JPS63156535A - Plasma treating device - Google Patents

Plasma treating device

Info

Publication number
JPS63156535A
JPS63156535A JP61304186A JP30418686A JPS63156535A JP S63156535 A JPS63156535 A JP S63156535A JP 61304186 A JP61304186 A JP 61304186A JP 30418686 A JP30418686 A JP 30418686A JP S63156535 A JPS63156535 A JP S63156535A
Authority
JP
Japan
Prior art keywords
conductive
substrate
plasma processing
processing apparatus
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61304186A
Other languages
Japanese (ja)
Other versions
JPH0798145B2 (en
Inventor
Tetsuhisa Yoshida
哲久 吉田
Kentaro Setsune
瀬恒 謙太郎
Takashi Hirao
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61304186A priority Critical patent/JPH0798145B2/en
Priority to US07/100,148 priority patent/US4859908A/en
Publication of JPS63156535A publication Critical patent/JPS63156535A/en
Publication of JPH0798145B2 publication Critical patent/JPH0798145B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/20Doping by irradiation with electromagnetic waves or by particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means

Abstract

PURPOSE:To uniformly dope a large area, by providing a second conductive bias part at a position opposed to the first conductive bias part connected to a first or second DC power source with the plasma produced by electric discharge in between. CONSTITUTION:A substrate holder 44 made of electrically conductive stainless steel, aluminum, copper, etc., is provided in a substrate chamber D, and a sample 45 such as a semiconductor substrate is placed thereon. The sample 45 is heated by a heater 46 to increase the efficiency in the doping of impurities or plasma treatment. A uniform charged particles beam 47 pulled out from the plasma produced in an insulating cylindrical tube 31 and provided with kinetic energy corresponding to the potential difference between the first conductive bias part 37a and the substrate holder 44 at openings 36 is projected on the sample 45 such as a semiconductor substrate on the substrate holder 44, and the sample 45 is extremely uniformly doped with impurities or treated with plasma.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体工業における半導体素子製造等に用い
るプラズマ処理装置に関するものであり、特に大面積の
半導体素子や半導体薄膜等への不純物注入、大面積の半
導体薄膜形成やエツチング等に用いるプラズマ処理装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a plasma processing apparatus used for manufacturing semiconductor elements in the semiconductor industry, and in particular, for impurity implantation into large area semiconductor elements, semiconductor thin films, etc. The present invention relates to a plasma processing apparatus used for semiconductor thin film formation, etching, etc.

従来の技術 半導体薄膜等に不純物をイオンの形で所望の量及び深さ
に注入してドーピングを行う方法或は薄膜形成或はエツ
チングの方法としては、(1):イオン源として直流グ
ロー放電を用い、質量分離部を有さすイオン加速部を経
てイオンを半導体基板等に注入する簡易型イオン注入装
置[第2図、J。
Prior Art Methods for doping, forming or etching a semiconductor thin film by injecting impurities in the form of ions to a desired depth in the form of ions include (1): using a direct current glow discharge as an ion source; A simple ion implantation apparatus [FIG. 2, J.

C,Muller、 et al、 : Proc、 
European Photovoltaic  5o
lar  Energy  Conf、  (プロシー
ディングヨーロピアン フォトポルティック ソーラー
エナジー コンファレンス)  (Lexemberg
) 5ept、  1977、  p897−909]
を用いる方法や、(2):イオン源として絶縁性筒状管
内に高周波と静磁場を重畳させて発生するプラズマを用
い、質量分離部を有さすイオンを注入、ドーピングを行
うイオンドープ装置[第3図]、(3):基板室内に容
量結合型窩周波電極をもうけて高周波グロー放電による
化学的気相反応を起こすプラズマCVD装置の高周波電
極に直流電圧を印加させる方法[第4図]などがある。
C. Muller, et al.: Proc.
European Photovoltaic 5o
lar Energy Conf, (Proceeding European Photoportic Solar Energy Conference) (Lexenberg
) 5ept, 1977, p897-909]
(2): An ion doping device [No. [Figure 3], (3): A method of applying a DC voltage to the high frequency electrode of a plasma CVD device that causes a chemical vapor phase reaction by high frequency glow discharge by providing a capacitively coupled cavity frequency electrode in the substrate chamber [Figure 4], etc. There is.

第2.3.4図において、1は放電室、2は直流グロー
放電用アノード電極、3は放電用直流電源、4は加速用
電極、5は加速用直流電源、6はガス導入管、7は絶縁
体、8はガス排出管、9は基板台、Aは放電室、Bは基
板室、11は絶縁性筒状管、12は高周波電極、13は
電磁石、14はマツチングボックス、15は高周波発振
器、16−aは第1の導電性バイアス部、16−bは第
2の導電性バイアス部、17−aは第1の直流電源、1
7−bは第2の直流電源、18はガス導入管、19はガ
ス排出管、20は基板台、21は試料、22は真空容器
、23は高周波電極、24はマツチングボックス、25
は高周波発振器、26は直流電源、27はガス導入管、
28はガス排出管、29は試料である。
In Figure 2.3.4, 1 is a discharge chamber, 2 is an anode electrode for DC glow discharge, 3 is a DC power source for discharge, 4 is an electrode for acceleration, 5 is a DC power source for acceleration, 6 is a gas introduction tube, and 7 8 is an insulator, 8 is a gas exhaust pipe, 9 is a substrate stand, A is a discharge chamber, B is a substrate chamber, 11 is an insulating cylindrical tube, 12 is a high frequency electrode, 13 is an electromagnet, 14 is a matching box, 15 is High frequency oscillator, 16-a is a first conductive bias section, 16-b is a second conductive bias section, 17-a is a first DC power supply, 1
7-b is a second DC power supply, 18 is a gas introduction pipe, 19 is a gas discharge pipe, 20 is a substrate stand, 21 is a sample, 22 is a vacuum container, 23 is a high frequency electrode, 24 is a matching box, 25
is a high frequency oscillator, 26 is a DC power supply, 27 is a gas introduction pipe,
28 is a gas exhaust pipe, and 29 is a sample.

発明が解決しようとする問題点 不純物をイオンの形で半導体薄膜等に注入しドーピング
を行う従来の技術において、(1)のイオン源として直
流グロー放電を用い、質量分離部を有さすイオン加速部
を経てイオンを半導体基板等に注入する第2図の簡易型
イオン注入装置は、直流グロー放電が起こりイオン源と
して機能する圧力(1〜O,O1torr)にイオン源
の圧力を保ちさらに基板室をイオンの平均自由行程がイ
オン源から基板までの距離以上になる圧力(〜1O−3
torr以下)に保つため差動排気等を用いねばならず
、また大面積の試料への不純物の注入のために放電電極
を大きくすると電極の沿面放電等による放電の不均一性
や不安定性、さらに放電電極がイオン源の内部にイオン
に対し直接さらされて設けていることからプラズマのセ
ルフバイアスにより加速されたイオンによって電極がス
パッタリングされて発生する不純物による試料の汚染等
の問題があった。(2)のイオン源として絶縁性筒状管
内に高周波と静磁場を重畳させて発生するプラズマを用
い、質量分離部を有さすイオンを注入、ドーピングを行
うイオンドープ装置による第3図の方法は、比較的大口
径の筒状管内で安定に放電が行え、かつ放電時の圧力が
1 (I3〜10−’torrと低いことがら差動排気
等を要せずに簡素な構造でドーピングを行うことができ
るが、例えば口径130W11の絶縁管を用い、3イン
チの単結晶シリコンウェハーにリンを注入した場合、9
00℃・30分の熱処理後のウェハー内のシート抵抗(
注入されたリンの量に関係する)のばらつきσ(Rs)
/Rs(Rs:シート抵抗の平均値、cy(Rs):シ
ート抵抗の標準偏差)が20%程度であるため、大面積
の試料に対して一様に不純物を注入することが困難であ
った。(3)の基板室内に容量結合型高周波電極をもう
けて高周波グロー放電による化学的気相反応を起こすプ
ラズマCVD装置の高周波電極に直流電圧を印加させる
第4図の方法は、基板室の圧力が直流グロー放電が起こ
りイオン源として機能する圧力(1〜O,O1torr
) ニ保たれていることや印加出来る電圧が100〜1
ooovと低(いことから所望のイオン以外の中性粒子
等の試料表面への堆積が起こり、不純物の濃度を規定し
た高精度の不純物のドーピングが困難であった。さらに
放電電極と加速電極の一致による放電の不安定さのため
、大面積の試料に極めて一様な不純物のドーピング或は
プラズマ処理等を行うことが困難であり、さらに放電電
極がイオン源の内部にイオンに対し直接さらされて設け
ていることからプラズマのセルフバイアスにより加速さ
れたイオンによって電極がスパッタリングされて発生す
る不純物による試料の汚染等の問題があった。
Problems to be Solved by the Invention In the conventional technique of doping by implanting impurities in the form of ions into a semiconductor thin film, etc., (1) an ion accelerating section that uses a DC glow discharge as an ion source and has a mass separation section; The simple ion implantation device shown in Fig. 2, which injects ions into a semiconductor substrate, etc., maintains the pressure of the ion source at a pressure (1 to O, O1 torr) at which DC glow discharge occurs and functions as an ion source, and furthermore, the substrate chamber is The pressure at which the mean free path of ions is greater than or equal to the distance from the ion source to the substrate (~1O-3
(torr or less), it is necessary to use differential pumping, etc., and if the discharge electrode is made large to inject impurities into a large area sample, it may cause non-uniformity and instability of the discharge due to creeping discharge of the electrode, etc. Since the discharge electrode is provided inside the ion source and is directly exposed to ions, there are problems such as contamination of the sample by impurities generated when the electrode is sputtered by ions accelerated by the self-bias of the plasma. (2) The method shown in Figure 3 uses a plasma generated by superimposing a high frequency wave and a static magnetic field in an insulating cylindrical tube as an ion source, and uses an ion doping device that performs doping by implanting ions with a mass separation section. , the discharge can be stably carried out in a relatively large-diameter cylindrical tube, and the pressure during discharge is as low as 1 (I3 to 10-'torr), so doping can be performed with a simple structure without the need for differential pumping, etc. However, for example, if phosphorus is injected into a 3-inch single crystal silicon wafer using an insulating tube with a diameter of 130W11,
Sheet resistance inside the wafer after heat treatment at 00℃ for 30 minutes (
variation σ (Rs) (related to the amount of phosphorus injected)
/Rs (Rs: average value of sheet resistance, cy (Rs): standard deviation of sheet resistance) is about 20%, so it was difficult to uniformly implant impurities into a large area sample. . (3) The method shown in Figure 4, in which a capacitively coupled high-frequency electrode is provided in the substrate chamber and a DC voltage is applied to the high-frequency electrode of a plasma CVD apparatus that causes a chemical vapor phase reaction by high-frequency glow discharge, is based on the method shown in Fig. 4, in which the pressure in the substrate chamber is The pressure at which DC glow discharge occurs and functions as an ion source (1 to O, O1 torr
) D is maintained and the voltage that can be applied is 100 to 1
Due to the low 0.00V (ooov), neutral particles other than the desired ions were deposited on the sample surface, making it difficult to do highly accurate impurity doping with a specified impurity concentration. Due to the instability of the discharge due to coincidence, it is difficult to do very uniform impurity doping or plasma treatment on a large area sample, and furthermore, the discharge electrode is directly exposed to ions inside the ion source. Since the electrodes are provided with a self-biasing structure, there are problems such as contamination of the sample by impurities generated when the electrodes are sputtered by ions accelerated by the self-bias of the plasma.

問題点を解決するための手段 以上の問題点を解決するために本発明に係るプラズマ処
理装置は、ガス導入管に接続された絶縁性筒状管と、前
記絶縁性筒状管の外部に設けられた高周波電極及び磁場
発生源から構成される放電室、ガス排出管と接続された
接地電位の高真空室とその内部に設けられた基板台及び
加熱源から構成される基板室、前記基板室及び前記放電
室と絶縁を保ち前記基板台と前記放電室との間に第1の
直流電源と接続して設けられた第1の導電性バイアス部
、及び第1の直流電源又は第2の直流電源と接続して前
記第1の導電性バイアス部と対向する位置に放電により
生じるプラズマを挟んで設けられた第2の導電性バイア
ス部を備え、前記第1の導電性バイアス部の開口部に導
電性多孔板或は導電性網を設けてなるものである。すな
わち本発明は、イオン源を絶縁性筒状管と、前記絶縁性
筒状管の外部に設けられた高周波電極及び磁場発生源を
配したものを用い、前記絶縁性の真空槽の内部に荷電粒
子を引き出して所望のエネルギーに加速する第1の導電
性バイアス部及び荷電粒子を第1の導電性バイアス部側
に押し出す第2の導電性バイアス部を第1の導電性バイ
アス部と対向する位置に放電により生じるプラズマを挟
んで設け、さらに前記第1の導電性バイアス部の開口部
に導電性多孔板或は導電性網を設けるというものである
Means for Solving the Problems In order to solve the above problems, the plasma processing apparatus according to the present invention includes an insulating cylindrical tube connected to a gas introduction tube, and an insulating cylindrical tube provided outside the insulating cylindrical tube. a discharge chamber consisting of a high-frequency electrode and a magnetic field generation source; a substrate chamber consisting of a high vacuum chamber at ground potential connected to a gas exhaust pipe; a substrate table and a heating source provided therein; and the substrate chamber. and a first conductive bias section that is insulated from the discharge chamber and connected to a first DC power supply between the substrate stand and the discharge chamber, and a first DC power supply or a second DC power supply. A second conductive bias section connected to a power source and provided at a position facing the first conductive bias section sandwiching plasma generated by discharge; It is provided with a conductive porous plate or a conductive net. That is, the present invention uses an ion source that includes an insulating cylindrical tube, a high-frequency electrode and a magnetic field generation source provided outside the insulating cylindrical tube, and charges the inside of the insulating vacuum chamber. A first conductive bias section that pulls out particles and accelerates them to a desired energy and a second conductive bias section that pushes charged particles toward the first conductive bias section are positioned opposite to the first conductive bias section. A conductive porous plate or a conductive net is provided in the opening of the first conductive bias section.

作用 絶縁性の真空槽の外部に高周波電極を設けることことに
より、プラズマのセルフバイアスにより加速されたイオ
ンが高周波電極をスパッタリングすることが無くなるた
め高周波電極がスパッタリングされて発生する金属等の
不純物イオンによる汚染が防げ、さらに磁場発生源を配
することで放電室内に印加された磁場による電子の閉じ
込め及び旋回運動の励起を行い、高周波によって供給さ
れるエネルギーを有効に用いて例えば10−3〜10−
’torrの気体圧力でも安定かつ一様に放電させる。
By providing a high-frequency electrode outside the insulating vacuum chamber, ions accelerated by the self-bias of the plasma will not sputter the high-frequency electrode. Contamination can be prevented, and by arranging a magnetic field source, the magnetic field applied in the discharge chamber can confine electrons and excite swirling motion, effectively using the energy supplied by high frequency to generate, for example, 10-3 to 10-
Stable and uniform discharge even at a gas pressure of 'torr.

この10−3〜10−’torrの気体圧力下でイオン
の平均自由工程はイオン種によって異なるが。
The mean free path of ions under this gas pressure of 10-3 to 10-'torr varies depending on the ion species.

放電室から基板台までの距i1i<約Local)と同
程度あるいはそれ以上となるために放電室に配した第1
の導電性バイアス部及び第2の導電性バイアス部という
簡素な構造で荷電粒子の押し出し及び加速を行い、基板
台上の半導体等の試料まで荷電粒子を輸送し、前記試料
に照射する。さらに装置内の圧力が10−3〜10”’
torr以下であること及び放電用の高周波電極と加速
用の導電性バイアス部電極を分離していることから、圧
力が高いことや電圧が高いことによる沿面放電やなだれ
放電等の異常な放電を起こすことなく、かつ放it極と
加速電極の一致による放電の不安定さを引き起こすこと
なく1keV以上に荷電粒子を加速する。
In order to make the distance from the discharge chamber to the substrate stand equal to or greater than the distance i1i<approximately Local), the first
A simple structure consisting of a conductive bias section and a second conductive bias section pushes out and accelerates charged particles, transports the charged particles to a sample such as a semiconductor on a substrate stage, and irradiates the sample. Furthermore, the pressure inside the device is 10-3 to 10"'
Torr or less, and because the high-frequency electrode for discharge and the conductive bias electrode for acceleration are separated, abnormal discharge such as creeping discharge or avalanche discharge occurs due to high pressure or voltage. To accelerate charged particles to 1 keV or more without causing instability of discharge due to coincidence of the emitting electrode and the accelerating electrode.

また基板室の圧力が10−3〜10−’torr以下に
保たれていることから所望のイオン以外の中性粒子等の
試料表面への堆積が起こらず、不純物の濃度を規定した
高精度の不純物のドーピングを行う。
In addition, since the pressure in the substrate chamber is kept below 10-3 to 10-'torr, neutral particles other than desired ions are not deposited on the sample surface, and high-precision Perform impurity doping.

また、第1の導電性バイアス部の開口部に導電性多孔板
或は導電性網を設けることにより、開口部の全面に渡っ
て均一に電圧が印加され、極めて一様に荷電粒子ビーム
を基板台に対して照射し、その結果大面禎に渡る均一な
不純物のドーピングを行う。
In addition, by providing a conductive porous plate or a conductive mesh in the opening of the first conductive bias section, a voltage can be applied uniformly over the entire surface of the opening, and the charged particle beam can be applied extremely uniformly to the substrate. The base is irradiated, resulting in uniform impurity doping over a large area.

実施例 以下図面に基づいて本発明についてさらに詳しく説明す
る。
EXAMPLES The present invention will be explained in more detail below based on the drawings.

第1図は本発明に係るプラズマ処理装置の第1実施例の
概略構成図を示したものである。放電室Cの絶縁性筒状
管31はセラミックスや石英ガラス等を用い、容量結合
型高周波グロー放電用電極32には導電性の良い鋼・ニ
ッケル等の金属を用い、絶縁性筒状管31の外部に設け
る。容量結合型高周波グロー放電用電極32の一方はマ
ツチングボックス33を介して高周波発振器34と接続
し、他方を接地して絶縁性筒状管31内に高周波電力の
供給を行う。さらに容量結合型高周波グロー放電用電極
32の外部に配した電磁石35により印加される磁場に
よって電子の旋回運動(サイクロトロン運動)の励起と
閉じ込めを行うことにより、比較的低い圧力(10−3
〜10−’torr)で高周波電力を有効に放電のため
に用いることによって絶縁性筒状管31内にプラズマを
安定に発生させる。この磁場の強度は絶縁性筒状管31
内に於て50〜200ガウス程度で良(、磁場発生源と
して永久磁石等を用いても良い。導電性のステンレス・
アルミニウム・鋼等で作られ、開口部36を有する第1
の導電性バイアス部37−aは、セラミックス・石英ガ
ラス塩化ビニル等で作られた絶縁フランジ38を介して
放電室Cと基板室りの間に設ける。この第1の導電性バ
イアス部37−aの開口部36には導電性のステンレス
・アルミニウム・銅等で作られた導電性網39をもうけ
る。放電室Cへの材料ガスの導入はガス導入管40を経
て、絶縁性筒状管31内の第1の導電性バイアス部37
−aと対向した位置に設けられた第2の導電性バイアス
部37−bのガス導入口41より行う。前記第1の導電
性バイアス部37−a・導電性網39及び第2の導電性
バイアス部37−bは各々直流高電圧電源42−a及び
42−bに電気的に接続され、所望の電圧を印加するこ
とにより、放電室C内の荷電粒子を基板室りへ押し出し
加速を行う。基板室りはガス排出管43に接続され、1
0−3〜10−’torrの圧力に保たれる。基板室り
内には導電性のステンレス・アルミニウム・銅等で作ら
れた基板台44を設け、基板台44上に半導体基板等の
試料45を置(。試料45はヒーター46により加熱を
行い、不純物のドーピング或はプラズマ処理の効率を上
げる。絶縁性筒状管31内に一様に生じるプラズマより
引き出され、開口部36に関して一様で第1の導電性バ
イアス部37−aと基板台44との電位差に応じた運動
エネルギーを得た荷電粒子ビーム47は、基板台43上
の半導体基板等の試料45に照射し、試料45に対して
極めて一様な不純物のドーピング或はプラズマ処理等を
行う。本実施例において、放電室Cとして口径130n
wmの絶縁管を用い、3インチの単結晶シリコンウェハ
ーにリンを注入した場合、900℃・30分の熱処理後
のウェハー内のシート抵抗(注入されたリンの量に関係
する)のばらつきσ(Rs)/Rs (Rs :シート
抵抗の平均値、σ(Rs):シート抵抗の標準偏差)が
最大で7,7%であり、一様な不純物のドーピングが可
能であることが確かめられた。
FIG. 1 shows a schematic diagram of a first embodiment of a plasma processing apparatus according to the present invention. The insulating cylindrical tube 31 of the discharge chamber C is made of ceramics, quartz glass, etc., and the capacitively coupled high-frequency glow discharge electrode 32 is made of a metal with good conductivity such as steel or nickel. Provided outside. One end of the capacitively coupled high frequency glow discharge electrode 32 is connected to a high frequency oscillator 34 via a matching box 33, and the other end is grounded to supply high frequency power into the insulating cylindrical tube 31. Furthermore, by exciting and confining the swirling motion (cyclotron motion) of electrons by the magnetic field applied by the electromagnet 35 disposed outside the capacitively coupled high-frequency glow discharge electrode 32, a relatively low pressure (10-3
Plasma is stably generated within the insulating cylindrical tube 31 by effectively using high-frequency power for discharge at a pressure of 10 torr. The strength of this magnetic field is the insulating cylindrical tube 31
A magnetic field of about 50 to 200 Gauss is sufficient (permanent magnets, etc. may be used as the magnetic field source. Conductive stainless steel
The first part is made of aluminum, steel, etc. and has an opening 36.
The conductive bias portion 37-a is provided between the discharge chamber C and the substrate chamber via an insulating flange 38 made of ceramics, quartz glass, vinyl chloride, or the like. A conductive net 39 made of conductive stainless steel, aluminum, copper, etc. is provided in the opening 36 of the first conductive bias section 37-a. The material gas is introduced into the discharge chamber C through the gas introduction pipe 40 and into the first conductive bias section 37 in the insulating cylindrical pipe 31.
This is carried out through the gas inlet 41 of the second conductive bias section 37-b provided at a position opposite to -a. The first conductive bias section 37-a, the conductive network 39, and the second conductive bias section 37-b are electrically connected to DC high voltage power supplies 42-a and 42-b, respectively, and are supplied with a desired voltage. By applying , the charged particles in the discharge chamber C are pushed out to the substrate chamber and accelerated. The substrate chamber is connected to a gas exhaust pipe 43,
A pressure of 0-3 to 10-'torr is maintained. A substrate stand 44 made of conductive stainless steel, aluminum, copper, etc. is provided in the substrate chamber, and a sample 45 such as a semiconductor substrate is placed on the substrate stand 44 (the sample 45 is heated by a heater 46, Improving the efficiency of impurity doping or plasma processing.The plasma is drawn from the plasma uniformly generated within the insulating cylindrical tube 31, and the first conductive bias portion 37-a and the substrate pedestal 44 are uniformly connected to the opening 36. The charged particle beam 47, which has obtained kinetic energy according to the potential difference between In this example, the discharge chamber C has a diameter of 130 nm.
When phosphorus is implanted into a 3-inch single crystal silicon wafer using a wm insulating tube, the variation in sheet resistance (related to the amount of phosphorus implanted) within the wafer after heat treatment at 900°C for 30 minutes is σ( Rs)/Rs (Rs: average value of sheet resistance, σ(Rs): standard deviation of sheet resistance) was 7.7% at maximum, and it was confirmed that uniform impurity doping was possible.

発明の効果 本発明は、放電室として絶縁性筒状管を用い。Effect of the invention The present invention uses an insulating cylindrical tube as the discharge chamber.

高周波と静磁場を重畳させることにより、10−3〜1
0−’torrと比較的低い圧力下で一様なプラズマを
安定に発生させることが可能となる。また第1の導電性
バイアス部の開口部に導電性多孔板或は導電性網を設け
ることにより開口部の全面に渡って均一に電圧が印加さ
れ、一様なプラズマから極めて一様な荷電粒子ビームを
半導体基板等の試料に対して照射することが可能となる
。これにより大面積の試料に極めて一様な不純物のドー
ビング或はプラズマ処理等を行うことが可能となる。さ
らに放電室の外普狽ノ高周波電極を設けることによりイ
オンシースにより加速されたイオンが高周波電極をスパ
ッタリングすることが無くなるため高周波電極がスパッ
タリングされて発生する金属等の不純物イオンによる汚
染が無くなり、極めて高純度の不純物のドーピング或は
プラズマ処理等を行うことが可能となる。所望のイオン
以外の中性粒子等の試料表面への堆積が起こらず、不純
物の濃度を規定した高精度の大面積に渡る均一な不純物
のドー・ピング或はプラズマ処理を行うことが可能とな
る。以上の効果は第1の導電性バイアス部の開口部に設
けられた導電性多孔板或は導電性網に隔壁或は表面被覆
を設けること、第1の導電性バイアス部の開口部に設け
られた導電性多孔板或は導電性網を基板台と平行を保っ
て回転或は移動させること、基板台を第1の導電性バイ
アス部の開口部に設けられた導電性多孔板或は導電性網
と平行を保って回転或は移動させること、ガス導入管を
基板室に接続すること、ガス排出管を放電室に接続する
こと、第1の導電性バイアス部及び第1の導電性バイア
ス部の開口部に設けられた導電性多孔板或は導電性網及
び前記第2の導電性バイアス部の放電により生じる荷電
粒子にさらされる側に隔壁或は表面被覆を設けること、
基板室をゲートバルブを介して第2の真空槽或は第2の
プラズマ処理装置と接続し、基板台を基板室と第2の真
空槽或は第2のプラズマ処理装置間を搬送させることに
よっても同様に得られる。本発明によるプラズマ処理装
置は、例えば大口径の単結晶シリコン基板上或は絶縁基
板上等に作成される半導体素子製造における高純度の不
純物のドーピング或はプラズマ処理等を簡素な構造で一
括して行うことが可能となるという点で極めて有用性の
高いものである。
By superimposing high frequency and static magnetic field, 10-3 to 1
It becomes possible to stably generate uniform plasma under a relatively low pressure of 0-'torr. In addition, by providing a conductive porous plate or a conductive net at the opening of the first conductive bias section, a voltage can be uniformly applied over the entire surface of the opening, and extremely uniform charged particles can be generated from uniform plasma. It becomes possible to irradiate the beam onto a sample such as a semiconductor substrate. This makes it possible to extremely uniformly dope impurities or perform plasma treatment on a large-area sample. Furthermore, by providing a general high-frequency electrode outside the discharge chamber, ions accelerated by the ion sheath will no longer sputter the high-frequency electrode, which eliminates contamination by impurity ions such as metals generated when the high-frequency electrode is sputtered. It becomes possible to perform high-purity impurity doping or plasma treatment. Neutral particles other than desired ions are not deposited on the sample surface, making it possible to perform uniform impurity doping or plasma treatment over a large area with high precision with a defined impurity concentration. . The above effects can be achieved by providing a partition wall or a surface coating on the conductive porous plate or conductive network provided in the opening of the first conductive bias section, and Rotating or moving the conductive porous plate or conductive net while keeping it parallel to the substrate stand; rotating or moving the net parallel to the net; connecting the gas introduction pipe to the substrate chamber; connecting the gas exhaust pipe to the discharge chamber; a first conductive bias section; and a first conductive bias section. providing a partition wall or a surface coating on the side exposed to the charged particles generated by the discharge of the conductive porous plate or conductive net provided in the opening of the second conductive bias section;
By connecting the substrate chamber to a second vacuum chamber or second plasma processing apparatus via a gate valve, and transporting the substrate table between the substrate chamber and the second vacuum chamber or second plasma processing apparatus. is obtained similarly. The plasma processing apparatus according to the present invention has a simple structure and can perform high-purity impurity doping or plasma processing in the production of semiconductor devices, such as those created on large-diameter single-crystal silicon substrates or insulating substrates. This is extremely useful in that it allows for

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るプラズマ処理装置の第1実施例の
概略構成図、第2図は従来の技術のうちイオン源として
直流グロー放電を用い、質量分離部を有さすイオン加速
部を経てイオンを半導体基板等に注入する簡易型イオン
注入装置の概略構成図、第3図は従来の技術のうちイオ
ン源として絶縁性筒状管内に高周波と静磁場を重畳させ
て発生するプラズマを用い、質量分離部を有さすイオン
を注入、ドーピングを行うイオンドープ装置の概略構成
図、第4図は基板室内に容量結合型高周波電極をもうけ
て高周波グロー放電による化学的気相反応を起こすプラ
ズマCVD装置の高周波電極に直流電圧を印加させる方
法の概略構成図である。 C・・・放電室、D・・・基板室、31・・・絶縁性筒
状管、32・・・容量結合型平行平板高周波グロー放電
用電極、33・・・マツチングボックス、34・・・高
周波発振器、35・・・電磁石、36・・・開口部、3
7−a・・・第1の導電性バイアス部、37−b・・・
第2の導電性バイアス部、38・・・絶縁フランジ、3
9・・・導電性網、40・・・ガス導入管、41・・・
ガス導入口、42−a・・・直流高電圧電源、42−b
・・・直流高電圧電源、43・・・ガス排出管、44・
・・試料、45・・・ヒーター、46・・・荷電粒子ビ
ーム。 代理人の氏名 弁理士 中尾敏男 ほか1名第1図 第2図 第3図 WJ4図
FIG. 1 is a schematic configuration diagram of a first embodiment of a plasma processing apparatus according to the present invention, and FIG. 2 shows a conventional technique in which a direct current glow discharge is used as an ion source, and an ion acceleration section having a mass separation section is used. Figure 3 is a schematic configuration diagram of a simple ion implantation device that implants ions into semiconductor substrates, etc. Among the conventional techniques, a plasma generated by superimposing a high frequency wave and a static magnetic field in an insulating cylindrical tube is used as an ion source. A schematic configuration diagram of an ion doping device that implants and dopes ions with a mass separation section. Figure 4 is a plasma CVD device that has a capacitively coupled high-frequency electrode in the substrate chamber and causes a chemical vapor phase reaction by high-frequency glow discharge. FIG. 2 is a schematic configuration diagram of a method for applying a DC voltage to a high frequency electrode of FIG. C...Discharge chamber, D...Substrate chamber, 31...Insulating cylindrical tube, 32...Capacitively coupled parallel plate high frequency glow discharge electrode, 33...Matching box, 34...・High frequency oscillator, 35... Electromagnet, 36... Opening, 3
7-a...first conductive bias section, 37-b...
Second conductive bias portion, 38... Insulating flange, 3
9... Conductive network, 40... Gas introduction pipe, 41...
Gas inlet, 42-a...DC high voltage power supply, 42-b
...DC high voltage power supply, 43...Gas exhaust pipe, 44.
...Sample, 45...Heater, 46...Charged particle beam. Name of agent: Patent attorney Toshio Nakao and one other person Figure 1 Figure 2 Figure 3 Figure WJ4

Claims (8)

【特許請求の範囲】[Claims] (1)ガス導入管に接続された絶縁性筒状管と、前記絶
縁性筒状管の外部に設けられた高周波電極及び磁場発生
源から構成される放電室、ガス排出管と接続された接地
電位の高真空室とその内部に設けられた基板台及び加熱
源から構成される基板室、前記基板室及び前記放電室と
絶縁を保ち前記基板台と前記放電室との間に第1の直流
電源と接続して設けられた第1の導電性バイアス部、及
び第1の直流電源又は第2の直流電源と接続して前記第
1の導電性バイアス部と対向する位置に放電により生じ
るプラズマを挟んで設けられた第2の導電性バイアス部
を備え、前記第1の導電性バイアス部の開口部に導電性
多孔板或は導電性網を設けてなることを特徴とするプラ
ズマ処理装置。
(1) A discharge chamber consisting of an insulating cylindrical pipe connected to the gas introduction pipe, a high frequency electrode and a magnetic field generation source provided outside the insulating cylindrical pipe, and a ground connected to the gas exhaust pipe. A substrate chamber consisting of a high-potential vacuum chamber, a substrate pedestal and a heating source provided therein, and a first DC current between the substrate pedestal and the discharge chamber while maintaining insulation from the substrate chamber and the discharge chamber. A first conductive bias section connected to a power source, and plasma generated by discharge at a position facing the first conductive bias section connected to a first DC power source or a second DC power source. 1. A plasma processing apparatus comprising a second conductive bias section provided on both sides, and a conductive porous plate or a conductive net provided in an opening of the first conductive bias section.
(2)第1の導電性バイアス部の開口部に設けられた前
記導電性多孔板或は導電性網に、隔壁或は表面被覆を設
けることを特徴とする特許請求の範囲第1項記載のプラ
ズマ処理装置。
(2) The method according to claim 1, wherein a partition wall or a surface coating is provided on the conductive porous plate or the conductive network provided in the opening of the first conductive bias section. Plasma processing equipment.
(3)第1の導電性バイアス部の開口部に設けられた前
記導電性多孔板或は導電性網を、基板台と平行を保って
回転或は移動させることを特徴とする特許請求の範囲第
1項又は第2項記載のプラズマ処理装置
(3) The scope of the present invention is characterized in that the conductive porous plate or the conductive net provided in the opening of the first conductive bias section is rotated or moved while keeping it parallel to the substrate table. Plasma processing apparatus according to item 1 or 2
(4)基板台を第1の導電性バイアス部の開口部に設け
られた前記導電性多孔板或は導電性網と平行を保って回
転或は移動させることを特徴とする特許請求の範囲第1
項又は第2項又は第3項記載のプラズマ処理装置。
(4) The substrate table is rotated or moved while being parallel to the conductive porous plate or the conductive net provided in the opening of the first conductive bias section. 1
The plasma processing apparatus according to item 1 or 2 or 3.
(5)ガス導入管を基板室に接続することを特徴とする
特許請求の範囲第1項又は第2項又は第3項又は第4項
記載のプラズマ処理装置。
(5) The plasma processing apparatus according to claim 1, 2, 3, or 4, characterized in that the gas introduction pipe is connected to the substrate chamber.
(6)ガス排出管を放電室に接続することを特徴とする
特許請求の範囲第1項又は第2項又は第3項又は第4項
又は第5項記載のプラズマ処理装置。
(6) The plasma processing apparatus according to claim 1, 2, 3, 4, or 5, characterized in that a gas exhaust pipe is connected to the discharge chamber.
(7)第1の導電性バイアス部及び前記第1の導電性バ
イアス部の開口部に設けられた導電性多孔板或は導電性
網及び第2の導電性バイアス部の放電により生じる荷電
粒子にさらされる側に、隔壁或は表面被覆を設けること
を特徴とする特許請求の範囲第1項又は第2項又は第3
項又は第4項又は第5項又は第6項記載のプラズマ処理
装置。
(7) Charged particles generated by discharge of the first conductive bias section, the conductive porous plate or the conductive net provided in the opening of the first conductive bias section, and the second conductive bias section Claim 1, 2 or 3, characterized in that a partition wall or surface coating is provided on the exposed side.
The plasma processing apparatus according to item 1 or 4 or 5 or 6.
(8)基板室をゲートバルブを介して第2の真空槽或は
第2のプラズマ処理装置と接続し、基板台を前記基板室
と第2の真空槽或は第2のプラズマ処理装置間を搬送さ
せることを特徴とする特許請求の範囲第1項又は第2項
又は第3項又は第4項又は第5項又は第6項又は第7項
記載のプラズマ処理装置。
(8) Connect the substrate chamber to a second vacuum chamber or second plasma processing apparatus via a gate valve, and connect the substrate table between the substrate chamber and the second vacuum chamber or second plasma processing apparatus. The plasma processing apparatus according to claim 1, 2, 3, 4, 5, 6, or 7, characterized in that the plasma processing apparatus is transported.
JP61304186A 1986-09-24 1986-12-19 Plasma processing device Expired - Lifetime JPH0798145B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61304186A JPH0798145B2 (en) 1986-12-19 1986-12-19 Plasma processing device
US07/100,148 US4859908A (en) 1986-09-24 1987-09-23 Plasma processing apparatus for large area ion irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61304186A JPH0798145B2 (en) 1986-12-19 1986-12-19 Plasma processing device

Publications (2)

Publication Number Publication Date
JPS63156535A true JPS63156535A (en) 1988-06-29
JPH0798145B2 JPH0798145B2 (en) 1995-10-25

Family

ID=17930067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61304186A Expired - Lifetime JPH0798145B2 (en) 1986-09-24 1986-12-19 Plasma processing device

Country Status (1)

Country Link
JP (1) JPH0798145B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1086307C (en) * 1997-11-28 2002-06-19 复旦大学 Technology for treating low temperature plasma waste gas
US6506662B2 (en) 1995-09-25 2003-01-14 Atsushi Ogura Method for forming an SOI substrate by use of a plasma ion irradiation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141729A (en) * 1979-04-21 1980-11-05 Nippon Telegr & Teleph Corp <Ntt> Ion-shower device
JPS57177975A (en) * 1981-04-24 1982-11-01 Nippon Telegr & Teleph Corp <Ntt> Ion shower device
JPS58125820A (en) * 1982-01-22 1983-07-27 Toshiba Corp Electronic cyclotron resonance type discharger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141729A (en) * 1979-04-21 1980-11-05 Nippon Telegr & Teleph Corp <Ntt> Ion-shower device
JPS57177975A (en) * 1981-04-24 1982-11-01 Nippon Telegr & Teleph Corp <Ntt> Ion shower device
JPS58125820A (en) * 1982-01-22 1983-07-27 Toshiba Corp Electronic cyclotron resonance type discharger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6506662B2 (en) 1995-09-25 2003-01-14 Atsushi Ogura Method for forming an SOI substrate by use of a plasma ion irradiation
CN1086307C (en) * 1997-11-28 2002-06-19 复旦大学 Technology for treating low temperature plasma waste gas

Also Published As

Publication number Publication date
JPH0798145B2 (en) 1995-10-25

Similar Documents

Publication Publication Date Title
JP4544447B2 (en) Plasma doping method
JPS63174321A (en) Apparatus and method for ion etching and chemical vapor phase deposition
WO1993018201A1 (en) Plasma implantation process and equipment
JP2000068227A (en) Method for processing surface and device thereof
JP2689419B2 (en) Ion doping equipment
JPS63157868A (en) Plasma treatment device
JPH0521986B2 (en)
JPH07123121B2 (en) Plasma processing device
JPS63156535A (en) Plasma treating device
JP2956412B2 (en) How to clean the ion source
JPH01207930A (en) Surface modification
JP2003077904A (en) Apparatus and method for plasma processing
JP2590502B2 (en) Impurity doping method
JPS63157416A (en) Plasma treatment apparatus
JPS63311727A (en) Plasma processor
JPS63234519A (en) Plasma processor
JP2849831B2 (en) Plasma CVD equipment
JPH0824115B2 (en) Plasma processing device
JPH03279294A (en) Growth of epitaxial layer
JPS6267822A (en) Plasma processor
JPH01234397A (en) Method and apparatus for producing diamond-like thin film
JPH01243359A (en) Plasma doping
JPS6417869A (en) Microwave plasma chemical vapor deposition device
JP2003077903A (en) Apparatus and method for plasma processing
KR100190311B1 (en) Apparatus and method of manufacturing semiconductor element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term