JPH01243359A - Plasma doping - Google Patents

Plasma doping

Info

Publication number
JPH01243359A
JPH01243359A JP7246888A JP7246888A JPH01243359A JP H01243359 A JPH01243359 A JP H01243359A JP 7246888 A JP7246888 A JP 7246888A JP 7246888 A JP7246888 A JP 7246888A JP H01243359 A JPH01243359 A JP H01243359A
Authority
JP
Japan
Prior art keywords
plasma
substrate
electric field
doping method
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7246888A
Other languages
Japanese (ja)
Inventor
Masatoshi Kitagawa
雅俊 北川
Takashi Hirao
孝 平尾
Haruhide Fuse
玄秀 布施
Naoto Matsuo
直人 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7246888A priority Critical patent/JPH01243359A/en
Publication of JPH01243359A publication Critical patent/JPH01243359A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To apply doping to groove side walls or the like by utilizing the electron cyclotron resonance absorption of microwaves to perform the discharge decomposition via the plasma decomposition and applying the pulse magnetic field to ion particles generated by decomposition to provide kinetic energy on a substrate to be doped or near it. CONSTITUTION:A vacuum chamber 11 is kept vacuum with an exhaust hole 12, microwaves from a microwave oscillator 14 are fed to a plasma generation chamber 15 through a wave guide 13, at the same time the magnetic field from an electromagnet 16 is applied. Under this condition, the source gas such as B2H6 is introduced through a gas guide port 17, the pulse electric field from a pulse power source 18 is applied to a substrate holder 19. Plasma is radiated to an Si substrate 100 supported by the holder 19 through a plasma window 21 to implant B ions, kinetic energy is applied to B ions by the pulse current, the doping controllability is improved, doping is effectively applied to finely machined portions.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、主に半導体、絶縁体、金属およびそれらの薄
膜へ不純物の注入を行うためのプラズマドーピング方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates primarily to a plasma doping method for implanting impurities into semiconductors, insulators, metals, and thin films thereof.

従来の技術 従来から、不純物の固体への拡散法として打ち込むべき
不純物元素をイオン化し100keVという高電界によ
り加速して基板に打ち込むいわゆるイオンインプランテ
ーションが盛んに行われている。しかしながら近年の集
積回路の高密度化のため、非常に浅い接合を形成する必
要が生じ、不純物を含むガスをプラズマ分解し10ke
V以下の低電界で加速し、浅い接合を得ようとする試み
が盛んである。その中でプラズマの発生にマイクロ波電
子サイクロトロン共鳴吸収(ECR)を利用したプラズ
マイオンドープ装置は、第4図に示すような構成を持つ
。31が真空チャンバーで排気孔32より真空に排気さ
れる。導波管33を通してマイクロ波発振器34からマ
イクロ波がプラズマ発生室35へ導入される。電磁石3
6によってプラズマ発生室35に磁界が印加される。3
7はガス導入口で、B2H6、PH3、A s H3等
の不純物ガスやH2、He、Ar等のキャリアガスが導
入される。磁界の強さを電子サイクロトロン共鳴条件を
満たすように設定することにより、解離度の高いプラズ
マが得られる。発生したプラズマ中のイオンは基板に3
8の直流電源によって印加された直流電界によってプラ
ズマ引出し窓39を通過して基板ホルダー40に達しホ
ルダー40上の基板100へ打ち込まれる。
BACKGROUND OF THE INVENTION Conventionally, so-called ion implantation, in which an impurity element to be implanted is ionized and accelerated by a high electric field of 100 keV and implanted into a substrate, has been widely used as a method for diffusing impurities into a solid. However, due to the recent increase in the density of integrated circuits, it has become necessary to form extremely shallow junctions, and the gas containing impurities must be plasma decomposed.
There are many attempts to achieve shallow junctions by accelerating with a low electric field below V. Among these, a plasma ion doping device that uses microwave electron cyclotron resonance absorption (ECR) to generate plasma has a configuration as shown in FIG. A vacuum chamber 31 is evacuated to a vacuum through an exhaust hole 32. Microwaves are introduced from a microwave oscillator 34 into a plasma generation chamber 35 through a waveguide 33 . Electromagnet 3
6 applies a magnetic field to the plasma generation chamber 35. 3
Reference numeral 7 denotes a gas introduction port through which impurity gases such as B2H6, PH3, and As H3 and carrier gases such as H2, He, and Ar are introduced. Plasma with a high degree of dissociation can be obtained by setting the strength of the magnetic field to satisfy the electron cyclotron resonance conditions. The ions in the generated plasma hit the substrate 3
The DC electric field applied by the DC power source 8 passes through the plasma extraction window 39, reaches the substrate holder 40, and is driven into the substrate 100 on the holder 40.

発明が解決しようとする課題 しかしながら、この様な従来のプラズマドーピング技術
では、低電圧でイオンを基板に引き込むため基板表面に
ドーパント元素の絶縁性堆積物を生じてしまい基板にイ
オンが到達しなくなり不純物ドーピングの制御性に問題
があった。また最近の微細化技術における基板上に形成
された深い溝の側壁へ浅い接合を形成する要求に対して
は、イオンの加速方向が基板に対して垂直方向のみであ
るので溝の底部にしかドーピングできないという問題点
もあった。さらにはマイクロ波のモードに起因する電界
分布によってプラズマの分布が大きいため、結果的にド
ーピング処理の分布として現れるという問題点があった
。また処理面積をかせぐためプラズマ室からかなり距離
を離さなければならないので、高解離のプラズマが粒子
どうしの衝突によって減衰してしまうため、処理の効率
が悪くなってしまうという問題点もありこの様なプラズ
マドープ装置やこのようなドーピング方法の実用化を妨
げていた。
Problems to be Solved by the Invention However, in such conventional plasma doping technology, since ions are drawn into the substrate at low voltage, insulating deposits of dopant elements are formed on the substrate surface, preventing ions from reaching the substrate and causing impurities. There was a problem with doping controllability. In addition, in response to the demand for forming shallow junctions on the sidewalls of deep grooves formed on substrates in recent miniaturization technology, doping is applied only to the bottom of the grooves because the ion acceleration direction is only perpendicular to the substrate. There was also the problem that it could not be done. Furthermore, since the plasma distribution is large due to the electric field distribution caused by the microwave mode, there is a problem that it appears as a doping treatment distribution. In addition, in order to increase the processing area, the plasma chamber must be placed at a considerable distance, so the highly dissociated plasma is attenuated by collisions between particles, resulting in poor processing efficiency. This has hindered the practical application of plasma doping equipment and such doping methods.

本発明は、この様な問題点を解決することを目的として
いる。
The present invention aims to solve such problems.

課題を解決するための手段 上記問題点を解決するために、本発明では処理されるべ
き基板または基板近傍にプラズマ中に存在する処理に寄
与するイオン粒子に運動エネルギーを与えることが可能
な周波数を有するパルス電界を印加することによって上
記問題点が解決できることを見いだした。本発明は上記
手段により高性能なプラズマドープ装置およびドーピン
グ方法を提供するものである。
Means for Solving the Problems In order to solve the above problems, the present invention uses a frequency capable of imparting kinetic energy to the ion particles contributing to the processing that are present in the substrate to be processed or in the plasma near the substrate. It has been found that the above problems can be solved by applying a pulsed electric field having a The present invention provides a high-performance plasma doping apparatus and doping method using the above-mentioned means.

作用 上記した手段を用いることによって生ずる本発明の作用
は次のようなものである。従来の方法では、印加されて
いる磁界の減衰と基板に印加されている直流電場によっ
てのみ引き出されていた、本発明では基板付近において
主にイオンにたいして再び運動エネルギーを4え、生じ
たイオン種を有効に利用し、かつ運動方向を基板に対し
て垂直以外の方向にも与え、このことにより基板表面に
絶縁性堆積物が生じても常にイオンに運動エネルギーを
与えることができ、かつ微纏加工された溝の側壁などに
も有効に不純物ドーピングが可能となるものである。
Effects The effects of the present invention produced by using the above-mentioned means are as follows. In the conventional method, the ions were extracted only by the attenuation of the applied magnetic field and the DC electric field applied to the substrate, but in the present invention, kinetic energy is regenerated mainly for the ions near the substrate, and the generated ion species are extracted. It is used effectively, and the direction of movement is also given to the direction other than perpendicular to the substrate. This makes it possible to always give kinetic energy to the ions even if insulating deposits are formed on the substrate surface, and it is also possible to perform fine processing. This makes it possible to effectively dope the side walls of the grooves.

実施例 実施例として、本発明のプラズマドープ装置を結晶シリ
コン基板100へのホウ素ドーピングに応用した場合の
例について示す。
Embodiment As an embodiment, an example in which the plasma doping apparatus of the present invention is applied to boron doping into a crystalline silicon substrate 100 will be described.

以下図面に基づき、本発明の代表的な実施例を示す。第
1図は本発明のプラズマイオンドープ装置概略図である
。11が真空チャンバー出、排気孔12より真空に排気
される。導波管13を通してマイクロ波発振器14から
マイクロ波がプラズマ発生室15へ導入される。電磁石
16によりプラズマ発生室15に磁界が印加される。1
7はガス導入口でB2H6等のソースガスが導入される
DESCRIPTION OF THE PREFERRED EMBODIMENTS Representative embodiments of the present invention will be shown below based on the drawings. FIG. 1 is a schematic diagram of a plasma ion doping apparatus of the present invention. 11 exits the vacuum chamber and is evacuated to vacuum through the exhaust hole 12. Microwaves are introduced from a microwave oscillator 14 into a plasma generation chamber 15 through a waveguide 13 . A magnetic field is applied to the plasma generation chamber 15 by the electromagnet 16 . 1
Reference numeral 7 denotes a gas inlet port through which a source gas such as B2H6 is introduced.

l8が本発明で付は加えられたパルス電界を加えるため
の電源であり、基板ホルダー19にパルス電界が印加さ
れる。プラズマ発生室の磁界の強さを電子サイクロトロ
ン共鳴条件を満たすように設定することにより、解離度
の高くイオン多く含むプラズマ20が発生する。発生し
たプラズマはプラズマ引出し窓21を通過して基板ホル
ダー19に達しさらに、基板ホルダー近傍にて再び交流
電源18によりプラズマ中の主にイオンと電子に運動エ
ネルギーを与えられて結晶シリコン基板100へ目的の
ホウ素を含むイオンが打ち込まれ不純物ドーピング層が
形成される。この時基板近傍の磁界の強さは電磁石の設
定によって100〜300ガウスとしておくと更に効果
的にイオンに運動エネルギーを与えることができる。パ
ルスの周波数は、主にホウ素を含むイオンと水素イオン
にエネルギーを与えるために50Hz〜500KHzと
している。これらの周波数より低い場合、基板表面に高
抵抗な膜が堆積するとプラズマに電界が印加されなくな
りまた高い周波数の場合ではイオンが追随できなくなる
。このときさらに、基板近傍の磁束密度は数十〜数百ガ
ウスあるため、印加した電界によって高周波マグネトロ
ン放電が生じてしまいマイクロ波電子サイクロトロンに
よるプラズマと高周波プラズマとが重畳された状態にな
ってしまい、本来の高活性のプラズマとは異なってしま
うのである。
Reference numeral 18 denotes a power source for applying a pulsed electric field, which is added in the present invention, and the pulsed electric field is applied to the substrate holder 19. By setting the strength of the magnetic field in the plasma generation chamber to satisfy electron cyclotron resonance conditions, a plasma 20 with a high degree of dissociation and containing many ions is generated. The generated plasma passes through the plasma extraction window 21 and reaches the substrate holder 19. Furthermore, in the vicinity of the substrate holder, the AC power supply 18 again gives kinetic energy to mainly ions and electrons in the plasma and directs them to the crystalline silicon substrate 100. Ions containing boron are implanted to form an impurity doped layer. At this time, if the strength of the magnetic field near the substrate is set to 100 to 300 Gauss by setting the electromagnet, kinetic energy can be given to the ions more effectively. The frequency of the pulse is set at 50 Hz to 500 KHz in order to mainly give energy to ions containing boron and hydrogen ions. If the frequency is lower than these, if a highly resistive film is deposited on the substrate surface, no electric field will be applied to the plasma, and if the frequency is higher, ions will no longer be able to follow it. Furthermore, since the magnetic flux density near the substrate is several tens to hundreds of Gauss, the applied electric field causes high-frequency magnetron discharge, resulting in a state in which the plasma from the microwave electron cyclotron and the high-frequency plasma are superimposed. This is different from the original highly active plasma.

さらに正イオンを基板に引き込む時間を長くするためパ
ルス幅比を変化させた場合について説明する。
Further, a case will be described in which the pulse width ratio is changed in order to lengthen the time for drawing positive ions into the substrate.

装置は共通であり、パルスの負電位の時間を長くすると
、イオンを加速し、基板に打ち込む時間が長くできる。
The equipment is common, and by lengthening the time of the negative potential of the pulse, the time for accelerating the ions and implanting them into the substrate can be lengthened.

しかしこれを長くし過ぎると、基板に高抵抗層が形成さ
れ、帯電してしまい、イオンの加速がなされなくなり、
効率がむしろ悪化してしまう。そのため負電位状態にあ
るパルス幅と正電位時のパルス幅の比を1: 10から
10:1の間に設定するのが好ましく、この間に最適条
件が存在する。
However, if this is made too long, a high resistance layer will be formed on the substrate, which will become charged and ions will not be accelerated.
Efficiency will actually deteriorate. Therefore, it is preferable to set the ratio of the pulse width in the negative potential state to the pulse width in the positive potential state to be between 1:10 and 10:1, and an optimum condition exists between this range.

発明の効果 本発明の効果は次のようなものである。Effect of the invention The effects of the present invention are as follows.

先ず第一に、ドーピング制御性の向上が上げられる。第
2図(a)に基板に印加された例えば20 K Hzの
パルス電圧を一定とし、ドーピング時間を変化させ、B
 2 Hsをプラズマ分解によって結晶シリコヘホウ素
をドーピングした時のシート抵抗の変化を示す。ドーピ
ング時間を印加していくとシート抵抗が減少しているの
が判る。第2図(b)に同じ<B2H6ガスを使用して
シリコンウェハーにドーピングを行ったときのパルス幅
比を変えたときのシート抵抗の変化を示す。同様に負電
圧のパルス幅を長くして行くとシート抵抗が減少して行
くのが判る。またこれらの結果は5インチシリコンウェ
ファ−内で非常に均一であった。 第二の効果として深
い溝の側壁に均一性良くドーピング可能となったことが
上げられる。
First of all, doping controllability is improved. In Fig. 2(a), the pulse voltage of, for example, 20 KHz applied to the substrate is kept constant, the doping time is varied, and B
2 shows the change in sheet resistance when crystalline silicon is doped with boron by plasma decomposition of 2 Hs. It can be seen that the sheet resistance decreases as the doping time increases. FIG. 2(b) shows the change in sheet resistance when the pulse width ratio is changed when silicon wafers are doped using the same B2H6 gas. Similarly, it can be seen that the sheet resistance decreases as the pulse width of the negative voltage increases. These results were also very uniform within a 5 inch silicon wafer. The second effect is that the side walls of deep grooves can be doped with good uniformity.

第三の効果として、paを示す不純物元素とn型を示す
不純物元素同時に打ち込み一回の打ち込みで接合を形成
可能であることである。第3図にその一例として、B 
2 HeとA S H3とを同時にプラズマ分解させ接
合を形成した時の不純物の深さ分布を示す。横軸が深さ
で縦軸が濃度である。ホウ素とヒ素の濃度が0.17z
mのところで逆転しており浅い接合が同時に打ち込まれ
て形成されたことが判る。
The third effect is that a junction can be formed by simultaneously implanting an impurity element exhibiting a pa type and an impurity element exhibiting an n type in a single implantation. Figure 3 shows an example of B
2 shows the depth distribution of impurities when a junction is formed by simultaneous plasma decomposition of 2 He and A S H3. The horizontal axis is depth and the vertical axis is concentration. The concentration of boron and arsenic is 0.17z
It can be seen that the reversal occurs at point m, indicating that shallow joints were implanted and formed at the same time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のプラズマイオンドープ装置概略図、第
2図(a)および(b)はそれぞれ結晶シリコンにドー
ピング時間とパルス幅比を変えてホウ素を注入した時の
シート抵抗の変化を示す図、第3図は本発明によってホ
ウ素とヒ素を同時に注入し浅い接合が実現できたことを
示す不純物元素の深さ分布を示す図、第4図は従来のプ
ラズマイオンドープ装置の概略図である。 11・・・真空チャンバー、12・・・排気孔、13・
・・導波管、14・・・マイクロ波発振器、15・・・
プラズマ発生室、16・・・電磁石、17・・・ガス導
入口、18・・・パルス電源、19・・・基板ホルダー
、20・・・プラズマ、21・・・プラズマ引出し窓。 代理人の氏名 弁理士 中尾敏男 はか1名第2図 ドーヒ゛ソ/jef−間(秒〕 負パルス描/ア〜ス電位幅比 第 3 図 深  ご  C)’m ) 区           錫
Figure 1 is a schematic diagram of the plasma ion doping apparatus of the present invention, and Figures 2 (a) and (b) show changes in sheet resistance when boron is implanted into crystalline silicon by varying the doping time and pulse width ratio, respectively. Figure 3 shows the depth distribution of impurity elements, showing that shallow junctions can be achieved by simultaneously implanting boron and arsenic according to the present invention, and Figure 4 is a schematic diagram of a conventional plasma ion doping device. . 11... Vacuum chamber, 12... Exhaust hole, 13.
...Waveguide, 14...Microwave oscillator, 15...
Plasma generation chamber, 16... Electromagnet, 17... Gas inlet, 18... Pulse power supply, 19... Substrate holder, 20... Plasma, 21... Plasma drawer window. Name of agent Patent attorney Toshio Nakao (1 person) Figure 2 Dohisono/jef- (seconds) Negative pulse plot/earth potential width ratio Figure 3 Depth (C)'m)

Claims (7)

【特許請求の範囲】[Claims] (1)不純物元素を含むガスを放電分解しイオン化した
イオンを電界によって基板へ打ち込むイオンドープ法に
おいて放電分解をマイクロ波、電子サイクロトロン共鳴
吸収を利用したプラズマ分解によって行いドーピング処
理を行う基板またはその近傍に、プラズマ分解によって
生じたイオン粒子に運動エネルギーを与えることが可能
な周波数のパルス電界を印加しその電界によってイオン
を基板へ打ち込むことを特徴とするプラズマドーピング
方法。
(1) In the ion doping method, in which gas containing impurity elements is discharge decomposed and ionized ions are implanted into the substrate using an electric field, the discharge decomposition is performed by plasma decomposition using microwaves and electron cyclotron resonance absorption, and the doping process is performed on or near the substrate. A plasma doping method characterized by applying a pulsed electric field at a frequency capable of imparting kinetic energy to ion particles generated by plasma decomposition, and implanting ions into a substrate by the electric field.
(2)パルス電界の周波数を50Hz〜500KHzと
することを特徴とする特許請求の範囲第1項記載のプラ
ズマドーピング方法。
(2) The plasma doping method according to claim 1, characterized in that the frequency of the pulsed electric field is 50 Hz to 500 KHz.
(3)パルスの波形を矩形波、三角波もしくは鋸波とす
ることを特徴とする特許請求の範囲第1項記載のプラズ
マドーピング方法。
(3) The plasma doping method according to claim 1, wherein the pulse waveform is a rectangular wave, a triangular wave, or a sawtooth wave.
(4)印加する矩形パルス幅の比を1対10から10対
1とすることを特徴とする特許請求の範囲第1項記載の
プラズマドーピング方法。
(4) The plasma doping method according to claim 1, characterized in that the ratio of the applied rectangular pulse widths is from 1:10 to 10:1.
(5)パルス電界を印加する近傍にさらに磁界を重畳す
ることを特徴とする特許請求の範囲第1項記載のプラズ
マドーピング方法。
(5) The plasma doping method according to claim 1, characterized in that a magnetic field is further superimposed in the vicinity of applying the pulsed electric field.
(6)パルス電界にさらに直流電界を重畳させることを
特徴とする特許請求の範囲第1項記載のプラズマドーピ
ング方法。
(6) The plasma doping method according to claim 1, characterized in that a DC electric field is further superimposed on the pulsed electric field.
(7)ドーピングされる元素を含むガスを少なくとも二
種類以上の混合ガスとすることを特徴とする特許請求の
範囲第1項記載のプラズマドーピング方法。
(7) The plasma doping method according to claim 1, wherein the gas containing the element to be doped is a mixed gas of at least two types.
JP7246888A 1988-03-25 1988-03-25 Plasma doping Pending JPH01243359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7246888A JPH01243359A (en) 1988-03-25 1988-03-25 Plasma doping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7246888A JPH01243359A (en) 1988-03-25 1988-03-25 Plasma doping

Publications (1)

Publication Number Publication Date
JPH01243359A true JPH01243359A (en) 1989-09-28

Family

ID=13490172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7246888A Pending JPH01243359A (en) 1988-03-25 1988-03-25 Plasma doping

Country Status (1)

Country Link
JP (1) JPH01243359A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0592129A1 (en) * 1992-10-09 1994-04-13 Sakae Electronics Industrial Co., Ltd. ECR plasma process
EP0930643A2 (en) * 1998-01-20 1999-07-21 Semiconductor Process Laboratory Co., Ltd. Method for formation of a doped region in a semiconductor substrate and apparatus therefor
JP2019073431A (en) * 2017-10-12 2019-05-16 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Method for treating particle surfaces of ceramic powder, and ceramic powder particles obtained from such method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0592129A1 (en) * 1992-10-09 1994-04-13 Sakae Electronics Industrial Co., Ltd. ECR plasma process
US5370779A (en) * 1992-10-09 1994-12-06 Sakae Electronics Industrial Co., Ltd. ECR plasma process
EP0930643A2 (en) * 1998-01-20 1999-07-21 Semiconductor Process Laboratory Co., Ltd. Method for formation of a doped region in a semiconductor substrate and apparatus therefor
EP0930643A3 (en) * 1998-01-20 2000-12-20 Semiconductor Process Laboratory Co., Ltd. Method for formation of a doped region in a semiconductor substrate and apparatus therefor
JP2019073431A (en) * 2017-10-12 2019-05-16 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Method for treating particle surfaces of ceramic powder, and ceramic powder particles obtained from such method

Similar Documents

Publication Publication Date Title
JP3381916B2 (en) Low frequency induction type high frequency plasma reactor
KR930003857B1 (en) Plasma doping method
US6392187B1 (en) Apparatus and method for utilizing a plasma density gradient to produce a flow of particles
JP3119693B2 (en) Semiconductor substrate manufacturing method and apparatus
US20100323113A1 (en) Method to Synthesize Graphene
JP4544447B2 (en) Plasma doping method
EP0510401A1 (en) Processing apparatus using plasma
JPH10121240A (en) Plasma injecting system
JPH0635323B2 (en) Surface treatment method
JPH11283520A (en) Ion source and magnetic filter used for the same
WO1993018201A1 (en) Plasma implantation process and equipment
US6504159B1 (en) SOI plasma source ion implantation
JPS6136589B2 (en)
JP2000068227A (en) Method for processing surface and device thereof
JPH01243359A (en) Plasma doping
JP2002170782A (en) Plasma doping method and device thereof
JP2956412B2 (en) How to clean the ion source
JP2689419B2 (en) Ion doping equipment
JP2661906B2 (en) Plasma processing equipment
JPS63157868A (en) Plasma treatment device
JPH09115850A (en) Method and device for implanting ion
JPS63211628A (en) Plasma treatment device
JP2522217B2 (en) Method for suppressing silicon crystal defects caused by ion implantation
JPS63156535A (en) Plasma treating device
JPS63278223A (en) Plasma treatment equipment