JPS63157868A - Plasma treatment device - Google Patents

Plasma treatment device

Info

Publication number
JPS63157868A
JPS63157868A JP61304185A JP30418586A JPS63157868A JP S63157868 A JPS63157868 A JP S63157868A JP 61304185 A JP61304185 A JP 61304185A JP 30418586 A JP30418586 A JP 30418586A JP S63157868 A JPS63157868 A JP S63157868A
Authority
JP
Japan
Prior art keywords
chamber
substrate
discharge
processing apparatus
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61304185A
Other languages
Japanese (ja)
Other versions
JPH0768618B2 (en
Inventor
Tetsuhisa Yoshida
哲久 吉田
Kentaro Setsune
瀬恒 謙太郎
Takashi Hirao
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61304185A priority Critical patent/JPH0768618B2/en
Priority to US07/100,148 priority patent/US4859908A/en
Publication of JPS63157868A publication Critical patent/JPS63157868A/en
Publication of JPH0768618B2 publication Critical patent/JPH0768618B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To generate plasma uniform in the longitudinal direction of an electrode for discharge under a low pressure so that the stable treatment of a long-sized object is permitted, by using an insulating vacuum vessel having parallel planes confronting each other and superposing a magnetic field on a high frequency. CONSTITUTION:This plasma treatment device is formed of the insulating vacuum vessel 31 which has the parallel planes confronting each other, a discharge chamber C, a high vacuum chamber of a ground potential, a movable substrate base 43 and substrate chamber D which are provided therein, and 1st and 2nd conductive bias parts 37-a, 37-b. Said discharge chamber C is constituted of a high-frequency electrode 32 and magnetic field generating source 35 provided on the outside of the vacuum vessel 31 along the above-mentioned planes confronting each other. The above-mentioned 1st bias part 37-a is insulated from the substrate chamber D and discharge chamber C and is connected to a 1st DC power supply between the substrate base 43 and the discharge chamber C. Said 2nd bias part 37-b is connected to the 1st or 2nd DC power supply.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体工業における半導体素子製造等に用い
るプラズマ処理装置に関するものであリ、特に大面積の
半導体素子や半導体薄膜等への不純物注入、大面積の半
導体薄膜形成やエツチング等に用いるプラズマ処理装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a plasma processing apparatus used for manufacturing semiconductor devices in the semiconductor industry. The present invention relates to a plasma processing apparatus used for forming semiconductor thin films, etching, and the like.

従来の技術 半導体薄膜等に不純物をイオンの形で所望の量及び深さ
に注入してドーピングを行う方法或は薄膜形成或はエツ
チングの方法としては、(1):イオン源として直流グ
ロー放電を用い、質量分離部を有さすイオン加速部を経
てイオンを半導体基板等に注入する簡易型イオン注入装
置[第3図、J。
Prior Art Methods for doping, forming or etching a semiconductor thin film by injecting impurities in the form of ions to a desired depth in the form of ions include (1): using a direct current glow discharge as an ion source; A simple ion implantation device [FIG. 3, J.

C,Muller、 et al、 : Proc、 
European Photovoltaic 5ol
ar Energy Conf、 (プロシーディング
ヨーロピアンフォトポルティック ソーラーエナジーコ
ンファレンス) (Lexemberg) 5ept、
 1977、 p897−909 ]を用いる方法や、
(2):イオン源として絶縁性筒状管内に高周波と静磁
場を重畳させて発生するプラズマを用い、質量分離部を
有さすイオンを注入、ドーピングを行うイオンドープ装
置[第4図] 、(3)、基板室内に容量結合型高周波
電極をもうけて高周波グロー放電による化学的気相反応
を起こすプラズマCVD装置の高周波電極に直流電圧を
印加させる方法[第5図]などがある。
C. Muller, et al.: Proc.
European Photovoltaic 5ol
ar Energy Conf, (Proceeding European Photoportic Solar Energy Conference) (Lexenberg) 5ept,
1977, p897-909],
(2): An ion doping device that performs doping by implanting ions with a mass separation section using plasma generated by superimposing radio frequency and static magnetic fields in an insulating cylindrical tube as an ion source [Figure 4], ( 3) There is a method in which a capacitively coupled high frequency electrode is provided in the substrate chamber and a DC voltage is applied to the high frequency electrode of a plasma CVD apparatus that causes a chemical vapor phase reaction by high frequency glow discharge [FIG. 5].

第3.4.5図において、1は放電室、2は直流グロー
放電用アノード電極、3は放電用直流電源、4は加速用
電極、5は加速用直流電源、6はガス導入管、7は絶縁
体、8はガス排出管、9は基板台、Aは放電室、Bは基
板室、11は絶縁膜筒状管、12は高周波電極、13は
電磁石、14はマツチングボックス、15は高周波発振
器、16−aは第1の導電性バイアス部、16−bは第
2の導電性バイアス部、17−aは第1の直流電源、1
7−bは第2の直流電源、18はガス導入管、19はガ
ス排出管、20は基板台、21は試料、22は真空容器
、23は高周波電極、24はマツチングボックス、25
は高周波発振器、26は直流電源、27はガス導入管、
28はガス排出管、29は試料である。
In Figure 3.4.5, 1 is a discharge chamber, 2 is an anode electrode for DC glow discharge, 3 is a DC power source for discharge, 4 is an electrode for acceleration, 5 is a DC power source for acceleration, 6 is a gas introduction tube, and 7 8 is an insulator, 8 is a gas exhaust pipe, 9 is a substrate stand, A is a discharge chamber, B is a substrate chamber, 11 is an insulating film cylindrical tube, 12 is a high frequency electrode, 13 is an electromagnet, 14 is a matching box, 15 is High frequency oscillator, 16-a is a first conductive bias section, 16-b is a second conductive bias section, 17-a is a first DC power supply, 1
7-b is a second DC power supply, 18 is a gas introduction pipe, 19 is a gas discharge pipe, 20 is a substrate stand, 21 is a sample, 22 is a vacuum container, 23 is a high frequency electrode, 24 is a matching box, 25
is a high frequency oscillator, 26 is a DC power supply, 27 is a gas introduction pipe,
28 is a gas exhaust pipe, and 29 is a sample.

発明が解決しようとする問題点 不純物をイオンの形で半導体薄膜等に注入しドーピング
を行う従来の技術において、(1)のイオン源として直
流グロー放電を用い、質量分離部を有さすイオン加速部
を経てイオンを半導体基板等に注入する第3図の簡易型
イオン注入装置は、直流グロー放電が起こりイオン源と
して機能する圧力〈1〜O,OItorr)にイオン源
の圧力を保ちさらに基板室をイオンの平均自由行程がイ
オン源から基板までの距離以上になる圧力(〜1O−3
torr以下)に保つため差動排気等を用いねばならず
、また大面積の試料への不純物の注入のために放電電極
を大きくすると電極の沿面放電等による放電の不均一性
や不安定性、さらに放電電極がイオン源の内部にイオン
に対し直接さらされて設けていることからプラズマのセ
ルフバイアスにより加速されたイオンによって電極がス
パッタリングされて発生する不純物による試料の汚染等
の問題があった。(2)のイオン源として絶縁性筒状管
内に高周波と静磁場を重畳させて発生するプラズマを用
い、質量分離部を有さすイオンを注入、ドーピングを行
うイオンドープ装置による第4図の方法は、比較的大口
径の筒状管内で安定に放電が行え、かつ放電時の圧力が
10−3〜10−’torrと低いことがら差動排気等
を要せずに簡素な構造でドーピングを行うことができる
が、例えば口径13’ Ommの絶縁管を用い、3イン
チの単結晶シリコンウェハーにリンを注入した場合、9
00℃・30分の熱処理後のウェハー内のシート抵抗(
注入されたリンの量に関係する)のばらつきσ(Rs)
/Rs(Rs:シート抵抗の平均値、(7(R8):シ
ート抵抗の標準偏差)が20%程度であるため、大面積
の試料に対して一様に不純物を注入することが困難であ
った。(3)の基板室内に容量結合型高周波電極をもう
けて高周波グロー放電による化学的気相反応を起こすプ
ラズマCVD装置の高周波電極に直流電圧を印加させる
第5図の方法は、基板室の圧力が直流グロー放電が起こ
りイオン源として機能する圧力(1〜O,01torr
)に保たれていることや印加出来る電圧が100〜1o
oovと低(いことから所望のイオン以外の中性粒子等
の試料表面への堆積が起こり、不純物の−〇 − 濃度を規定した高精度の不純物のドーピングが困難であ
った。さらに放電電極と加速電極の一致による放電の不
安定さのため、大面積の試料に極めて一様な不純物のド
ーピング或はプラズマ処理等を行うことが困難であり、
さらに放電電極がイオン源の内部にイオンに対し直接さ
らされて設けていることからプラズマのセルフバイアス
により加速されたイオンによって電極がスパッタリング
されて発生する不純物による試料の汚染等の問題があっ
た。
Problems to be Solved by the Invention In the conventional technique of doping by implanting impurities in the form of ions into a semiconductor thin film, etc., (1) an ion accelerating section that uses a DC glow discharge as an ion source and has a mass separation section; The simple ion implantation device shown in Fig. 3, which injects ions into a semiconductor substrate, etc., maintains the pressure of the ion source at a pressure (1 to O, OITorr) at which DC glow discharge occurs and functions as an ion source, and furthermore, the substrate chamber is injected into the substrate chamber. The pressure at which the mean free path of ions is greater than or equal to the distance from the ion source to the substrate (~1O-3
(torr or less), it is necessary to use differential pumping, etc., and if the discharge electrode is made large to inject impurities into a large area sample, it may cause non-uniformity and instability of the discharge due to creeping discharge of the electrode, etc. Since the discharge electrode is provided inside the ion source and is directly exposed to ions, there are problems such as contamination of the sample by impurities generated when the electrode is sputtered by ions accelerated by the self-bias of the plasma. (2) The method shown in Figure 4 uses a plasma generated by superimposing a high frequency wave and a static magnetic field in an insulating cylindrical tube as an ion source, and uses an ion doping device that performs doping by implanting ions with a mass separation section. , doping can be performed with a simple structure without the need for differential pumping, etc., because the discharge can be stably performed in a relatively large-diameter cylindrical tube, and the pressure during discharge is as low as 10-3 to 10-'torr. However, for example, if phosphorus is injected into a 3-inch single crystal silicon wafer using an insulating tube with a diameter of 13' Omm,
Sheet resistance inside the wafer after heat treatment at 00℃ for 30 minutes (
variation σ (Rs) (related to the amount of phosphorus injected)
/Rs (Rs: average value of sheet resistance, (7(R8): standard deviation of sheet resistance) is about 20%, so it is difficult to uniformly implant impurities into a large area sample. The method shown in Fig. 5 (3), in which a capacitively coupled high-frequency electrode is provided in the substrate chamber and a DC voltage is applied to the high-frequency electrode of a plasma CVD apparatus that causes a chemical vapor phase reaction by high-frequency glow discharge, is based on the method shown in FIG. The pressure is the pressure at which DC glow discharge occurs and functions as an ion source (1 to 0,01 torr).
) and that the voltage that can be applied is 100~1o.
oov and low (low), neutral particles other than the desired ions were deposited on the sample surface, making it difficult to do highly accurate impurity doping with a defined impurity concentration. Due to the instability of the discharge due to the coincidence of the accelerating electrodes, it is difficult to do extremely uniform impurity doping or plasma treatment on large-area samples.
Furthermore, since the discharge electrode is provided inside the ion source and is directly exposed to ions, there are problems such as contamination of the sample by impurities generated when the electrode is sputtered by ions accelerated by the self-bias of the plasma.

問題点を解決するための手段 以上の問題点を解決するために本発明に係るプラズマ処
理装置は、ガス導入管に接続され、少なくとも所定の面
積で向かい合った平行平面を有して形成される絶縁性真
空槽と、前記絶縁性真空槽の向かい合った平行平面に沿
って前記絶縁性真空槽の外側に設けられた高周波電極及
び磁場発生源から構成される放電室、ガス排出管と接続
された接地電位の高真空室とその内部に設けられた可動
の基板台及び加熱源から構成される基板室、前記基板室
及び前記放電室と絶縁を保ち前記基板台と前記放電室と
の間に第1の直流電源と接続して設けられた第1の導電
性バイアス部、及び第1の直流電源又は第2の直流電源
と接続して前記第1の導電性バイアス部と対向する位置
に放電により生じるプラズマを挟んで設けられた第2の
導電性バイアス部を備えてなるものである。すなわち本
発明は、イオン源を少なくとも所定の面積で向かい合っ
た平行平面を有して形成される絶縁性真空槽と、前記絶
縁性真空槽の向かい合った平行平面に沿って絶縁性真空
槽の外側に高周波電極を配しさらに磁場発生源を配した
ものを用い、前記絶縁性真空槽の内部に荷電粒子を引き
出して所望のエネルギーに加速する第1の導電性バイア
ス部及び荷電粒子を第1の導電性バイアス部側に押し出
す第2の導電性バイアス部を第1の導電性バイアス部と
対向する位置に放電により生じるプラズマを挟んで設け
、さらに不純物のドーピング或はプラズマ処理を行う試
料を載せる基板台を可動にするというものである。
Means for Solving the Problems In order to solve the above problems, the plasma processing apparatus according to the present invention includes an insulator connected to a gas introduction pipe and formed with parallel planes facing each other with at least a predetermined area. a discharge chamber consisting of a high-frequency electrode and a magnetic field generation source provided outside the insulating vacuum chamber along opposing parallel planes of the insulating vacuum chamber; and a ground connected to a gas exhaust pipe. A substrate chamber consisting of a high-potential vacuum chamber, a movable substrate stand provided therein, and a heating source; A first conductive bias section provided in connection with a DC power supply, and a discharge generated in a position facing the first conductive bias section connected to the first DC power supply or a second DC power supply. It is provided with a second conductive bias section provided on both sides of the plasma. That is, the present invention provides an insulating vacuum chamber having at least a predetermined area of parallel planes facing each other, and an ion source located outside the insulating vacuum chamber along the facing parallel planes of the insulating vacuum chamber. A first electrically conductive bias section that extracts charged particles into the insulating vacuum chamber and accelerates them to a desired energy by disposing a high frequency electrode and further disposing a magnetic field generating source; A second conductive bias section that is pushed toward the conductive bias section side is provided at a position opposite to the first conductive bias section, sandwiching the plasma generated by the discharge, and further includes a substrate stand on which a sample to be doped with impurities or subjected to plasma treatment is placed. The idea is to make it movable.

作用 放電室を少なくとも所定の面積で向かい合った平行平面
を有して形成される絶縁性真空槽にすることにより大面
積にわたり放電が一様な容量結合型平行平板高周波グロ
ー放電用電極を真空槽の向かい合った平行平面に沿って
設けることが可能となり、この高周波電極の長尺方向に
得られる一様なプラズマから荷電粒子等を基板室内に引
き出すことにより、電極の長尺方向に関して一様な不純
物のドーピング或はプラズマ処理を行う。さらに試料を
載せた基板台を可動にすることにより、例えば荷電粒子
ビームの照射面の長尺方向に対して垂直に基板台を移動
させることにより、大面積にわたり一様な不純物のドー
ピング或はプラズマ処理を行う。また絶縁性真空槽の外
部に高周波電極を設けることにより、プラズマのセルフ
バイアスにより加速されたイオンが高周波電極をスパッ
タリングすることが無くなるため高周波電極がスパッタ
リングされて発生する金属等の不純物イオンによる汚染
が防げ、さらに磁場発生源を配することで放電室内に印
加された磁場による電子の閉じ込め及び旋回運動の励起
を行い、高周波によって供給されるエネルギーを有効に
用いて例えばIQ−3〜10−’torrの気体圧力で
も安定かつ一様に放電させる。この10−3〜10−’
torrの気体圧力下でイオンの平均自由行程はイオン
種によって異なるが、放電室から基板台までの距離(約
10cm)と同程度あるいはそれ以上となるために放電
室に配した第1の導電性バイアス部及び第2の導電性バ
イアス部という簡素な構造で荷電粒子の押し出し及び加
速を行い、基板台上の半導体等の試料まで荷電粒子を輸
送し、前記試料に照射する。さらに装置内の圧力が10
−3〜10−’torr以下であること及び放電用の高
周波電極と加速用の導電性バイアス部電極を分離してい
ることから、圧力が高いことや電圧が高いことによる沿
面放電やなだれ放電等の異常な放電を起こすことな(、
かつ放電電極と加速電極の一致による放電の不安定さを
引き起こすことなく1keV以上に荷電粒子を加速する
。そして装置内の圧力が10−3〜10−’torr以
下であることから所望のイオン以外の中性粒子等の試料
表面への堆積がなく、不純物の濃度を規定した高精度の
不純物のドーピング或はプラズマ処理を行う。
By making the working discharge chamber an insulating vacuum chamber formed with parallel planes facing each other with at least a predetermined area, a capacitively coupled parallel plate high-frequency glow discharge electrode with which discharge is uniform over a large area can be installed in the vacuum chamber. By drawing charged particles etc. into the substrate chamber from the uniform plasma obtained in the long direction of this high frequency electrode, it is possible to provide uniform impurity particles in the long direction of the electrode. Perform doping or plasma treatment. Furthermore, by making the substrate table on which the sample is mounted movable, for example, by moving the substrate table perpendicularly to the longitudinal direction of the irradiated surface of the charged particle beam, uniform doping of impurities or plasma over a large area can be achieved. Perform processing. In addition, by providing a high-frequency electrode outside the insulating vacuum chamber, ions accelerated by the self-bias of the plasma will not sputter the high-frequency electrode, thereby preventing contamination by impurity ions such as metals generated by sputtering of the high-frequency electrode. Furthermore, by arranging a magnetic field generation source, the magnetic field applied in the discharge chamber confines electrons and excites their swirling motion, effectively using the energy supplied by high frequency to generate, for example, IQ-3 to 10-'torr. Stably and uniformly discharges even at a gas pressure of This 10-3~10-'
Although the mean free path of ions under torr gas pressure differs depending on the ion species, the first conductive path placed in the discharge chamber is equivalent to or longer than the distance from the discharge chamber to the substrate stand (approximately 10 cm). A simple structure consisting of a bias section and a second conductive bias section pushes out and accelerates charged particles, transports the charged particles to a sample such as a semiconductor on a substrate stage, and irradiates the sample. Furthermore, the pressure inside the device is 10
-3 to 10 torr or less, and because the high-frequency electrode for discharge and the conductive bias electrode for acceleration are separated, creeping discharge or avalanche discharge due to high pressure or voltage may occur. Do not cause abnormal discharge (,
Further, charged particles are accelerated to 1 keV or more without causing instability of discharge due to coincidence of the discharge electrode and the accelerating electrode. Since the pressure inside the device is below 10-3 to 10-'torr, there is no deposition of neutral particles other than desired ions on the sample surface, and highly accurate impurity doping with a specified impurity concentration is possible. performs plasma treatment.

実施例 以下図面に基づいて本発明についてさらに詳しく説明す
る。
EXAMPLES The present invention will be explained in more detail below based on the drawings.

第1図は本発明に係るプラズマ処理装置の第1実施例の
概略構成図を示したものである。本実施例においては、
少なくとも所定の面積で向かい合った平行平面を有して
形成される絶縁性真空槽として絶縁性の矩形管を用いて
いる。放電室Cの絶縁性矩形管31はセラミックスや石
英ガラス等を用い、容量結合型平行平板高周波グロー放
電用電極32には導電性の良い銅・ニッケル等の金属を
用い、絶縁性矩形管31の外部に設ける。容量結合型平
行平板高周波グロー放電用電極32の一方はマツチング
ボックス33を介して高周波発振器34と接続し、他方
を接地して絶縁性矩形管31内に高周波電力の供給を行
う。さらに容量結合型平行平板高周波グロー放電用電極
32の外部に配した電磁石35により印加される磁場に
よって電子の旋回運動(サイクロトロン運動)の励起と
閉じ込めを行うことにより、比較的低い圧力(IQ−3
〜10−’torr )で高周波電力を有効に放電のた
めに用いることによって絶縁性矩形管31内にプラズマ
を安定に発生させる。この磁場の強度は絶縁性矩形管3
1内に於て50〜200ガウス程度で良く、磁場発生源
として永久磁石等を用いても良い。導電性のステンレス
・アルミニウム・銅等で作られ、開口部36を有する第
1の導電性バイアス部37−aは、セラミックス・石英
ガラス塩化ビニル等で作られた絶縁フランジ38を介し
て放電室Cと基板室りの間に設ける。放電室Cへの材料
ガスの導入はガス導入管39を経て、絶縁性矩形管31
内の第1の導電性バイアス部37−aと対向した位置に
設けられた第2の導電性バイアス部37−bのガス導入
口40より行う。前記第1の導電性バイアス部37−a
及び第2の導電性バイアス部37−bは各々直流高電圧
電源41−a及び41−bに接続され、所望の電圧を印
加することにより、放電室C内の荷電粒子を基板室りへ
押し出し加速を行う。基板室りはガス排出管42に接続
され、10−’〜10−’torrの圧力に保たれる。
FIG. 1 shows a schematic diagram of a first embodiment of a plasma processing apparatus according to the present invention. In this example,
An insulating rectangular tube is used as the insulating vacuum chamber having parallel planes facing each other over at least a predetermined area. The insulating rectangular tube 31 of the discharge chamber C is made of ceramics, quartz glass, etc., and the capacitively coupled parallel plate high-frequency glow discharge electrode 32 is made of a highly conductive metal such as copper or nickel. Provided outside. One of the capacitively coupled parallel plate high frequency glow discharge electrodes 32 is connected to a high frequency oscillator 34 via a matching box 33, and the other is grounded to supply high frequency power into the insulating rectangular tube 31. Furthermore, by exciting and confining the swirling motion (cyclotron motion) of electrons by the magnetic field applied by the electromagnet 35 disposed outside the capacitively coupled parallel plate high-frequency glow discharge electrode 32, relatively low pressure (IQ-3
Plasma is stably generated within the insulating rectangular tube 31 by effectively using high frequency power for discharge at a pressure of 10-' torr. The strength of this magnetic field is the insulating rectangular tube 3
The magnetic field may be about 50 to 200 Gauss within 1, and a permanent magnet or the like may be used as the magnetic field generation source. A first conductive bias section 37-a made of conductive stainless steel, aluminum, copper, etc. and having an opening 36 is connected to the discharge chamber C via an insulating flange 38 made of ceramics, quartz glass, vinyl chloride, etc. and the board chamber. The material gas is introduced into the discharge chamber C through a gas introduction pipe 39 and then through an insulating rectangular pipe 31.
The gas inlet 40 of the second conductive bias section 37-b is provided at a position opposite to the first conductive bias section 37-a. The first conductive bias section 37-a
The second conductive bias section 37-b is connected to DC high voltage power supplies 41-a and 41-b, respectively, and by applying a desired voltage, charges particles in the discharge chamber C are pushed out to the substrate chamber. Perform acceleration. The substrate chamber is connected to a gas exhaust pipe 42 and maintained at a pressure of 10-' to 10-' torr.

基板室り内には導電性のステンレス・アルミニウム・銅
等で作られた可動の基板台43を設け、基板台43上に
半導体基板等の試料44を置く。試料44はヒーター4
5により加熱を行い、不純物のドーピング或はプラズマ
処理の効率を上げる。絶縁性矩形管31内の容量結合型
平行平板高周波グロー放電用電極32の長尺方向(第2
図参照)に関して一様に生じるプラズマより引き出され
、開口部36の長尺方向(第2図参照)に関して一様で
第1の導電性バイアス部37−aと基板台43との電位
差に応じた運動エネルギーを得た荷電粒子ビーム46は
、基板台43上の半導体基板等の試料44に照射し、所
望の量の不純物のドーピング或はプラズマ処理等を試料
44に対して行う。さらに基板台43を荷電粒子ビーム
46の照射面の長尺方向に対して垂直に走査することに
よって、大面積の試料に極めて一様な不純物のドーピン
グ或はプラズマ処理等を行う。
A movable substrate stand 43 made of conductive stainless steel, aluminum, copper, etc. is provided in the substrate chamber, and a sample 44 such as a semiconductor substrate is placed on the substrate stand 43. Sample 44 is heater 4
5 to increase the efficiency of impurity doping or plasma treatment. The longitudinal direction (second
(see figure), and uniformly in the longitudinal direction of the opening 36 (see figure 2), depending on the potential difference between the first conductive bias section 37-a and the substrate pedestal 43. The charged particle beam 46 that has obtained kinetic energy is irradiated onto a sample 44 such as a semiconductor substrate on a substrate table 43, and the sample 44 is doped with a desired amount of impurities or subjected to plasma treatment. Furthermore, by scanning the substrate table 43 perpendicularly to the longitudinal direction of the irradiated surface of the charged particle beam 46, extremely uniform impurity doping or plasma treatment is performed on a large-area sample.

第2図は本発明に係るプラズマ処理装置の第2実施例の
外観及び透視概略図を示したものである。本実施例にお
いても、少なくとも所定の面積で向かい合った平行平面
を有して形成される絶縁性真空槽として絶縁性の矩形管
を用いている。絶縁性矩形管31で構成される放電室C
内部に、容量結合型平行平板高周波グロー放電用電極3
2及び電磁石35により印加される高周波電力及び静磁
場によって10−8〜10−’torrの圧力下で容量
結合型平行平板高周波グロー放電用電極32の長尺方向
に一様なプラズマを安定に発生させる。このプラズマか
ら直流電圧を印加した第1の導電性バイアス部37−a
及び第2の導電性バイアス部37−bによって、容量結
合型平行平板高周波グロー放電用電極32の長尺方向に
細長(設けられた第1の導電性バイアス部37−aの開
口部36より一様な荷電粒子ビームを押し出し、基板室
り内の可動の基板台43上の半導体基板等の試料44に
対して所望の量の不純物のドーピング或はプラズマ処理
等を行う。さらに基板台43を荷電粒子ビーム46の照
射面の長尺方向に対して垂直に走査することによって、
大面積の試料に極めて一様な不純物のドーピング或はプ
ラズマ処理等を行う。放電室Cへの材料ガスの導入はガ
ス導入管39から行い、第1の導電性バイアス部37−
aは絶縁フランジ38を介して基板室りに対して固定さ
れる。さらに基板室りはゲートバルブ50を介して第2
の真空槽Eと接続され、基板台43が第2の真空槽Eと
基板台43との間を搬送することにより、試料44に対
する不純物のドーピング或はプラズマ処理等の前処理や
後処理、試料の出し入れ等を放電室C及び基板室りの真
空を破らずに行う。
FIG. 2 shows an external appearance and a perspective schematic diagram of a second embodiment of the plasma processing apparatus according to the present invention. In this embodiment as well, an insulating rectangular tube is used as the insulating vacuum chamber having parallel planes facing each other over at least a predetermined area. Discharge chamber C composed of an insulating rectangular tube 31
Inside, capacitively coupled parallel plate high frequency glow discharge electrode 3
A uniform plasma is stably generated in the longitudinal direction of the capacitively coupled parallel plate high frequency glow discharge electrode 32 under a pressure of 10-8 to 10-'torr by the high-frequency power and static magnetic field applied by the electromagnet 2 and the electromagnet 35. let A first conductive bias section 37-a to which a DC voltage is applied from this plasma.
The capacitively coupled parallel plate high frequency glow discharge electrode 32 is elongated in the longitudinal direction (from the opening 36 of the first conductive bias section 37-a provided) by the second conductive bias section 37-b. A sample 44 such as a semiconductor substrate on a movable substrate table 43 in the substrate chamber is doped with a desired amount of impurities or subjected to plasma treatment.Furthermore, the substrate table 43 is charged. By scanning perpendicularly to the longitudinal direction of the irradiation surface of the particle beam 46,
Extremely uniform impurity doping or plasma treatment is performed on a large-area sample. The material gas is introduced into the discharge chamber C through the gas introduction pipe 39, and the first conductive bias section 37-
a is fixed to the substrate chamber via an insulating flange 38. Further, the substrate chamber is connected to the second chamber via the gate valve 50.
The substrate table 43 is connected to the second vacuum chamber E, and the substrate table 43 is transported between the second vacuum chamber E and the substrate table 43, thereby performing pre-treatment and post-treatment such as doping of impurities or plasma treatment on the sample 44, and the substrate table 43. To carry out loading and unloading, etc., without breaking the vacuum in the discharge chamber C and the substrate chamber.

発明の効果 本発明は、放電室として少なくとも所定の面積で向かい
合った平行平面を有して形成される絶縁性真空槽を用い
、高周波と静磁場を重畳させることにより、10−s〜
1O−4torrと比較的低い圧力下で高周波グロー放
電用電極の長尺方向に一様なプラズマを安定に発生させ
ることが可能となる。
Effects of the Invention The present invention uses an insulating vacuum chamber formed with parallel planes facing each other with at least a predetermined area as a discharge chamber, and superimposes a high frequency and a static magnetic field to generate a discharge time of 10-s to
It becomes possible to stably generate uniform plasma in the longitudinal direction of the high-frequency glow discharge electrode under a relatively low pressure of 10-4 torr.

また一様なプラズマから極めて一様な荷電粒子ビームを
半導体基板等の試料に対して照射すること及び試料を載
せた基板台を荷電粒子ビームの照射面の長尺方向に対し
て垂直に走査することによって、大面積の試料に極めて
一様な不純物のドーピング或はプラズマ処理等を行うこ
とが可能となる。さらに放電室の外部に高周波電極を設
けることによりプラズマのセルフバイアスにより加速さ
れたイオンが高周波電極をスパッタリングすることが無
くなるため高周波電極がスパッタリングされて発生する
金属等の不純物イオンによる汚染が無くなり、極めて高
純度の不純物のドーピング或はプラズマ処理等を行うこ
とが可能となる。
In addition, a very uniform charged particle beam from a uniform plasma is irradiated onto a sample such as a semiconductor substrate, and the substrate table on which the sample is placed is scanned perpendicular to the longitudinal direction of the charged particle beam irradiation surface. This makes it possible to extremely uniformly dope impurities or perform plasma treatment on a large-area sample. Furthermore, by providing a high-frequency electrode outside the discharge chamber, ions accelerated by the self-bias of the plasma will no longer sputter the high-frequency electrode, thereby eliminating contamination by impurity ions such as metals generated when the high-frequency electrode is sputtered. It becomes possible to perform high-purity impurity doping or plasma treatment.

そして圧力が10−3〜10−’torr以下であるこ
とから所望のイオン以外の中性粒子等の試料表面への堆
積がなく、不純物の濃度を規定した高精度の不純物のド
ーピング或はプラズマ処理を行うことが可能となる。以
上の効果は、ガス導入管を基板室に接続すること、ガス
排出管を放電室に接続すること、第1の導電性バイアス
部及び前記第2の導電性バイアス部の放電により生じる
荷電粒子にさらされる側に隔壁或は表面被覆を設けるこ
と、基板室をゲートバルブを介して第2の真空槽或は第
2のプラズマ処理装置と接続し、基板台を基板室と第2
の真空槽或は第2のプラズマ処理装置間を搬送させるこ
とによっても同様に得られる。本発明によるプラズマ処
理装置は、例えば長尺のイメージセンサ−や大面積の薄
膜トランジスターアレイ等の大型半導体素子製造におけ
る高純度の不純物のドーピング或はプラズマ処理等を高
精度に一括して行うことが可能となるという点で、極め
て有用性の高いものである。
Since the pressure is less than 10-3 to 10-'torr, there is no deposition of neutral particles other than desired ions on the sample surface, and highly accurate impurity doping or plasma treatment with a specified impurity concentration is possible. It becomes possible to do this. The above effects are achieved by connecting the gas inlet tube to the substrate chamber, connecting the gas exhaust tube to the discharge chamber, and reducing the charged particles generated by the discharge of the first conductive bias section and the second conductive bias section. A partition wall or surface coating is provided on the exposed side, the substrate chamber is connected to a second vacuum chamber or a second plasma processing apparatus via a gate valve, and the substrate table is connected to the substrate chamber and the second plasma processing apparatus.
It can also be obtained in the same way by transporting the plasma between the vacuum chamber of the second plasma processing apparatus or the second plasma processing apparatus. The plasma processing apparatus according to the present invention can perform high-purity impurity doping or plasma processing, etc., all at once with high precision, for example, in the manufacture of large-scale semiconductor devices such as long image sensors and large-area thin film transistor arrays. It is extremely useful in that it becomes possible.

【図面の簡単な説明】 第1図は本発明に係るプラズマ処理装置の第1実施例の
概略構成図、第2図は本発明に係るプラズマ処理装置の
第2実施例の外観及び透視概略図、第3図は従来の技術
のうちイオン源として直流グロー放電を用い、質量分離
部を有さすイオン= 17= 加速部を経てイオンを半導体基板等に注入する簡易型イ
オン注入装置の概略構成図、第4図は従来の技術のうち
イオン源として絶縁性筒状管内に高周波と静磁場を重畳
させて発生するプラズマを用い、質量分離部を有さすイ
オンを注入、ドーピングを行うイオンドープ装置の概略
構成図、第5図は従来の技術のうち基板室内に容量結合
型高周波電極をもうけて高周波グロー放電による化学的
気相反応を起こすプラズマCVD装置の高周波電極に直
流電圧を印加させる方法の概略構成図である。 C・・・放電室、D・・・基板室、31・・・絶縁性矩
形管、32・・・容量結合型平行平板高周波グロー放電
用電極、33・・・マツチングボックス、34・・・高
周波発振器、35・・・電磁石、36・・・開口部、3
7−a・・・第1の導電性バイアス部、37−b・・・
第2の導電性バイアス部、38・・・絶縁フランジ、3
9・・・ガス導入管、40・・・ガス導入口、41−a
・・・直流高電圧電源、41−b・・・直流高電圧電源
、42・・・ガス排出管、43・・・基板台、44・・
・試料、45・・・ヒーター、46・・・荷電粒子ビー
ム、E・・・真空槽、50・・・ゲートバルブ。 代理人の氏名 弁理士 中尾敏男 はが1名第1図 α「a■hへ45 ヒーター 第2図 C放電室 第3図 第4図 第5図
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a schematic configuration diagram of a first embodiment of a plasma processing apparatus according to the present invention, and FIG. 2 is an external appearance and perspective schematic diagram of a second embodiment of a plasma processing apparatus according to the present invention. , Figure 3 is a schematic configuration diagram of a simple ion implantation apparatus using a conventional technique that uses DC glow discharge as an ion source and has a mass separation section. , Figure 4 shows a conventional ion doping device that uses plasma generated by superimposing high frequency waves and static magnetic fields in an insulating cylindrical tube as an ion source to inject and dope ions with a mass separation section. A schematic diagram of the configuration, Figure 5 is a schematic diagram of a conventional method of applying a DC voltage to the high-frequency electrode of a plasma CVD apparatus in which a capacitively coupled high-frequency electrode is provided in the substrate chamber and a chemical vapor phase reaction is caused by high-frequency glow discharge. FIG. C...Discharge chamber, D...Substrate chamber, 31...Insulating rectangular tube, 32...Capacitively coupled parallel plate high frequency glow discharge electrode, 33...Matching box, 34... High frequency oscillator, 35... Electromagnet, 36... Opening, 3
7-a...first conductive bias section, 37-b...
Second conductive bias portion, 38... Insulating flange, 3
9... Gas introduction pipe, 40... Gas introduction port, 41-a
...DC high voltage power supply, 41-b...DC high voltage power supply, 42...Gas exhaust pipe, 43...Board stand, 44...
- Sample, 45... Heater, 46... Charged particle beam, E... Vacuum chamber, 50... Gate valve. Name of agent: Patent attorney Toshio Nakao 1 person Figure 1 α "a h 45 Heater Figure 2 C discharge chamber Figure 3 Figure 4 Figure 5

Claims (5)

【特許請求の範囲】[Claims] (1)ガス導入管に接続され、少なくとも所定の面積で
向かい合った平行平面を有して形成される絶縁性真空槽
と、前記絶縁性真空槽の向かい合った平行平面に沿って
前記絶縁性真空槽の外側に設けられた高周波電極及び磁
場発生源から構成される放電室、ガス排出管と接続され
た接地電位の高真空室とその内部に設けられた可動の基
板台及び加熱源から構成される基板室、前記基板室及び
前記放電室と絶縁を保ち前記基板台と前記放電室との間
に第1の直流電源と接続して設けられた第1の導電性バ
イアス部及び第1の直流電源又は第2の直流電源と接続
して前記第1の導電性バイアス部と対向する位置に放電
により生じるプラズマを挟んで設けられた第2の導電性
バイアス部を備えてなることを特徴とするプラズマ処理
装置。
(1) An insulating vacuum chamber connected to a gas introduction pipe and formed with parallel planes facing each other with at least a predetermined area; A discharge chamber consisting of a high-frequency electrode and a magnetic field generation source installed outside the chamber, a high vacuum chamber at ground potential connected to a gas exhaust pipe, and a movable substrate stand and heating source installed inside the chamber. a first electrically conductive bias section and a first DC power source that are insulated from the substrate chamber, the substrate chamber, and the discharge chamber and are connected to a first DC power source between the substrate stand and the discharge chamber; Alternatively, a plasma characterized by comprising a second conductive bias section connected to a second DC power source and provided at a position facing the first conductive bias section, sandwiching the plasma generated by the discharge. Processing equipment.
(2)ガス導入管を前記基板室に接続することを特徴と
する特許請求の範囲第1項記載のプラズマ処理装置。
(2) The plasma processing apparatus according to claim 1, characterized in that a gas introduction pipe is connected to the substrate chamber.
(3)ガス排出管を前記放電室に接続することを特徴と
する特許請求の範囲第1項又は第2項記載のプラズマ処
理装置。
(3) The plasma processing apparatus according to claim 1 or 2, characterized in that a gas exhaust pipe is connected to the discharge chamber.
(4)第1の導電性バイアス部及び前記第2の導電性バ
イアス部の放電により生じる荷電粒子にさらされる側に
、隔壁或は表面被覆を設けることを特徴とする特許請求
の範囲第1項又は第2項又は第3項記載のプラズマ処理
装置。
(4) A partition wall or a surface coating is provided on the side of the first conductive bias section and the second conductive bias section exposed to charged particles generated by discharge. Or the plasma processing apparatus according to item 2 or 3.
(5)基板室をゲートバルブを介して第2の真空槽或は
第2のプラズマ処理装置と接続し、基板台を前記基板室
と第2の真空槽或は第2のプラズマ処理装置間を搬送さ
せることを特徴とする特許請求の範囲第1項又は第2項
又は第3項又は第4項記載のプラズマ処理装置。
(5) Connect the substrate chamber to a second vacuum chamber or second plasma processing apparatus via a gate valve, and connect the substrate table between the substrate chamber and the second vacuum chamber or second plasma processing apparatus. The plasma processing apparatus according to claim 1, 2, 3, or 4, characterized in that the plasma processing apparatus is transported.
JP61304185A 1986-09-24 1986-12-19 Plasma processing device Expired - Lifetime JPH0768618B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61304185A JPH0768618B2 (en) 1986-12-19 1986-12-19 Plasma processing device
US07/100,148 US4859908A (en) 1986-09-24 1987-09-23 Plasma processing apparatus for large area ion irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61304185A JPH0768618B2 (en) 1986-12-19 1986-12-19 Plasma processing device

Publications (2)

Publication Number Publication Date
JPS63157868A true JPS63157868A (en) 1988-06-30
JPH0768618B2 JPH0768618B2 (en) 1995-07-26

Family

ID=17930055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61304185A Expired - Lifetime JPH0768618B2 (en) 1986-09-24 1986-12-19 Plasma processing device

Country Status (1)

Country Link
JP (1) JPH0768618B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6734446B1 (en) 1996-05-15 2004-05-11 Semiconductor Energy Laboratory Co., Ltd. Apparatus and method for doping
JP2006196752A (en) * 2005-01-14 2006-07-27 Ulvac Japan Ltd System and method for doping plasma
JP2007073534A (en) * 1996-05-15 2007-03-22 Semiconductor Energy Lab Co Ltd Doping processor
US8314009B2 (en) 2007-09-14 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate and method for manufacturing semiconductor device
JP2020068055A (en) * 2018-10-22 2020-04-30 春日電機株式会社 Surface modification device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6734446B1 (en) 1996-05-15 2004-05-11 Semiconductor Energy Laboratory Co., Ltd. Apparatus and method for doping
US7118996B1 (en) 1996-05-15 2006-10-10 Semiconductor Energy Laboratory Co., Ltd. Apparatus and method for doping
JP2007073534A (en) * 1996-05-15 2007-03-22 Semiconductor Energy Lab Co Ltd Doping processor
US7315035B2 (en) 1996-05-15 2008-01-01 Semiconductor Energy Laboratory Co., Ltd. Apparatus and method for doping
US7521699B2 (en) 1996-05-15 2009-04-21 Semiconductor Energy Laboratory Co., Ltd. Apparatus and method for doping
US8003958B2 (en) 1996-05-15 2011-08-23 Semiconductor Energy Laboratory Co., Ltd. Apparatus and method for doping
US8344336B2 (en) 1996-05-15 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Apparatus and method for doping
JP2006196752A (en) * 2005-01-14 2006-07-27 Ulvac Japan Ltd System and method for doping plasma
US8314009B2 (en) 2007-09-14 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate and method for manufacturing semiconductor device
JP2020068055A (en) * 2018-10-22 2020-04-30 春日電機株式会社 Surface modification device

Also Published As

Publication number Publication date
JPH0768618B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
US4859908A (en) Plasma processing apparatus for large area ion irradiation
KR100407606B1 (en) Plasma immersion with pulsed anode
US20020069971A1 (en) Plasma processing apparatus and plasma processing method
JPH10121240A (en) Plasma injecting system
KR20010062546A (en) Pretreatment process for plasma immersion ion implantation
JPS6333566A (en) Electric charge particle applying device
JP3499104B2 (en) Plasma processing apparatus and plasma processing method
WO1993018201A1 (en) Plasma implantation process and equipment
JP2008028360A (en) Ion implantation device using plasma
US6504159B1 (en) SOI plasma source ion implantation
KR100249548B1 (en) Plasma processing system
JP2000068227A (en) Method for processing surface and device thereof
JPS63157868A (en) Plasma treatment device
JPS61213377A (en) Method and apparatus for plasma deposition
JP2689419B2 (en) Ion doping equipment
JPH07123121B2 (en) Plasma processing device
JP2003077904A (en) Apparatus and method for plasma processing
JPS63156535A (en) Plasma treating device
JPS63157416A (en) Plasma treatment apparatus
JPS63234519A (en) Plasma processor
JPS63311727A (en) Plasma processor
JPH01152721A (en) Doping with impurity
JP2929149B2 (en) Plasma equipment
JPH10172793A (en) Plasma generator
JPS6267822A (en) Plasma processor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term