素な構造で荷電粒子の押し
出し及び加速を行い、基板台上の半導体等の試料まで荷
電粒子を輸送し、前記試料に照射する。さらに装置内の
圧力が10-3〜10-4torr以下であること及び放電用の高周
波電極と加速用の導電性バイアス部電極を分離している
ことから、圧力が高いことや電圧が高いことによる沿面
放電やなだれ放電等の異常な放電を起こすことなく、か
つ放電電極と加速電極の一致による放電の不安定さを引
き起こすことなく1keV以上の注入によってドーピングを
行えるエネルギーに荷電粒子を加速する。また基板室の
圧力が10-3〜10-4torr以下に保たれていることから所望
のイオン以外の中性粒子等の試料表面への堆積が起こら
ず、不純物の濃度を規定した高精度の不純物のドーピン
グを行う。また、第1及び第2の導電性バイアス部でプ
ラズマを挟むとともに、第1の導電性バイアス部の開口
部に導電性多孔板或は導電性網を設けることにより、プ
ラズマに電位を与えるとともに、開口部の全面に渡って
均一に電圧が印加され、極めて一様に荷電粒子ビームを
基板台に対して照射し、その結果大面積に渡る均一な不
純物のドーピングを行う。
By providing a high-frequency electrode outside the insulating vacuum chamber, the ions accelerated by the self-bias of plasma do not sputter the high-frequency electrode, so that the high-frequency electrode is sputtered and contaminated with impurities such as metal ions generated. The magnetic field applied inside the discharge chamber can confine electrons and excite the orbital motion by arranging a magnetic field generation source, and effectively use the energy supplied by the high frequency wave, for example, 10 −3 to 10 −4. Discharges stably and uniformly even at a gas pressure of torr. This 10 -3 to 10 -4
The mean free path of ions under the gas pressure of torr varies depending on the ion species, but the distance from the discharge chamber to the substrate table (about 10c
m), the charged particles are extruded and accelerated with a simple structure in which the plasma is sandwiched between the first conductive bias part and the second conductive bias part arranged in the discharge chamber in order to obtain the same level or more. The charged particles are transported to a sample such as a semiconductor on a substrate table, and the sample is irradiated with the charged particles. In addition, the pressure inside the device is 10 -3 to 10 -4 torr or less, and the high-frequency electrode for discharge and the conductive bias part electrode for acceleration are separated, so the pressure is high and the voltage is high. The charged particles are accelerated to the energy at which doping can be performed by the injection of 1 keV or more without causing abnormal discharge such as creeping discharge and avalanche discharge due to, and without causing instability of discharge due to coincidence between the discharge electrode and the accelerating electrode. In addition, since the pressure in the substrate chamber is kept below 10 -3 to 10 -4 torr, deposition of neutral particles other than the desired ions on the sample surface does not occur, and it is possible to achieve high accuracy with the impurity concentration specified. Doping impurities. Further, by sandwiching the plasma between the first and second conductive bias portions and providing a conductive porous plate or a conductive mesh in the opening of the first conductive bias portion, a potential is given to the plasma, A voltage is applied uniformly over the entire surface of the opening, and the charged particle beam is irradiated extremely uniformly on the substrate table, and as a result, uniform doping of impurities over a large area is performed.

実施例 以下図面に基づいて本発明についてさらに詳しく説明す
る。
EXAMPLES The present invention will be described in more detail with reference to the drawings.

第1図は本発明に係るプラズマの処理装置の第1実施例
の概略構成図を示したものである。放電室Cの絶縁性筒
状管31はセハミックスや石英ガラス等を用い、容量結合
型高周波グロー放電用電極32には導電性の良い銅・ニッ
ケル等の金属を用い、絶縁性筒状管31の外部に設ける。
容量結合型高周波グロー放電用電極32の一方はマッチン
グボックス33を介して高周波発振器34と接続し、他方を
接地して絶縁性筒状管31内に高周波電力の供給を行う。
さらに容量結合型高周波グロー放電用電極32の外部に配
した電磁石35により印加される磁場によって電子の旋回
運動(サイクロトロン運動)の励起と閉じ込めを行うこ
とにより、比較的低い圧力(10-3〜10-4torr)で高周波
電力を有効に放電のために用いることによって絶縁性筒
状管31内にプラズマを安定に発生させる。この磁場の強
度は絶縁性筒状管31内に於て50〜200ガウス程度で良
く、磁場発生源として永久磁石等を用いても良い。導電
性のステンレス・アルミニウム・銅等で作られ、開口部
36を有する第1の導電性バイアス部37−aは、セラミッ
クス・石英ガラス塩化ビニル等で作られた絶縁フランジ
38を介して放電室Cと基板室Dの間に設ける。この第1
の導電性バイアス部37−aの開口部に36には導電性のス
テンレス・アルミニウム・銅等で作られた導電性網39を
もうける。放電室Cへの材料ガスの導入はガス導入管40
を経て,絶縁性筒状管31内の第1の導電性バイアス部37
−aと対向した位置に設けられた第2の導電性バイアス
部37−bのガス導入口41より行う。前記第1の導電性バ
イアス部37−a・導電性網39及び第2の導電性バイアス
部37−bは各々直流高電圧電源42−a及び42−bに電気
的に接続され,所望の電圧を印加することにより、2つ
の導電性バイアス部に挟まれたプラズマに電位を与える
とともに、放電室C内の荷電粒子を基板室Dへ押し出し
加速を行う。基板室Dはガス排出管43に接続され、10-3
〜10-6torrの圧力に保たれる。基板室D内には導電性の
ステンレス・アルミニウム・銅等で作られた基板台44を
設け、基板台44上に半導体基板等の試料45を置く。試料
45はヒーター46により加熱を行い、不純物のドーピング
或はプラズマ処理の効率を上げる。絶縁性筒状管31内に
一様に生じるプラズマより引き出され、開口部36に関し
て一様で第1の導電性バイアス部37−aと基板台44との
電位差に応じた運動エネルギーを得た荷電粒子ビーム47
は、基板台43上の半導体基板等の試料45に照射し、試料
45に対して極めて一様な不純物のドーピンク或はプラズ
マ処理等を行う。本実施例において、放電室Cとして口
径130mmの絶縁管を用い、3インチの単結晶シリコンウ
ェハーにリンを注入した場合、900℃・30分の熱処理後
のウェハー内のシート抵抗(注入されたリンの量に関係
する)のばらつきσ(Rs)/Rs(Rs:シート抵抗の平均
値、σ(Rs):シート抵抗の標準偏差)が最大で7.7%
であり、一様な不純物のドーピングが可能であることが
確かめられた。
FIG. 1 is a schematic block diagram of a first embodiment of a plasma processing apparatus according to the present invention. The insulating tubular tube 31 of the discharge chamber C is made of ceramics or quartz glass, and the capacitive coupling type high frequency glow discharge electrode 32 is made of metal such as copper or nickel having good conductivity. Provided outside.
One of the capacitively coupled high frequency glow discharge electrodes 32 is connected to the high frequency oscillator 34 via the matching box 33, and the other is grounded to supply high frequency power into the insulating cylindrical tube 31.
Further, by exciting and confining the orbital motion (cyclotron motion) of the electrons by the magnetic field applied by the electromagnet 35 arranged outside the capacitively coupled high frequency glow discharge electrode 32, a relatively low pressure (10 -3 to 10 -10 The plasma is stably generated in the insulating cylindrical tube 31 by effectively using the high frequency power for discharge at −4 torr). The strength of this magnetic field may be about 50 to 200 Gauss in the insulating tubular tube 31, and a permanent magnet or the like may be used as a magnetic field generation source. Made of conductive stainless steel, aluminum, copper, etc., opening
The first conductive bias portion 37-a having 36 is an insulating flange made of ceramics, quartz glass, vinyl chloride, or the like.
It is provided between the discharge chamber C and the substrate chamber D via 38. This first
A conductive mesh 39 made of conductive stainless steel, aluminum, copper or the like is provided in the opening 36 of the conductive bias portion 37-a. The introduction of the material gas into the discharge chamber C is performed by the gas introduction pipe 40.
Through the first conductive bias portion 37 in the insulating tubular tube 31.
It is performed from the gas introduction port 41 of the second conductive bias portion 37-b provided at a position facing -a. The first conductive bias portion 37-a / conductive net 39 and the second conductive bias portion 37-b are electrically connected to the DC high-voltage power supplies 42-a and 42-b, respectively, to obtain a desired voltage. Is applied, a potential is applied to the plasma sandwiched between the two conductive bias portions, and the charged particles in the discharge chamber C are pushed out to the substrate chamber D for acceleration. The substrate chamber D is connected to the gas exhaust pipe 43, and 10 -3
Maintained at pressures of ~ 10 -6 torr. A substrate table 44 made of conductive stainless steel, aluminum, copper or the like is provided in the substrate chamber D, and a sample 45 such as a semiconductor substrate is placed on the substrate table 44. sample
The heater 45 is heated by the heater 46 to increase the efficiency of impurity doping or plasma treatment. Charging that is extracted from the plasma that is uniformly generated in the insulating tubular tube 31 and that has a uniform kinetic energy with respect to the opening 36 and that corresponds to the potential difference between the first conductive bias portion 37-a and the substrate table 44. Particle beam 47
Irradiates a sample 45 such as a semiconductor substrate on the substrate table 43,
For 45, dope or plasma treatment of extremely uniform impurities. In this embodiment, when an insulating tube having a diameter of 130 mm is used as the discharge chamber C and phosphorus is injected into a 3-inch single crystal silicon wafer, the sheet resistance (injected phosphorus) in the wafer after the heat treatment at 900 ° C. for 30 minutes is performed. Variation of σ (Rs) / Rs (Rs: average sheet resistance, σ (Rs): standard deviation of sheet resistance) is 7.7% at maximum.
It was confirmed that uniform doping of impurities is possible.

発明の効果 本発明は、放電室として絶縁性筒状管を用い,高周波と
静磁場を重畳させることにより、10-3〜10-4torrと比較
的低い圧力下で一様なプラズマを安定に発生させること
が可能となる。また第1及び第2の導電性バイアス部で
プラズマを挟むとともに、第1の導電性バイアス部の開
口部に導電性多孔板或は導電性網を設けることにより開
口部の全面に渡って均一に電圧が印加され、一様なプラ
ズマから極めて一様な荷電粒子ビームを半導体基板等の
試料に対して照射することが可能となる。これにより大
面積の試料に極めて一様な不純物のドーピング或はプラ
ズマ処理等を行うことが可能となる。さらに絶縁性筒状
管の外部に高周波電極を設けることによりイオンシース
により加速されたイオンが高周波電極をスパッタリング
することが無くなるため高周波電極がスパッタリングさ
れて発生する金属等の不純物イオンによる汚染が無くな
り、極めて高純度の不純物のドーピング或はプラズマ処
理等を行うことが可能となる。所望のイオン以外の中性
粒子等の試料表面への堆積が起こらず、不純物の濃度を
規定した高精度の大面積に渡る均一な不純物のドーピン
グ或はプラズマ処理を行うことが可能となる。以上の効
果は第1の導電性バイアス部の開口部に設けられた導電
性多孔板或は導電性網に隔壁或は表面被覆を設けるこ
と、基板台を第1の導電性バイアス部の開口部に設けら
れた導電性多孔板或は導電性網と平行を保って回転或は
移動させること、ガス導入管を基板室に接続すること、
第1の導電性バイアス部及び第1の導電性バイアス部の
開口部に設けられた導電性多孔板或は導電性網及び前記
第2の導電性バイアス部の放電により生じる荷電粒子に
さらされる側に隔壁或は表面被覆を設けること、基板室
をゲートバルブを介して第2の真空槽或は第2のプラズ
マ処理装置と接続し、基板台を基板室と第2の真空槽或
は第2のプラズマ処理装置間を搬送させることによって
も同様に得られる。本発明によるプラズマ処理装置は、
例えば大口径の単結晶シリコン基板上或は絶縁基板上等
に作成される半導体素子製造における高純度の不純物の
ドーピング或はプラズマ処理等を簡素な構造で一括して
行うことが可能となるという点で極めて有用性の高いも
のである。
EFFECTS OF THE INVENTION The present invention uses an insulating tubular tube as a discharge chamber and superimposes a high frequency and a static magnetic field to stabilize uniform plasma under a relatively low pressure of 10 −3 to 10 −4 torr. It is possible to generate. Further, the plasma is sandwiched between the first and second conductive bias portions, and a conductive porous plate or a conductive net is provided in the opening of the first conductive bias portion so that the entire surface of the opening can be made uniform. By applying a voltage, it becomes possible to irradiate a sample such as a semiconductor substrate with a very uniform charged particle beam from a uniform plasma. This makes it possible to perform extremely uniform doping of impurities or plasma treatment on a large-area sample. Further, by providing a high-frequency electrode outside the insulating tubular tube, ions accelerated by the ion sheath do not sputter the high-frequency electrode, so that contamination by impurity ions such as metal generated by sputtering the high-frequency electrode is eliminated, It becomes possible to perform doping of extremely high-purity impurities or plasma treatment. Accumulation of neutral particles other than the desired ions on the sample surface does not occur, and it is possible to perform highly uniform doping of impurities or plasma treatment over a large area with high precision by defining the concentration of impurities. The above effects are obtained by providing the conductive perforated plate or the conductive net provided at the opening of the first conductive bias portion with a partition or a surface coating, and by using the substrate table as the opening of the first conductive bias portion. Rotating or moving in parallel with the conductive perforated plate or conductive mesh provided on the substrate, connecting the gas introducing pipe to the substrate chamber,
The first conductive bias portion and the conductive porous plate or conductive net provided in the opening of the first conductive bias portion and the side exposed to the charged particles generated by the discharge of the second conductive bias portion. A partition or a surface coating on the substrate chamber, the substrate chamber is connected to a second vacuum chamber or a second plasma processing apparatus through a gate valve, and the substrate table is connected to the substrate chamber and the second vacuum chamber or the second vacuum chamber. It can be obtained in the same manner by transporting it between the plasma processing apparatuses. The plasma processing apparatus according to the present invention is
For example, it becomes possible to collectively perform doping of high-purity impurities or plasma treatment in the manufacture of a semiconductor element formed on a large-diameter single crystal silicon substrate or an insulating substrate with a simple structure. It is extremely useful.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係るプラズマ処理装置の第1実施例の
概略構成図、第2図は従来の技術のうちイオン源として
直流グロー放電を用い、質量分離部を有さずイオン加速
部を経てイオンを半導体基板等に注入する簡易型イオン
注入装置の概略構成図、第3図は従来の技術のうちイオ
ン源として絶縁性筒状管内に高周波と静磁場を重畳させ
て発生するプラズマを用い、質量分離部を有さずイオン
を注入、ドーピングを行うイオンドープ装置の概略構成
図、第4図は基板室内に容量結合型高周波電極をもうけ
て高周波グロー放電による化学的気相反応を起こすプラ
ズマCVD装置の高周波電極に直流電圧を印加させる方法
の概略構成図である。 C……放電室、D……基板室、31……絶縁性筒状管、32
……容量結合型平行平板高周波グロー放電用電極、33…
…マッチングボックス、34……高周波発振器、35……電
磁石、36……開口部、37−a……第1の導電性バイアス
部、37−b……第2の導電性バイアス部、38……絶縁フ
ランジ、39……導電性網、40……ガス導入管、41……ガ
ス導入口、42−a……直流高電圧電源、42−b……直流
高電圧電源、43……ガス排出管、44……試料、45……ヒ
ーター、46……荷電粒子ビーム。
FIG. 1 is a schematic configuration diagram of a first embodiment of a plasma processing apparatus according to the present invention, and FIG. 2 uses a direct current glow discharge as an ion source among conventional techniques, and has an ion accelerating part without a mass separating part. FIG. 3 is a schematic configuration diagram of a simple ion implanter for implanting ions into a semiconductor substrate or the like, and FIG. 3 shows a conventional technique in which plasma generated by superposing a high frequency and a static magnetic field in an insulating cylindrical tube is used as an ion source. Fig. 4 is a schematic configuration diagram of an ion doping apparatus for implanting and doping ions without a mass separation part. Fig. 4 shows a plasma that causes a chemical vapor phase reaction by a high frequency glow discharge by providing a capacitively coupled high frequency electrode in a substrate chamber. It is a schematic block diagram of the method of applying a direct-current voltage to the high frequency electrode of a CVD apparatus. C ... Discharge chamber, D ... Substrate chamber, 31 ... Insulating tubular tube, 32
...... Capacitively coupled parallel plate high frequency glow discharge electrodes, 33 ...
... Matching box, 34 ... High-frequency oscillator, 35 ... Electromagnet, 36 ... Opening, 37-a ... First conductive bias section, 37-b ... Second conductive bias section, 38 ... Insulating flange, 39 ... Conductive mesh, 40 ... Gas inlet pipe, 41 ... Gas inlet port, 42-a ... DC high voltage power source, 42-b ... DC high voltage power source, 43 ... Gas exhaust pipe , 44 …… sample, 45 …… heater, 46 …… charged particle beam.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/265 21/3065 21/31 C H05H 1/46 M 9014−2G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01L 21/265 21/3065 21/31 C H05H 1/46 M 9014-2G

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】絶縁性筒状管と、前記絶縁性筒状管の外部
に設けられた高周波電極及び磁場発生源から構成される
放電室、ガス排出管と接続された接地電位の高真空室と
その内部に設けられた基板台から構成される基板室、前
記基板室及び前記放電室と絶縁を保ち前記基板台と前記
放電室との間に第1の直流電源と接続して設けられた第
1の導電性バイアス部、及び第1の直流電源又は第2の
直流電源と接続して前記第1の導電性バイアス部と対向
する位置に放電により生じるプラズマを挟んで設けられ
た第2の導電性バイアス部を備え、前記第1の導電性バ
イアス部の開口部に導電性多孔板或いは導電性網を設け
てなることを特徴とするプラズマ処理装置。
1. A discharge chamber composed of an insulating tubular tube, a high-frequency electrode and a magnetic field source provided outside the insulating tubular tube, and a high vacuum chamber of ground potential connected to a gas exhaust tube. And a substrate chamber formed of a substrate table provided inside the substrate chamber, the substrate chamber and the discharge chamber, which are insulated from each other and are provided between the substrate table and the discharge chamber connected to a first DC power source. A second conductive bias portion, and a second DC power source connected to the first DC power source or the second DC power source, and provided at a position facing the first conductive bias portion with plasma generated by discharge interposed therebetween. A plasma processing apparatus comprising a conductive bias portion, wherein a conductive porous plate or a conductive net is provided in an opening of the first conductive bias portion.
【請求項2】第1の導電性バイアス部の開口部に設けら
れた前記導電性多孔板或いは導電性網に、隔壁或いは表
面被覆を設けることを特徴とする特許請求の範囲第1項
記載のプラズマ処理装置。
2. A partition wall or a surface coating is provided on the conductive porous plate or conductive net provided in the opening of the first conductive bias portion, as claimed in claim 1. Plasma processing equipment.
【請求項3】基板台に加熱源を備えてなることを特徴と
する特許請求の範囲第1項又は第2項記載のプラズマ処
理装置。
3. A plasma processing apparatus according to claim 1, wherein the substrate table is provided with a heating source.
【請求項4】基板台を第1の導電性バイアス部の開口部
に設けられた前記導電性網と平行を保って回転或いは移
動させることを特徴とする特許請求の範囲第1項又は第
2項又は第3項記載のプラズマ処理装置。
4. The substrate stage is rotated or moved while keeping the substrate parallel to the conductive net provided in the opening of the first conductive bias portion. Item 3. The plasma processing apparatus according to Item 3.
【請求項5】ガス導入管を基板室に接続することを特徴
とする特許請求の範囲第1項又は第2項又は第3項又は
第4項記載のプラズマ処理装置。
5. The plasma processing apparatus according to claim 1, wherein the gas introducing pipe is connected to the substrate chamber.
【請求項6】ガス導入管を放電室に接続することを特徴
とする特許請求の範囲第1項又は第2項又は第3項又は
第4項又は第5項記載のプラズマ処理装置。
6. The plasma processing apparatus according to claim 1, wherein the gas introducing pipe is connected to the discharge chamber.
【請求項7】第1の導電性バイアス部及び前記第1の導
電性バイアス部の開口部に設けられた導電性多孔板或は
導電性網及び第2の導電性バイアス部の放電により生じ
る荷電粒子にさらされる側に、隔壁或は表面被覆を設け
ることを特徴とする特許請求の範囲第1項又は第2項又
は第3項又は第4項又は第5項又は第6項記載のプラズ
マ処理装置。
7. A charge generated by discharge of a first conductive bias portion, a conductive porous plate or a conductive net provided in an opening of the first conductive bias portion, and a second conductive bias portion. The plasma treatment according to claim 1, characterized in that a partition wall or a surface coating is provided on the side exposed to the particles. apparatus.
【請求項8】基板室をゲートバルブを介して第2の真空
槽或は第2のプラズマ処理装置と接続し、基板台を前記
基板室と第2の真空槽或は第2のプラズマ処理装置間を
搬送させることを特徴とする特許請求の範囲第1項又は
第2項又は第3項又は第4項又は第5項又は第6項又は
第7項記載のプラズマ処理装置。
8. A substrate chamber is connected to a second vacuum chamber or a second plasma processing apparatus via a gate valve, and a substrate table is connected to the substrate chamber and a second vacuum chamber or a second plasma processing apparatus. The plasma processing apparatus according to claim 1, 2 or 3, 4 or 5 or 6 or 7, characterized in that the plasma processing apparatus conveys between the two.
JP61304186A 1986-09-24 1986-12-19 Plasma processing device Expired - Lifetime JPH0798145B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61304186A JPH0798145B2 (en) 1986-12-19 1986-12-19 Plasma processing device
US07/100,148 US4859908A (en) 1986-09-24 1987-09-23 Plasma processing apparatus for large area ion irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61304186A JPH0798145B2 (en) 1986-12-19 1986-12-19 Plasma processing device

Publications (2)

Publication Number Publication Date
JPS63156535A JPS63156535A (en) 1988-06-29
JPH0798145B2 true JPH0798145B2 (en) 1995-10-25

Family

ID=17930067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61304186A Expired - Lifetime JPH0798145B2 (en) 1986-09-24 1986-12-19 Plasma processing device

Country Status (1)

Country Link
JP (1) JPH0798145B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3080867B2 (en) 1995-09-25 2000-08-28 日本電気株式会社 Method for manufacturing SOI substrate
CN1086307C (en) * 1997-11-28 2002-06-19 复旦大学 Technology for treating low temperature plasma waste gas

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141729A (en) * 1979-04-21 1980-11-05 Nippon Telegr & Teleph Corp <Ntt> Ion-shower device
JPS5813626B2 (en) * 1981-04-24 1983-03-15 日本電信電話株式会社 ion shower device
JPS58125820A (en) * 1982-01-22 1983-07-27 Toshiba Corp Electronic cyclotron resonance type discharger

Also Published As

Publication number Publication date
JPS63156535A (en) 1988-06-29

Similar Documents

Publication Publication Date Title
US4859908A (en) Plasma processing apparatus for large area ion irradiation
US4844775A (en) Ion etching and chemical vapour deposition
KR101065449B1 (en) Ion source apparatus and cleaning optimized method thereof
US4173661A (en) Method for depositing thin layers of materials by decomposing a gas to yield a plasma
EP3711078B1 (en) Linearized energetic radio-frequency plasma ion source
CN110225995A (en) Extension for the PVD chamber with a variety of reaction gas, high bias power and high-power pulse source for depositing, injecting and handle
KR19980070441A (en) Plasma immersion injection with pulsed anode
WO2009117624A2 (en) Mono-energetic neutral beam activated chemical processing system and method of using
KR20010062069A (en) A plasma processing system for sputter deposition applications
JPH11503560A (en) Device for widespread implantation of ions
US5252892A (en) Plasma processing apparatus
JP2689419B2 (en) Ion doping equipment
JPH0768618B2 (en) Plasma processing device
JPH07123121B2 (en) Plasma processing device
JPH0798145B2 (en) Plasma processing device
JP2956412B2 (en) How to clean the ion source
JP2003077904A (en) Apparatus and method for plasma processing
JP2590502B2 (en) Impurity doping method
JPH0770512B2 (en) Low energy ionized particle irradiation device
JPS63311727A (en) Plasma processor
JPS63157416A (en) Plasma treatment apparatus
JPS63234519A (en) Plasma processor
JPH0824115B2 (en) Plasma processing device
JP3509343B2 (en) Ion source
JPH0687440B2 (en) Microwave plasma generation method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term