JPS63311727A - Plasma processor - Google Patents

Plasma processor

Info

Publication number
JPS63311727A
JPS63311727A JP14854987A JP14854987A JPS63311727A JP S63311727 A JPS63311727 A JP S63311727A JP 14854987 A JP14854987 A JP 14854987A JP 14854987 A JP14854987 A JP 14854987A JP S63311727 A JPS63311727 A JP S63311727A
Authority
JP
Japan
Prior art keywords
chamber
plasma processing
processing apparatus
substrate
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14854987A
Other languages
Japanese (ja)
Other versions
JPH0816271B2 (en
Inventor
Tetsuhisa Yoshida
哲久 吉田
Kentaro Setsune
瀬恒 謙太郎
Takashi Hirao
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14854987A priority Critical patent/JPH0816271B2/en
Publication of JPS63311727A publication Critical patent/JPS63311727A/en
Publication of JPH0816271B2 publication Critical patent/JPH0816271B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable a large space processing to be performed evenly within a short time by a method wherein a high-frequency electrode is arranged outside a vacuum vessel along a surface by the insulators of the first vacuum vessel with a surface formed of insulators. CONSTITUTION:A vacuum vessel 30 in a discharge chamber is composed of a cylindrical tube made of insulators such as quartz, glass ceramics etc. Capacity coupling type high-frequency glow discharge electrodes 31-a and 31-b are provided outside the vacuum vessel 30 along the surface of the vessel 30 further an electromagnet 34 is arranged outside said electrodes 31-a and 31-b. Furthermore, a substrate base 43 to be loaded with a specimen 44 for doping or plasma processing with an impurity is provided in the second vacuum vessel. Through these procedures, the vacuum vessel 30 with a surface formed of insulators is used as a discharge chamber to make the high-frequency and the magnatostatic field overlap each other so that uniform plasma may be stably produced at relatively low pressure.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体工業における半導体素子製造等に用い
るプラズマ処理装置に関するものであり、特に大面積の
半導体素子や半導体薄膜等への不純物注入、大面積の半
導体薄膜形成やエツチング等の処理をを短時間で一様に
行うプラズマ処理装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a plasma processing apparatus used for manufacturing semiconductor elements in the semiconductor industry, and in particular, for impurity implantation into large area semiconductor elements, semiconductor thin films, etc. The present invention relates to a plasma processing apparatus that uniformly performs processes such as semiconductor thin film formation and etching in a short time.

従来の技術 半導体薄膜等に不純物をイオンの形で所望の量及び深さ
に注入してドーピングを行う方法或は薄膜形成或はエツ
チングの方法としては、く1〉:イオン源として直流グ
ロー放電を用い、質量分離部を有さすイオン加速部を経
てイオンを半導体基板等に注入する簡易型イオン注入袋
M[第6図、j。
Conventional Techniques Methods for doping semiconductor thin films, etc. by injecting impurities in the form of ions to a desired amount and depth, or methods for forming or etching a thin film include: (1): Direct current glow discharge is used as an ion source. A simple ion implantation bag M [FIG. 6, j.

C,Muller、 et al、 : Proc、 
European Photovoltaic  5o
lar  Energy Conf、  (プロシーデ
ィングヨーロピアン フォトポルティック ソーラーエ
ナジー コンファレンス)  (Lexemberg)
 5ept、  1977、  p897−909]を
用いる方法[第6図]や、(2):真空槽内に容量結合
型高周波電極を設けて高周波グロー放電により化学的気
相反応を生せしめるプラズマCVD装置の高周波電極に
、直流電圧をさらに重畳印加させる方法[第7図1、絶
縁性筒状管の外部に高周波電極と磁場発生部を設けて構
成した放電室を設けたプラズマ処理装置を用いる方法[
第8図1などがある。第5,6゜7図において、1は放
電室、2は直流グロー放電用アノード電極、3は放電用
直流電源、4は加速用電極、5は加速用直流電源、6は
ガス導入管、7は絶縁体、8はガス排出管、9は基板台
、10は真空槽、11は高周波電極、12はマツチング
ボックス、]83は高周波発振器、14はM流電源、1
5はガス導入管、16はガス排出管、17は試料、20
は絶縁性筒状管′、21は高周波電極、22は電磁石、
23はガス導入管、24は絶縁7ランジ、25−a、2
5−bは直流電極、26は基板室、27は基板台、28
は試料、29はガス排出管である。
C. Muller, et al.: Proc.
European Photovoltaic 5o
lar Energy Conf, (Proceeding European Photoportic Solar Energy Conference) (Lexenberg)
5ept, 1977, p897-909] [Fig. 6], and (2): a method using a plasma CVD apparatus in which a capacitively coupled high-frequency electrode is provided in a vacuum chamber and a chemical vapor phase reaction is caused by high-frequency glow discharge. A method in which a DC voltage is further applied in a superimposed manner to a high-frequency electrode [Fig.
Figure 8 1 etc. In Figures 5, 6 and 7, 1 is a discharge chamber, 2 is an anode electrode for DC glow discharge, 3 is a DC power source for discharge, 4 is an electrode for acceleration, 5 is a DC power source for acceleration, 6 is a gas introduction tube, 7 8 is an insulator, 8 is a gas exhaust pipe, 9 is a substrate stand, 10 is a vacuum chamber, 11 is a high frequency electrode, 12 is a matching box,] 83 is a high frequency oscillator, 14 is an M current power supply, 1
5 is a gas introduction pipe, 16 is a gas discharge pipe, 17 is a sample, 20
is an insulating cylindrical tube', 21 is a high frequency electrode, 22 is an electromagnet,
23 is a gas introduction pipe, 24 is an insulated 7-lunge, 25-a, 2
5-b is a DC electrode, 26 is a substrate chamber, 27 is a substrate stand, 28
29 is a sample, and 29 is a gas exhaust pipe.

発明が解決しようとする問題点 不純物をイオンの形で半導体薄膜等に注入し7トービン
グを行う従来の技術において、上記(1)に示した、イ
オン源として直流グロー放電を用い、質量分離部を有さ
すイオン加速部を経て不純物のイオンを半導体基板等に
注入する第6図の簡易型イオン注入装置は、直流グロー
放電を維持するためが起こりイオン源として機能する圧
力(1〜0、0ITorr)にイオン源の圧力を保ち、
さらにイオンの平均自由行程がイオン源から基板までの
距離以上になる圧力(〜10−3Torr以下):こ基
板室を保つために差動排気等の複雑な機構を用いねばな
らず、また不純物注入の大面積化のために放主電極を太
き(すると沿面放電等による放電の不均一性や不安定性
が生じ一様で高精度のドーピングが困難となり、さらに
放電電極が直接イオンに曝されるので高周波放電時に放
電電極にセルフバイアスが発生し、このバイアス電圧に
より加速されたイオンによって放電電極がスパッタリン
グされて生じる電極材料等の不純物により試料が汚染さ
れるなどの問題点があった。一方上記(2)の真空槽内
に容量結合型高周波電極を設けて高周波グロー放電によ
る化学的気相反応を起こすプラズマCVD装置の高周波
電極に直流電圧を印加する方法は、基板室の圧力が直流
グロー放電を維持するため真空槽の圧力が1〜0.0I
Torrに保たれていることや、印加できる電圧が10
0〜1000Vと低いことから所望のイオン以外の中性
粒子等が試料表面に堆積するので、不純物の濃度を規定
した高精度の不純物のドーピングが困難であった。さら
に放電電極と加速電極の一致による放電の不安定性のた
め、大面積の試料に対し一様な不純物のドーピング或は
プラズマ処理等を行うことが困難であり、さらに放電電
極が直接イオンに曝されて設けられていることからセル
フバイアスにより加速されたイオンによって゛放電電極
がスパッタリングされて生じる電極材料等の不純物によ
り試料が汚染されるなどの問題点があった。また上記(
3)の、絶縁性筒状管の外部に高周波電極と磁場発生部
を設けるという構成をきる放電室を用いたプラズマ処理
装置を用いる方法では、高周波電力が外部に漏洩し、例
えば電磁石を用いた場合漏れた高周波によって誘導され
る電流が電磁石に流れ、プラズマ処理を促進するために
高周波電力を大きくすると印加磁場が不安定となり、放
電が不安定かつ不均一になることから、大面積の処理を
短時間で一様に行うことが困難であるという問題点があ
った。
Problems to be Solved by the Invention In the conventional technique of injecting impurities in the form of ions into a semiconductor thin film or the like and performing toving, as shown in (1) above, a DC glow discharge is used as the ion source and the mass separation unit is The simple ion implantation device shown in Fig. 6, which implants impurity ions into a semiconductor substrate, etc. through an ion accelerating section, has a pressure (1 to 0, 0 I Torr) that maintains DC glow discharge and functions as an ion source. Keep the ion source pressure at
Furthermore, the pressure at which the mean free path of ions is greater than the distance from the ion source to the substrate (~10-3 Torr or less) requires the use of complex mechanisms such as differential pumping to maintain the substrate chamber, and impurity injection In order to increase the area of the discharge electrode, the discharge electrode is made thicker (this causes non-uniformity and instability of the discharge due to creeping discharge, etc., making it difficult to do uniform and high-precision doping, and furthermore, the discharge electrode is directly exposed to ions. Therefore, during high-frequency discharge, a self-bias occurs in the discharge electrode, and the discharge electrode is sputtered by ions accelerated by this bias voltage, resulting in problems such as contamination of the sample with impurities such as the electrode material.On the other hand, as mentioned above, (2) A method in which a capacitively coupled high-frequency electrode is installed in a vacuum chamber and a DC voltage is applied to the high-frequency electrode of a plasma CVD apparatus that causes a chemical vapor phase reaction by high-frequency glow discharge, is that the pressure in the substrate chamber is lower than the DC glow discharge. The pressure of the vacuum chamber is 1 to 0.0 I to maintain
It is maintained at Torr and the voltage that can be applied is 10
Because the voltage is as low as 0 to 1000 V, neutral particles other than desired ions are deposited on the sample surface, making it difficult to do highly accurate impurity doping with a defined impurity concentration. Furthermore, due to the instability of the discharge due to the coincidence of the discharge electrode and the accelerating electrode, it is difficult to uniformly dope impurities or perform plasma treatment on a large area sample, and the discharge electrode is directly exposed to ions. Since the discharge electrode is sputtered by ions accelerated by the self-bias, there is a problem that the sample is contaminated by impurities such as the electrode material generated by sputtering of the discharge electrode. Also above (
In the method described in 3), which uses a plasma processing apparatus using a discharge chamber in which a high-frequency electrode and a magnetic field generator are provided outside an insulating cylindrical tube, high-frequency power leaks to the outside, and the In this case, current induced by the leaked radio frequency flows to the electromagnet, and if the radio frequency power is increased to promote plasma processing, the applied magnetic field becomes unstable and the discharge becomes unstable and non-uniform, making it difficult to treat large areas. There was a problem in that it was difficult to perform the process uniformly in a short period of time.

問題点を解決するための手段 以上の問題点を解決するために本発明に係るプラズマ処
理装置は、絶縁物で形成された面を有する第1の真空槽
と、前記第1の真空槽の絶縁物で形成された面に沿って
前記真空槽の外部に設けられだ高周波電極、及び接地電
位に保たれ前記高周波電極の外部に設けられた導体、さ
らに前記導体の外部に設けられた電磁石から構成される
放電室、第2の真空槽とその内部に設けられた基板台か
ら構成される基板室を備えてなるものである。
Means for Solving the Problems In order to solve the above problems, the plasma processing apparatus according to the present invention includes a first vacuum chamber having a surface formed of an insulating material, and an insulator of the first vacuum chamber. Consisting of a high-frequency electrode provided outside the vacuum chamber along a surface formed of an object, a conductor maintained at a ground potential and provided outside the high-frequency electrode, and an electromagnet provided outside the conductor. The substrate chamber includes a discharge chamber in which a discharge chamber is placed, a second vacuum chamber, and a substrate stand provided inside the second vacuum chamber.

すなわち本発明は、絶縁物で形成された面を有する第1
の真空槽の絶縁物で形成された面に沿って前記真空槽の
外部に高周波電極を配し、さらにこの高周波電極の外部
に電磁石を配し、そしてこの高周波電極と電磁石との間
に接地電位の導体を設けたものをイオン源として用い、
不純物のドーピング或はプラズマ処理を行う試料を載せ
る基板台を第2の真空槽に設けるというものである。
That is, the present invention provides a first structure having a surface made of an insulating material.
A high-frequency electrode is arranged outside the vacuum chamber along the surface formed of an insulator of the vacuum chamber, an electromagnet is further arranged outside the high-frequency electrode, and a ground potential is set between the high-frequency electrode and the electromagnet. A device equipped with a conductor is used as an ion source,
A substrate stage on which a sample to be doped with impurities or subjected to plasma treatment is placed is provided in the second vacuum chamber.

作用 プラズマを生ずる真空槽を絶縁物で形成された面を有す
る様に構成することにより、高周波グロー放電用電極を
絶縁物で形成された面に沿ってこの真空槽の外部に設け
ることが可能となる。また放電室を構成する真空槽の外
部に高周波電極を設けることにより、セルフバイアスに
よって加速されたイオンが高周波電極をスパッタリング
することがな(なるため、ドーピング或はプラズマ処理
される半導体の特性に悪影響をもたらす不純物イオンや
粒子による汚染が防げる。さらに電磁石を配することで
放電室内に印加された磁場によって電子の閉じ込め及び
旋回運動の励起を行い、高周波電極によって供給される
電力を有効に用いて放電させる。そして高周波電極と電
磁石との間に接地電位の導体を設けることにより、高周
波電力が外部に漏洩することを防ぎ、高周波によって誘
導される電流が電磁石等の電磁石に流れることがなくな
るため印加磁場が安定となり、高周波電力を太き(して
も放電が極めて安定かつ一様になる。
By configuring the vacuum chamber that generates the working plasma to have a surface made of an insulator, it is possible to provide an electrode for high-frequency glow discharge outside the vacuum chamber along the surface formed of the insulator. Become. In addition, by providing a high-frequency electrode outside the vacuum chamber that constitutes the discharge chamber, ions accelerated by self-bias will not sputter the high-frequency electrode (this will have an adverse effect on the characteristics of the semiconductor being doped or plasma-treated). Furthermore, by arranging an electromagnet, the magnetic field applied inside the discharge chamber confines the electrons and excites their swirling motion, making effective use of the power supplied by the high-frequency electrode to generate a discharge. By providing a ground potential conductor between the high frequency electrode and the electromagnet, high frequency power is prevented from leaking to the outside, and current induced by the high frequency does not flow into the electromagnet, so the applied magnetic field is becomes stable, and even if the high-frequency power is increased, the discharge becomes extremely stable and uniform.

以上の高周波及び磁場によってたとえば10−3〜10
−’Torrの気体圧力下でも安定かつ一様に放電が維
持される。この10−3〜10−’Torrの気体圧力
下でイオンの平均自由行程は、イオン種やエネルギーに
よって異なるが、放電室から基板台までの距離(約10
cIM)と同程度或はそれ以上となるために、放電室内
に設けた第1の導電性バイアス部及び第2の導電性バイ
アス部という簡素な構造で荷電粒子の押し出し及び加速
を行うことができ、基板台上の半導体等の試料まで荷電
粒子を輸送しこの試料に照射することができる。装置内
の圧力が10−3〜10−’Torr以下にできること
及び放電用の高周波電極と加速用の導電性バイアス部電
極を分離していることから、圧力が高いことや直流電圧
が高いことによる沿面放電やなだれ放電等の異常な放電
を引き起こすことなく、1000eV以上に荷電粒子を
加速する。加えて装置内の圧力が10−3〜10−’T
orrJJ下にできることがら、所望のイオン以外の中
性粒子等の試料表面への堆積がな(、不純物の濃度を規
定した高精度の不純物のドーピング或はプラズマ処理を
行う。
For example, 10-3 to 10
Stable and uniform discharge is maintained even under gas pressure of -'Torr. The mean free path of ions under this gas pressure of 10-3 to 10-' Torr varies depending on the ion species and energy, but the distance from the discharge chamber to the substrate stand (approximately 10
cIM), the charged particles can be pushed out and accelerated with a simple structure of a first conductive bias section and a second conductive bias section provided in the discharge chamber. , charged particles can be transported to a sample such as a semiconductor on a substrate table and irradiated onto the sample. Because the pressure inside the device can be kept below 10-3 to 10-'Torr and because the high-frequency electrode for discharge and the conductive bias section electrode for acceleration are separated, high pressure and high DC voltage can be avoided. To accelerate charged particles to 1000 eV or more without causing abnormal discharge such as creeping discharge or avalanche discharge. In addition, the pressure inside the device is 10-3 to 10-'T.
What can be done under orrJJ is that neutral particles other than desired ions are not deposited on the sample surface (high-precision impurity doping or plasma treatment with a defined impurity concentration is performed).

実施例 以下図面に基づいて本発明をさらに詳しく説明する。Example The present invention will be explained in more detail below based on the drawings.

第1図は本発明に係るプラズマ処理装置の第1実施例の
概略構成図、第2図は本発明に係るプラズマ処理装置の
第1実施例における放電室Aの断面図を示したものであ
る。放電室Aの真空槽30は石英・ガラス・セラミック
ス等の絶縁体で作られた筒状管で構成される。容量゛結
合型高周波グロー放電用電極31−a及び31−bは導
電性のよい銅・ニッケル等の金属を用い、真空槽30の
面に沿って真空槽30の外部に設ける(第2図参照)。
FIG. 1 is a schematic configuration diagram of a first embodiment of a plasma processing apparatus according to the present invention, and FIG. 2 is a sectional view of a discharge chamber A in the first embodiment of the plasma processing apparatus according to the present invention. . The vacuum chamber 30 of the discharge chamber A is composed of a cylindrical tube made of an insulator such as quartz, glass, or ceramics. The capacitively coupled high frequency glow discharge electrodes 31-a and 31-b are made of a highly conductive metal such as copper or nickel, and are provided outside the vacuum chamber 30 along the surface of the vacuum chamber 30 (see FIG. 2). ).

容量結合型高周波グロー放電用電極31−aをマツチン
グボックス32を介して高周波発娠器33と接続し、容
量結合型高周波グロー放電用電極31−bを接地して真
空槽30内に高周波電力の供給を行う。さらに容量結合
型高周波グロー放電用電極31−a及び31−bの外部
に配した電磁石34により印加される磁場によって、電
子の旋回運動(電子サイクロトロン運動)の励起と電子
の閉じ込めを行うこ七により高周波電力を有効に用いて
、10−3〜10−’Torrの比較的低い圧力で真空
槽30内にプラズマを安定に発生させる。この磁場の強
度は真空槽30内に於て20〜200ガウス程度でよい
。高周波電極31−a及び31−bと電磁石34の間に
はステンレス・アルミニウム・銅等の導体壁35が挟ま
れ、本実施例においてはこの導体壁35と絶縁フランジ
36−a及び36−bによって真空槽30及び高周波電
極31−a、31−bを覆う槽を形成している。導電性
のモリブデン・ステンレス・アルミニウム・チタン・タ
ンタル等で作られ、第1の導電性バイアス部電極となる
導体メツシュ37−aは、セラミックス・テフロン・ア
クリル・塩化ビニル・石英等で作られた絶縁性フランジ
36−aの開口部38に設けられる。導電性のステンレ
ス・アルミニウム・チタン・タンタル等で作られた第2
の導電性バイアス部電極となる導体板37−すを真空槽
30内の導体メツシュ37−aと放電により生じるプラ
ズマ39を挟んで対向する位置に設ける。導体板37−
bはセラミックス・テフロン・アクリル・塩化ビニル・
石英等で作られた絶縁フランジ36−bを介して真空槽
30に取り付けられている。導体メツシュ37−a及び
導体板電極37−bは、直流高圧電源40に接続され、
所望の電圧を印加することにより、放電室A内の荷電粒
子を基板室Bへ押し出し加速を行う。
The capacitively coupled high frequency glow discharge electrode 31-a is connected to the high frequency generator 33 via the matching box 32, and the capacitively coupled high frequency glow discharge electrode 31-b is grounded to supply high frequency power within the vacuum chamber 30. supply. Furthermore, the magnetic field applied by the electromagnet 34 placed outside the capacitively coupled high-frequency glow discharge electrodes 31-a and 31-b excites the swirling motion (electron cyclotron motion) of the electrons and confines the electrons. Plasma is stably generated in the vacuum chamber 30 at a relatively low pressure of 10-3 to 10-' Torr by effectively using high-frequency power. The strength of this magnetic field within the vacuum chamber 30 may be about 20 to 200 Gauss. A conductor wall 35 made of stainless steel, aluminum, copper, etc. is sandwiched between the high frequency electrodes 31-a and 31-b and the electromagnet 34, and in this embodiment, the conductor wall 35 and the insulating flanges 36-a and 36-b A tank is formed that covers the vacuum tank 30 and the high frequency electrodes 31-a and 31-b. The conductor mesh 37-a, which is made of conductive molybdenum, stainless steel, aluminum, titanium, tantalum, etc., and serves as the first conductive bias section electrode, is an insulating mesh made of ceramics, Teflon, acrylic, vinyl chloride, quartz, etc. is provided in the opening 38 of the flexible flange 36-a. The second one is made of conductive stainless steel, aluminum, titanium, tantalum, etc.
A conductor plate 37-a, which serves as a conductive bias section electrode, is provided in a position facing the conductor mesh 37-a in the vacuum chamber 30, with the plasma 39 generated by discharge interposed therebetween. Conductor plate 37-
b is ceramics, Teflon, acrylic, vinyl chloride,
It is attached to the vacuum chamber 30 via an insulating flange 36-b made of quartz or the like. The conductor mesh 37-a and the conductor plate electrode 37-b are connected to a DC high voltage power supply 40,
By applying a desired voltage, charged particles in the discharge chamber A are pushed out to the substrate chamber B and accelerated.

放電室Aへの材料ガスの導入は、ガス導入管41によっ
て行う。基板室Bはガス゛排出管42に接続され、10
−3〜10−’Torrの圧力に保たれる。基板室B内
には導電性のステンレス・アルミニウム・銅等で作られ
た基板台43を設け、基板台43上に半導体基板等の試
料44を置(。試料44はヒーター45により加熱を行
い不純物のドーピング或はプラズマ処理の効率を上げる
。真空槽3゜内に一様に生じるプラズマから引き出され
た、開口部38に関して一様な荷電粒子密度で、がっ導
体メツシュ37−aと基板台43との電位差に応じた運
動エネルギーを有する荷電粒子ビーム46は、基板台4
3上の試料44に照射し、所望の量の不純物のドーピン
グ或はプラズマ処理を試料44に対して行う。
The material gas is introduced into the discharge chamber A through a gas introduction pipe 41. The substrate chamber B is connected to a gas discharge pipe 42,
The pressure is maintained between -3 and 10 Torr. A substrate stand 43 made of conductive stainless steel, aluminum, copper, etc. is provided in the substrate chamber B, and a sample 44 such as a semiconductor substrate is placed on the substrate stand 43 (the sample 44 is heated by a heater 45 to remove impurities). The conductor mesh 37-a and the substrate pedestal 43 have a uniform charged particle density with respect to the opening 38, which is extracted from the plasma uniformly generated within the vacuum chamber 3°. The charged particle beam 46 has a kinetic energy corresponding to the potential difference between the substrate stage 4
The sample 44 on the sample 3 is irradiated, and the sample 44 is doped with a desired amount of impurities or subjected to plasma treatment.

第3図は本発明に係るプラズマ処理装置の第2実施例の
概略構成図、第4図は本発明に係るプラズマ処理装置の
第2実施例における放電室Cの断面図を示したものであ
る。放電室Cの真空槽5゜は石英・ガラス・セラミック
ス等の絶縁体で作られた筒状管で構成される。容量結合
型高周波グロー放電用電極51−a及び51−bは導電
性のよい銅・ニッケル等の金属を用い、真空槽50の面
に沿って真空槽50の外部に設ける。容量結合型高周波
グロー放電用電極51−aをマツチングボックス52を
介して高周波発振器53と接続し、容量結合型高周波グ
ロー放電用電極51−bを接地して真空槽50内に高周
波電力の供給を行う。さらに容量結合型高周波グロー放
電用電極51−a及び51−bの外部に配した電磁石5
4により印加される磁場によって、電子の旋回運動(電
子サイクロトロン運動)の励起と電子の閉じ込めを行う
ことにより高周波電力を有効に用いて、10−3〜10
−’Torrの比較的低い圧力で真空槽50内にプラズ
マを安定に発生させる。この磁場の強度は真空槽50内
に於て20〜200ガウス程度でよい。高周波電極51
−a及び51−bはテフロン等の絶縁体55で覆われ、
その外部に接する導電性の銅・アルミ・ステンレス等で
作られたメツシュ56と絶縁されて設けられる(第4図
参照)。この導体メツシュ56は接地され、高周波電力
を遮蔽する。導電性の゛モリブデン・ステンレス・アル
ミニウム・チタン中タンタル等で作られ、第1の導電性
バイアス部電極となる導体メツシュ57−aは、セラミ
ックステフロン・アクリル・塩化ビニル・石英等で作ら
れた絶縁性フランジ58の開口部59に設けられる。導
電性のステンレス・アルミニウム・チタン−タンタル等
で作られた第2の導電性バイアス部電極となる導体板5
7−bを真空槽50内の導体メツシュ57−aと放電に
より生じるプラズマ60を挟んで対向する位置に設ける
。導体板57−bはセラミックス・テフロン・石英等で
作られた絶縁棒61により真空槽50に固定されている
。第1の導電性バイアス部電極57−a及び導体板57
−bは、直流高圧電源62に接続され、所望の電圧を印
加することにより、放電室A内の荷電粒子を基板室Bへ
押し出し加速を行う。放電室Cへの材料ガスの導入は、
ガス導入管63によって行う。基板室りはガス排出管6
4に接続され、10−3〜1O−6Torrの圧力に保
たれる。基板室B内には導電性のステンレス・アルミニ
ウム・銅等で作られた基板台65を設け、基板台65上
に半導体基板等の試料56を置く。試料66はヒーター
67により加熱を行い不純物のドーピング或はプラズマ
処理の効率を上げる。真空槽50内に一様に生じるプラ
ズマ60から引き出された、開口部59に関して一様な
荷電粒子密度で、かつ第1の導電性バイアス部電極57
−aと基板台65との電位差に応じた運動エネルギーを
有する荷電粒子ビーム68は、基板台65上の試料66
に照射し、所望の量の不純物のドーピング或はプラズマ
処理を試料56に対して行う。
FIG. 3 is a schematic configuration diagram of a second embodiment of the plasma processing apparatus according to the present invention, and FIG. 4 is a sectional view of the discharge chamber C in the second embodiment of the plasma processing apparatus according to the present invention. . The vacuum chamber 5° of the discharge chamber C is composed of a cylindrical tube made of an insulator such as quartz, glass, or ceramics. The capacitively coupled high frequency glow discharge electrodes 51-a and 51-b are made of a highly conductive metal such as copper or nickel, and are provided along the surface of the vacuum chamber 50 outside the vacuum chamber 50. The capacitively coupled high frequency glow discharge electrode 51-a is connected to the high frequency oscillator 53 via the matching box 52, and the capacitively coupled high frequency glow discharge electrode 51-b is grounded to supply high frequency power into the vacuum chamber 50. I do. Further, an electromagnet 5 disposed outside the capacitively coupled high frequency glow discharge electrodes 51-a and 51-b.
10-3 to 10 by effectively using high-frequency power by exciting the swirling motion of electrons (electron cyclotron motion) and confining the electrons by the magnetic field applied by 4.
Plasma is stably generated in the vacuum chamber 50 at a relatively low pressure of -'Torr. The strength of this magnetic field within the vacuum chamber 50 may be about 20 to 200 Gauss. High frequency electrode 51
-a and 51-b are covered with an insulator 55 such as Teflon,
It is provided insulated from a mesh 56 made of conductive copper, aluminum, stainless steel, etc., which is in contact with the outside (see FIG. 4). This conductor mesh 56 is grounded and shields high frequency power. The conductor mesh 57-a, which is made of conductive molybdenum, stainless steel, aluminum, titanium, tantalum, etc., and serves as the first conductive bias section electrode, is an insulating material made of ceramic Steflon, acrylic, vinyl chloride, quartz, etc. is provided in the opening 59 of the flexible flange 58. A conductor plate 5 that serves as a second conductive bias section electrode made of conductive stainless steel, aluminum, titanium-tantalum, etc.
7-b is provided in the vacuum chamber 50 at a position facing the conductor mesh 57-a with the plasma 60 generated by the discharge in between. The conductor plate 57-b is fixed to the vacuum chamber 50 by an insulating rod 61 made of ceramics, Teflon, quartz, or the like. First conductive bias section electrode 57-a and conductor plate 57
-b is connected to a DC high voltage power supply 62, and by applying a desired voltage, charged particles in the discharge chamber A are pushed out to the substrate chamber B and accelerated. Introducing the material gas into the discharge chamber C is as follows:
This is done through the gas introduction pipe 63. The substrate chamber is equipped with a gas exhaust pipe 6.
4 and maintained at a pressure of 10-3 to 10-6 Torr. A substrate table 65 made of conductive stainless steel, aluminum, copper, etc. is provided in the substrate chamber B, and a sample 56 such as a semiconductor substrate is placed on the substrate table 65. The sample 66 is heated by a heater 67 to increase the efficiency of impurity doping or plasma treatment. A first electrically conductive bias section electrode 57 with a uniform charged particle density with respect to the opening 59 drawn from a plasma 60 uniformly generated in the vacuum chamber 50
A charged particle beam 68 having kinetic energy corresponding to the potential difference between -a and the substrate table 65 is directed to the sample 66 on the substrate table 65.
The sample 56 is doped with a desired amount of impurities or subjected to plasma treatment.

第5図は本発明に係るプラズマ処理装置の第2実施例に
おける放電室C内に生じた窒素ガス(N2)のプラズマ
を、プラズマ発光分光法により測定したN2+<O,O
> :波長392r+mの発光強度[R,W、 B、 
Pearse and A、 G、 Gaydon :
 The 1dentification of Mo
1ecular 5pectra、 (Chapman
and Hall、  London、  1984)
 p227]を示した図である。導体メツシュ56のな
い場合(1)と導体メツシュ56のある場合(■)′の
発光強度を、同じ高周波電力(100W入力)及び磁場
強度(30Gauss )に設定し測定した。測定場所
は第4図に示すA、B、C,D、Eの5点を見込むよう
に真空槽50上から行った。なお測定に際し導体板57
−bは外している。導体メツシュ56のない場合(1)
は発光強度のばらつきが大きく、がっ放電が不安定であ
った。これに対し導体メツシュ56のある場合(II)
は発光強度のばらつきが小さくなり、かつ放電が安定と
なることを発明者らは見いだした。これは接地電位の導
体メツシュ56によって高周波が遮蔽され、高周波によ
って誘導される電流が電磁石に流れることがなくなった
ためであり、放電室C内の磁場が変動せず、安定で均一
なプラズマが生成されていることを示している。この様
に本発明に係るプラズマ処理装置を用い、安定で均一な
プラズマを生成し一様なプラズマ処理を行うことに関し
て、高周波電極と電磁石との間に接地電位の導体を設け
ることが大きな効果をもたらす。
FIG. 5 shows the plasma of nitrogen gas (N2) generated in the discharge chamber C in the second embodiment of the plasma processing apparatus according to the present invention, measured by plasma emission spectroscopy.
>: Emission intensity at wavelength 392r+m [R, W, B,
Pearse and A, G, Gaydon:
The 1dentification of Mo
1 ecular 5 pectra, (Chapman
and Hall, London, 1984)
p227]. The emission intensity in the case without the conductor mesh 56 (1) and in the case with the conductor mesh 56 (■)' was measured by setting the same high frequency power (100 W input) and magnetic field strength (30 Gauss). The measurement was performed from above the vacuum chamber 50 so that the five points A, B, C, D, and E shown in FIG. 4 were visible. In addition, when measuring, conductor plate 57
-b is removed. Case without conductor mesh 56 (1)
The emission intensity varied widely, and the discharge was unstable. On the other hand, when there is a conductor mesh 56 (II)
The inventors have found that the variation in emission intensity is reduced and the discharge is stable. This is because the high frequency is shielded by the conductor mesh 56 at ground potential, and the current induced by the high frequency no longer flows to the electromagnet.The magnetic field within the discharge chamber C does not fluctuate, and stable and uniform plasma is generated. It shows that As described above, providing a ground potential conductor between the high frequency electrode and the electromagnet has a great effect on generating stable and uniform plasma and performing uniform plasma processing using the plasma processing apparatus according to the present invention. bring.

発明の効果 本発明は、放電室として絶縁物で形成された面を有する
真空槽を用い、高周波と静磁場を重畳させることにより
、10−3〜10−’Torrの比較的低い圧力で、一
様なプラズマを安定に発生させることが可能となる。さ
らに、高周波電極を真空槽の絶縁物で構成される面に沿
って真空槽の外部に設けることによって、セルフバイア
スによって加速されたイオンが高周波電極をスパッタリ
ングすることがな(なるため、ドーピング或はプラズマ
処理される半導体の特性に悪影響をもたらす不純物イオ
ンや粒子による汚染が防げ、極めて高純度な不純物のド
ーピング或はプラズマ処理などを行うことが可能となる
。また、装置内の圧力がlO″3〜10−’Torr以
下にできること及び放電用の高周波電極と加速用の導電
性バイアス部電極を分離することが可能なことから、圧
力が高いことや直流電圧が高いことによる沿面放電やな
だれ放電等の異常な放電を引き起こすことなく、100
0eV以上に荷電粒子を加速し、不純物のドーピング或
はプラズマ処理などを行うこと゛が可能となる。そして
装置内の圧力が10−3〜10−’Torr以下である
ことから、所望のイオン以外の中性粒子等の試料表面へ
の堆積がな(、不純物の濃度を規定した高精度の不純物
のドーピング或はプラズマ処理を行うことが可能となる
。加えて大型のプラズマ処理装置を構成し、大面積の素
子製造等に用いる場合に、高周波電極と電磁石との間に
接地電位の導体を設けることにより、高周波によって誘
導される電流が電磁石等の電磁石に流れるこ七な(大電
力の高周波電力を供給することが可能となるため、制御
された磁場と大電力の高周波により安定でかつ一様な高
励起のプラズマを形成し、短い処理時間で一様な処理を
行うことが可能となる。以上の効果は、高周波電極と前
記導体との間に絶縁体を挟むこと、電磁石の外部に前記
第1の真空槽を覆う密閉容器を設けること、基板室及び
前記放電室との間に前記基板室及び前記放電室と電気的
に絶縁され第1の直流電源と接続して設けられた開口部
を有する第1の導電性バイアス部を備えてなること、第
1の直流電源又は第2の直流電源と接続して前記第1の
導電性バイアス部と対向する位置に放電により生じたプ
ラズマを挟んで前記基板室及び前記放電室と電気的に絶
縁されて設けられた第2の導電性バイアス部を前記放電
室内に備えてなること、第1の導電性バイアス部の開口
部に導電性メツシュ或は導電性多孔板を設けること、第
1の導電性バイアス部及び前記第2の導電性バイアス部
の放電により生じる荷電粒子に曝される側に表面被覆を
設けること、基板台に直流電圧を印加すること、基板台
を可動とすること、基板台を加熱する加熱源を備えてな
ること、ガス導入管を前記放電室に接続すること、ガス
導入管を前記基板室に接続すること、ガス排出管を前記
放電室に接続すること、ガス排出管を前記基板室に接続
すること、基板室をゲートバルブを介して他の真空槽或
は他のプラズマ処理装置と接続し、基板台を前記基板室
と前記他の真空槽或は他のプラズマ処理装置との間を搬
送させることを付加しても同様に得られる。本発明によ
るプラズマ処理装置は、たとえば長尺のイメージセンサ
−や大面積の薄膜トランジスタアレイ等の大型半導体素
子製造における高純度の不純物のドーピング或はプラズ
マ処理を高精度に均一性よ(一括して短時間に行うこと
が可能になるという点で、極めて有用性の高いものであ
る。
Effects of the Invention The present invention uses a vacuum chamber having a surface made of an insulating material as a discharge chamber, and superimposes a high frequency wave and a static magnetic field to generate a single discharge at a relatively low pressure of 10-3 to 10-'Torr. This makes it possible to stably generate various types of plasma. Furthermore, by providing the high-frequency electrode outside the vacuum chamber along the insulating surface of the vacuum chamber, ions accelerated by self-bias will not sputter the high-frequency electrode. It is possible to prevent contamination by impurity ions and particles that adversely affect the characteristics of semiconductors subjected to plasma processing, and it is possible to perform extremely high-purity impurity doping or plasma processing.In addition, the pressure inside the apparatus can be reduced to 1O''3. Since it can be lowered to ~10-' Torr and the high-frequency electrode for discharge and the conductive bias part electrode for acceleration can be separated, creeping discharge and avalanche discharge due to high pressure or high DC voltage can be avoided. 100 without causing abnormal discharge of
It becomes possible to accelerate charged particles to 0 eV or more and perform impurity doping or plasma treatment. Since the pressure inside the device is less than 10-3 to 10-'Torr, neutral particles other than desired ions are not deposited on the sample surface (high-precision impurity concentration that specifies the impurity concentration) is prevented. It becomes possible to perform doping or plasma processing.In addition, when configuring a large-scale plasma processing apparatus and using it for manufacturing large-area devices, it is possible to provide a ground potential conductor between the high-frequency electrode and the electromagnet. This allows the current induced by high frequency to flow through an electromagnet such as an electromagnet. It is possible to form highly excited plasma and perform uniform processing in a short processing time.The above effects are achieved by sandwiching an insulator between the high frequency electrode and the conductor, A sealed container covering the first vacuum chamber is provided, and an opening is provided between the substrate chamber and the discharge chamber, electrically insulated from the substrate chamber and the discharge chamber, and connected to the first DC power source. a first conductive bias section having a first conductive bias section connected to a first DC power source or a second DC power source and sandwiching plasma generated by discharge at a position facing the first conductive bias section; A second conductive bias section is provided in the discharge chamber and is provided electrically insulated from the substrate chamber and the discharge chamber, and a conductive mesh or a conductive mesh is provided at the opening of the first conductive bias section. providing a conductive porous plate; providing a surface coating on the side of the first conductive bias section and the second conductive bias section exposed to charged particles generated by discharge; and applying a DC voltage to the substrate pedestal. The substrate table is movable, a heating source for heating the substrate table is provided, a gas introduction tube is connected to the discharge chamber, a gas introduction tube is connected to the substrate chamber, and a gas discharge tube is provided. connecting the substrate chamber to the discharge chamber, connecting a gas exhaust pipe to the substrate chamber, connecting the substrate chamber to another vacuum chamber or another plasma processing apparatus via a gate valve, and connecting the substrate stage to the substrate chamber. The same effect can be obtained even if the plasma processing apparatus according to the present invention is transported between the above-mentioned other vacuum chamber or other plasma processing apparatus. It is extremely useful in that it allows doping of high-purity impurities or plasma processing to be performed with high precision and uniformity (all at once in a short time) in the manufacture of large-scale semiconductor devices such as arrays. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るプラズマ処理装置の第1実施例の
概略構成図、第2図は放電室Aの断面図、第3図は本発
明に係るプラズマ処理装置行の第2実施例の概略構成図
、第4図は放電室Cの断面図、第5図は本発明に係るプ
ラズマ処理装置nの第2実施例における放電室C内に生
じたプラズマを、プラズマ発光分光法により測定した発
光強度の図、第6図は従来の技術のうちイオン源として
直流グロー放電を用い、質量分離部を有さずイオン加速
部を経てイオンを半導体基板等に注入する簡易型イオン
注入装置の概略構成図、第7図は従来の技術のうち真空
槽内に容量結合型高周波電極を設けて高周波グロー放電
により化学的気相反応を生せしめるプラズマCVD装置
の高周波電極に直流電圧をさらに重畳印加する方法の概
略構成図、第8図は絶縁性筒状管の外部に高周波電極と
磁場発生部を設で構成した放電室を設けたプラズマ処理
装置を用いる方法の概略構成図である。 A・・・放電室、B・・・基板室、30・・・真空槽、
31−a・・・容量結合型高周波グロー放電用電極、3
1−b・・・容量結合型高周波グロー放電用電極、32
・・・マツチングボックス、33・・・高周波発振器、
34・・・電磁石、35・・・導体壁、36−a・・・
絶縁フランジ、36−b・・・絶縁フランジ、37−a
・・・導体メツシュ、37−b・・・導体板、38・・
・開口部、39・・・プラズマ、40・・・直流高圧電
源、41・・・ガス導入管、42・・・ガス排出管、4
3・・・基板台、44・・・試料、45・・・ヒーター
、46・・・荷電粒子ビーム、C・・・放電室、D・・
・基板室、50・・・真空槽、51−a・・・容量結合
型高周波グロー放電用電極、51−b・・・容量結合型
高周波グロー放電用電極、52・・・マツチングボック
ス、53・・・高周波発振器、54・・・電磁石、55
・−・絶縁体、56・・・導電性メツシュ、57−a・
・・導体メツシュ・・・57−b・・・導体板、58・
・・絶縁フランジ、59・・・開口部、60・・・プラ
ズマ、61・・・直流高圧電源、62・・・絶縁棒、6
3・・・ガス導入管、64・・・ガス排出管、65・・
・基板台0.66・・・試料、67・・・ヒーター、6
8・・・荷電粒子ビーム 代理人の氏名 弁理士 中尾敏男 ばか1名第 111
D 第2図 第 4 図 列 5 図 二 l   o    0   0   0    o
(U)渥 二ii’j   ;定二 1号÷、 第6図 第7図 〒 第8図
FIG. 1 is a schematic configuration diagram of a first embodiment of a plasma processing apparatus according to the present invention, FIG. 2 is a sectional view of a discharge chamber A, and FIG. 3 is a schematic diagram of a second embodiment of a plasma processing apparatus row according to the present invention. A schematic configuration diagram, FIG. 4 is a sectional view of the discharge chamber C, and FIG. 5 is a diagram showing the plasma generated in the discharge chamber C in the second embodiment of the plasma processing apparatus n according to the present invention, measured by plasma emission spectroscopy. Figure 6 shows a schematic diagram of a simple ion implantation device using direct current glow discharge as an ion source, which does not have a mass separation section and injects ions into a semiconductor substrate, etc. through an ion acceleration section. The configuration diagram, FIG. 7, shows a conventional technique in which a DC voltage is further superimposed and applied to the high frequency electrode of a plasma CVD apparatus in which a capacitively coupled high frequency electrode is provided in a vacuum chamber and a chemical vapor phase reaction is caused by high frequency glow discharge. FIG. 8 is a schematic diagram of a method using a plasma processing apparatus provided with a discharge chamber including a high-frequency electrode and a magnetic field generating section outside an insulating cylindrical tube. A...discharge chamber, B...substrate chamber, 30...vacuum chamber,
31-a... Capacitively coupled high frequency glow discharge electrode, 3
1-b... Capacitively coupled high frequency glow discharge electrode, 32
...Matching box, 33...High frequency oscillator,
34... Electromagnet, 35... Conductor wall, 36-a...
Insulating flange, 36-b... Insulating flange, 37-a
...Conductor mesh, 37-b...Conductor plate, 38...
・Opening portion, 39... Plasma, 40... DC high voltage power supply, 41... Gas introduction pipe, 42... Gas discharge pipe, 4
3... Substrate stand, 44... Sample, 45... Heater, 46... Charged particle beam, C... Discharge chamber, D...
- Substrate chamber, 50... Vacuum chamber, 51-a... Electrode for capacitively coupled high frequency glow discharge, 51-b... Electrode for capacitively coupled high frequency glow discharge, 52... Matching box, 53 ...High frequency oscillator, 54...Electromagnet, 55
... Insulator, 56... Conductive mesh, 57-a.
...Conductor mesh...57-b...Conductor plate, 58.
... Insulating flange, 59... Opening, 60... Plasma, 61... DC high voltage power supply, 62... Insulating rod, 6
3... Gas introduction pipe, 64... Gas discharge pipe, 65...
・Substrate stand 0.66...sample, 67...heater, 6
8... Name of charged particle beam agent Patent attorney Toshio Nakao Idiot No. 111
D Figure 2 Figure 4 Row 5 Figure 2 l o 0 0 0 o
(U) 楥二ii'j ; 田二 1 ÷, Figure 6 Figure 7 〒 Figure 8

Claims (15)

【特許請求の範囲】[Claims] (1)絶縁物で形成された面を有する第1の真空槽と、
前記第1の真空槽の絶縁物で形成された面に沿って前記
真空槽の外部に設けられた高周波電極、及び接地電位に
保たれ前記高周波電極の外部に設けられた導体、さらに
前記導体の外部に設けられた電磁石から構成される放電
室、第2の真空槽とその内部に設けられた基板台から構
成される基板室を備えてなることを特徴とするプラズマ
処理装置。
(1) a first vacuum chamber having a surface formed of an insulator;
a high-frequency electrode provided outside the vacuum chamber along a surface formed of an insulator of the first vacuum chamber; a conductor maintained at a ground potential and provided outside the high-frequency electrode; 1. A plasma processing apparatus comprising: a discharge chamber made up of an electromagnet provided externally; a substrate chamber made up of a second vacuum chamber and a substrate stand provided inside the second vacuum chamber.
(2)高周波電極と導体との間に絶縁体を挟むことを特
徴とする特許請求の範囲第1項記載のプラズマ処理装置
(2) The plasma processing apparatus according to claim 1, characterized in that an insulator is sandwiched between the high-frequency electrode and the conductor.
(3)電磁石の外部に第1の真空槽を覆う密閉容器を設
けることを特徴とする特許請求の範囲第1項又は第2項
記載のプラズマ処理装置。
(3) The plasma processing apparatus according to claim 1 or 2, characterized in that an airtight container covering the first vacuum chamber is provided outside the electromagnet.
(4)基板室及び放電室との間に前記基板室及び前記放
電室と電気的に絶縁され第1の直流電源と接続して設け
られた開口部を有する第1の導電性バイアス部を備えて
なることを特徴とする特許請求の範囲第1項から第3項
のいずれかに記載のプラズマ処理装置。
(4) A first conductive bias section having an opening provided between the substrate chamber and the discharge chamber and electrically insulated from the substrate chamber and the discharge chamber and connected to a first DC power supply. A plasma processing apparatus according to any one of claims 1 to 3, characterized in that:
(5)第1の直流電源又は第2の直流電源と接続して第
1の導電性バイアス部と対向する位置に放電により生じ
たプラズマを挟んで基板室及び前記放電室と電気的に絶
縁されて設けられた第2の導電性バイアス部を放電室内
に備えてなることを特徴とする特許請求の範囲第1項か
ら第4項のいずれかに記載のプラズマ処理装置。
(5) Connected to the first DC power source or the second DC power source, and electrically insulated from the substrate chamber and the discharge chamber with the plasma generated by the discharge in between, at a position facing the first conductive bias section. 5. The plasma processing apparatus according to claim 1, further comprising a second conductive bias section provided in the discharge chamber.
(6)第1の導電性バイアス部の開口部に導電性メッシ
ュ或は導電性多孔板を設けることを特徴とする特許請求
の範囲第1項から第5項のいずれかに記載のプラズマ処
理装置。
(6) The plasma processing apparatus according to any one of claims 1 to 5, characterized in that a conductive mesh or a conductive porous plate is provided in the opening of the first conductive bias section. .
(7)第1の導電性バイアス部及び前記第2の導電性バ
イアス部の放電により生じる荷電粒子に曝される側に表
面被覆を設けることを特徴とする特許請求の範囲第1項
から第6項のいずれかに記載のプラズマ処理装置。
(7) A surface coating is provided on the side of the first conductive bias section and the second conductive bias section exposed to charged particles generated by discharge. The plasma processing apparatus according to any one of paragraphs.
(8)基板台に直流電圧を印加することを特徴とする特
許請求の範囲第1項から第7項のいずれかに記載のプラ
ズマ処理装置。
(8) The plasma processing apparatus according to any one of claims 1 to 7, characterized in that a DC voltage is applied to the substrate stage.
(9)基板台を可動とすることを特徴とする特許請求の
範囲第1項から第8項のいずれかに記載のプラズマ処理
装置。
(9) The plasma processing apparatus according to any one of claims 1 to 8, characterized in that the substrate table is movable.
(10)基板台を加熱する加熱源を備えてなることを特
徴とする特許請求の範囲第1項から第9項のいずれかに
記載のプラズマ処理装置。
(10) The plasma processing apparatus according to any one of claims 1 to 9, further comprising a heating source that heats a substrate stage.
(11)ガス導入管を前記放電室に接続することを特徴
とする特許請求の範囲第1項から第10項のいずれかに
記載のプラズマ処理装置。
(11) The plasma processing apparatus according to any one of claims 1 to 10, characterized in that a gas introduction tube is connected to the discharge chamber.
(12)ガス導入管を前記基板室に接続することを特徴
とする特許請求の範囲第1項から第11項のいずれかに
記載のプラズマ処理装置。
(12) The plasma processing apparatus according to any one of claims 1 to 11, wherein a gas introduction pipe is connected to the substrate chamber.
(13)ガス排出管を前記放電室に接続することを特徴
とする特許請求の範囲第1項から第12項のいずれかに
記載のプラズマ処理装置。
(13) The plasma processing apparatus according to any one of claims 1 to 12, wherein a gas exhaust pipe is connected to the discharge chamber.
(14)ガス排出管を前記基板室に接続することを特徴
とする特許請求の範囲第1項から第13項のいずれかに
記載のプラズマ処理装置。
(14) The plasma processing apparatus according to any one of claims 1 to 13, wherein a gas exhaust pipe is connected to the substrate chamber.
(15)基板室をゲートバルブを介して他の真空槽或は
他のプラズマ処理装置と接続し、基板台を前記基板室と
前記他の真空槽或は他のプラズマ処理装置との間を搬送
させることを特徴とする特許請求の範囲第1項から第1
4項のいずれかに記載のプラズマ処理装置。
(15) Connect the substrate chamber to another vacuum chamber or other plasma processing apparatus via a gate valve, and transport the substrate table between the substrate chamber and the other vacuum chamber or other plasma processing apparatus. Claims 1 to 1, characterized in that
4. The plasma processing apparatus according to any one of Item 4.
JP14854987A 1987-06-15 1987-06-15 Plasma processing device Expired - Lifetime JPH0816271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14854987A JPH0816271B2 (en) 1987-06-15 1987-06-15 Plasma processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14854987A JPH0816271B2 (en) 1987-06-15 1987-06-15 Plasma processing device

Publications (2)

Publication Number Publication Date
JPS63311727A true JPS63311727A (en) 1988-12-20
JPH0816271B2 JPH0816271B2 (en) 1996-02-21

Family

ID=15455244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14854987A Expired - Lifetime JPH0816271B2 (en) 1987-06-15 1987-06-15 Plasma processing device

Country Status (1)

Country Link
JP (1) JPH0816271B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199824A (en) * 1989-01-30 1990-08-08 Hitachi Ltd Introduction of impurity into substrate
CN102943245A (en) * 2012-11-01 2013-02-27 秦皇岛博硕光电设备股份有限公司 Ion implanting method and ion implanting machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199824A (en) * 1989-01-30 1990-08-08 Hitachi Ltd Introduction of impurity into substrate
CN102943245A (en) * 2012-11-01 2013-02-27 秦皇岛博硕光电设备股份有限公司 Ion implanting method and ion implanting machine

Also Published As

Publication number Publication date
JPH0816271B2 (en) 1996-02-21

Similar Documents

Publication Publication Date Title
US5988103A (en) Apparatus for plasma source ion implantation and deposition for cylindrical surfaces
US6213050B1 (en) Enhanced plasma mode and computer system for plasma immersion ion implantation
US6300227B1 (en) Enhanced plasma mode and system for plasma immersion ion implantation
US20090044910A1 (en) Plasma Processing Apparatus
KR100388594B1 (en) Ion beam processing apparatus
JP2749630B2 (en) Plasma surface treatment method
US5252892A (en) Plasma processing apparatus
KR100249548B1 (en) Plasma processing system
JPH11340151A (en) Thin film deposition system
JPS63311727A (en) Plasma processor
JP2689419B2 (en) Ion doping equipment
JPH07123121B2 (en) Plasma processing device
JPS63157868A (en) Plasma treatment device
US5522935A (en) Plasma CVD apparatus for manufacturing a semiconductor device
JPH0798145B2 (en) Plasma processing device
JPS63234519A (en) Plasma processor
JPH024976A (en) Thin film formation
JP2590502B2 (en) Impurity doping method
JPS63157416A (en) Plasma treatment apparatus
JP2870774B2 (en) Method for forming single crystal film
JPH0824115B2 (en) Plasma processing device
JPS6247485A (en) Device for forming deposited film by plasma cvd
JPS59161035A (en) Plasma generator
JPH04206429A (en) Ion radiation processing device
JPH02199824A (en) Introduction of impurity into substrate

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 12