JPH04271122A - Plasma processing equipment - Google Patents

Plasma processing equipment

Info

Publication number
JPH04271122A
JPH04271122A JP3031142A JP3114291A JPH04271122A JP H04271122 A JPH04271122 A JP H04271122A JP 3031142 A JP3031142 A JP 3031142A JP 3114291 A JP3114291 A JP 3114291A JP H04271122 A JPH04271122 A JP H04271122A
Authority
JP
Japan
Prior art keywords
substrate
plasma
insulating layer
plasma processing
electrostatic chuck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3031142A
Other languages
Japanese (ja)
Inventor
Akio Shimizu
清水 明夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3031142A priority Critical patent/JPH04271122A/en
Publication of JPH04271122A publication Critical patent/JPH04271122A/en
Pending legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Physical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To apply an ECR type plasma processing equipment equipped with a plasma forming chamber which is equipped with a microwave transmitting window and a plasma leading-out window on both end surfaces, respectively, and coaxially surrounded by a main coil, and a reaction chamber linked with the plasma forming chamber via the plasma leading-out window in which reaction chamber a substrate stand is arranged, to an equipment capable of forming a film which is free from contamination and has uniform thickness and quality on the whole surface of a large diameter substrate and of high speed dry cleaning of the substrate stand. CONSTITUTION:An electrostatic chuck 11 is used for a substrate stand. The structure of said chuck is so constituted that the peripheral part of the surface of an insulating layer on which a substrate 9 is attracted and retained is covered with a metal surface to form a ring type metal surface 12 on the peripheral side of the substrate, and electric field of the substrate periphery is made uniform when an RF bias is applied. The ring type metal surface 12 is formed low, in order to be able to have an inner diameter which does not expose the insulating layer surface. Hence the dry cleaning in the vicinity of the electrostatic chuck 11 can be realized at a high speed by applying the RF bias.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、半導体集積回路, 
特にLSI等の微細加工によるDRAMの製造装置であ
って、両端面にそれぞれマイクロ波透過窓とプラズマ引
出し窓とを備えるとともにメインコイルにより同軸に囲
まれ内部に電子サイクロトロン共鳴磁場領域が形成され
る軸対称のプラズマ生成室と、前記プラズマ引出し窓を
介してプラズマ生成室と連通し内部に被処理基板を保持
する基板台が配される反応室と、該基板台にRFバイア
スを印加するRF電源とを備えてなるECR (電子サ
イクロトロン共鳴) 型プラズマ処理装置に関する。
[Industrial Application Field] This invention relates to semiconductor integrated circuits,
In particular, it is a manufacturing device for DRAM by microfabrication of LSI, etc., which has a microwave transmission window and a plasma extraction window on both end faces, and is coaxially surrounded by a main coil and has an electron cyclotron resonance magnetic field region formed inside. a symmetrical plasma generation chamber; a reaction chamber that communicates with the plasma generation chamber through the plasma extraction window and includes a substrate pedestal therein that holds a substrate to be processed; and an RF power source that applies an RF bias to the substrate pedestal. The present invention relates to an ECR (electron cyclotron resonance) type plasma processing apparatus comprising:

【0002】0002

【従来の技術】従来、この種のプラズマ処理装置として
、例えば図3に示すものが知られている。この装置は、
マイクロ波の円筒型空洞共振器として形成されたプラズ
マ生成室3と,プラズマ生成室3を同軸に囲むメインコ
イル5と,被処理基板 (以下基板と記す) 9を保持
する基板台10が配される反応室7と,基板9にRFバ
イアスを印加するRF電源20とを主な構成要素として
形成されている。
2. Description of the Related Art Conventionally, as this type of plasma processing apparatus, one shown in FIG. 3, for example, is known. This device is
A plasma generation chamber 3 formed as a microwave cylindrical cavity resonator, a main coil 5 coaxially surrounding the plasma generation chamber 3, and a substrate stand 10 holding a substrate to be processed (hereinafter referred to as a substrate) 9 are arranged. The main components are a reaction chamber 7 and an RF power source 20 that applies an RF bias to the substrate 9.

【0003】プラズマ生成室3は両端面にそれぞれマイ
クロ波透過窓2とプラズマ引出し窓8とを備え、基板9
の表面に例えば絶縁膜としてSiO膜を形成する際には
、メインコイル5により、導波管1からマイクロ波透過
窓2を通して導入される, ここでは周波数が2.45
GHz のマイクロ波との電子サイクロトロン磁場領域
面 (以下ECR領域面と記す) がプラズマ生成室3
内に形成され、プラズマ生成ガス導入系4からプラズマ
生成室3内に導入されたN2 OガスがECR領域面近
傍で効率よくプラズマ化される。このプラズマは、メイ
ンコイル5が形成する,基板台10方向へ磁力線が広が
る発散磁界に沿ってプラズマ引出し窓8から基板台10
方向へ移動しつつ、反応ガス導入系6から反応室7内へ
導入された反応ガスSiH4 を分解, 活性化する。 一方、反応室7の下方には、サブコイル15がメインコ
イル5と同軸に配され、メインコイル5が形成する磁界
と反対方向の磁界を形成して、反応室7内に軸方向磁界
成分が零の,いわゆるカスプ面を有するカスプ磁界が形
成されており、発散磁界中央部の高磁束密度に対応して
中央部が高密度となって移動するプラズマがカスプ面近
傍で半径方向に急激に広がり、活性化された反応ガスと
ともに基板により均一な密度で到達する。
The plasma generation chamber 3 is provided with a microwave transmission window 2 and a plasma extraction window 8 on both end faces, and a substrate 9
For example, when forming a SiO film as an insulating film on the surface of
The electron cyclotron magnetic field plane (hereinafter referred to as the ECR domain plane) with the GHz microwave is the plasma generation chamber 3.
N2 O gas formed within the plasma generating chamber 3 and introduced into the plasma generating chamber 3 from the plasma generating gas introduction system 4 is efficiently converted into plasma near the ECR region surface. This plasma is transmitted from the plasma extraction window 8 to the substrate table 10 along a diverging magnetic field formed by the main coil 5 in which lines of magnetic force spread in the direction of the substrate table 10.
While moving in the direction, the reaction gas SiH4 introduced from the reaction gas introduction system 6 into the reaction chamber 7 is decomposed and activated. On the other hand, below the reaction chamber 7, a subcoil 15 is arranged coaxially with the main coil 5, and forms a magnetic field in the opposite direction to the magnetic field formed by the main coil 5, so that the axial magnetic field component in the reaction chamber 7 is zero. A cusp magnetic field having a so-called cusp surface is formed, and in response to the high magnetic flux density at the center of the diverging magnetic field, the moving plasma becomes dense at the center and rapidly spreads in the radial direction near the cusp surface. It arrives at a more uniform density on the substrate along with the activated reactant gas.

【0004】さらに、基板9にはRF電源20から基板
台10を介してRFバイアスが印加され、基板前面のプ
ラズマ中の電子とイオンとの移動度の差により、基板表
面の負のバイアス電位が現れており、このバイアス電位
による電界は反応室7の周壁へ向かうので基板表面の電
界強度は周縁側へ行くにつれて大きくなり、プラズマ中
のイオンがより多く基板周縁側へ引き寄せられ、プラズ
マはさらに均一な密度で基板に到達し、基板表面は均一
な密度で注入されるO+ により反応活性化され、かつ
負のバイアス電位によるイオン衝撃効果も加わり、膜厚
が均一で膜質が緻密なSiO膜が形成される。そして、
この成膜に与かるプラズマは、低圧ガスを用い、プラズ
マ化に与かる電子の電子サイクロトロン運動をマイクロ
波周波数との共鳴状態で起こさせてマイクロ波電力を効
率よく電子に吸収させて作られるため、プラズマ密度,
 プラズマ活性が高く、基板温度が室温ないし200 
℃の低温でも成膜が可能となり、サブミクロンルールの
微細加工を可能にする。
Further, an RF bias is applied to the substrate 9 from an RF power source 20 via the substrate table 10, and due to the difference in mobility between electrons and ions in the plasma in front of the substrate, a negative bias potential on the substrate surface is increased. Since the electric field due to this bias potential is directed toward the peripheral wall of the reaction chamber 7, the electric field strength on the substrate surface increases as it goes toward the peripheral edge, and more ions in the plasma are attracted toward the substrate peripheral edge, making the plasma more uniform. The O+ implanted at a uniform density activates the reaction on the substrate surface, and the ion bombardment effect due to the negative bias potential is also added, forming a SiO film with a uniform thickness and dense film quality. be done. and,
The plasma involved in this film formation is created by using low-pressure gas to cause the electron cyclotron motion of the electrons involved in plasma formation to occur in a state of resonance with the microwave frequency, so that the microwave power is efficiently absorbed by the electrons. , plasma density,
Plasma activity is high and substrate temperature is room temperature to 200℃.
It becomes possible to form films even at low temperatures of ℃, making it possible to perform microfabrication with submicron rules.

【0005】[0005]

【発明が解決しようとする課題】ところで、基板9を保
持する基板台10は、一般に機械的手段によるメカニカ
ルチャック式のものが用いられるが、チャックの腕が基
板の一部をおおい、この部分には半導体装置を形成する
ことができず、基板の貴重な表面の損失となる。また、
チャックの力が基板面のごく一部にしかかからないので
、基板が反っているような場合に反りを矯正して平坦化
するなどの機能を有しない。このため、静電引力を利用
して基板を平坦な絶縁層表面に密着状態に吸引保持する
静電チャックの利用が進みつつある。この静電チャック
は、外径が被処理基板の径より大きい吸引電極を形成す
るように一平面内に配された2枚の半円形平板電極など
複数の電極が該複数の板状電極の同側に共通の平坦な絶
縁層が形成されるように絶縁物内に埋め込まれてなるも
ので、その構造例が、例えば特公昭63−11426 
号公報に示されている。この構造例では、静電チャック
は、2枚のアルミニウム製の半円形平板電極を直径側を
対向させて一平面内に並べ全体として円形に形成された
吸引電極をポリエチレンなどの絶縁物内に埋め込んだも
のとされている。そして、このような構造の静電チャッ
クの場合には、基板へのRFバイアスの印加は、図4に
示すように、RF電源の非接地側端子を、ハイパスフィ
ルタを構成するコンデンサ21を介して吸引電極に接続
することにより行われる。ここで、符号23は直流電源
であり、静電チャック11に吸引電圧を供給する。また
、符号22はソレノイドからなるローパスフィルタを示
す。しかし、このような従来の静電チャックでは、次の
ような問題点があった。
[Problems to be Solved by the Invention] By the way, the substrate stand 10 that holds the substrate 9 is generally of a mechanical chuck type using mechanical means, but the arms of the chuck cover a part of the substrate, and this part cannot form a semiconductor device and results in the loss of valuable surface area of the substrate. Also,
Since the force of the chuck is applied only to a small portion of the substrate surface, it does not have the function of correcting the warp and flattening the board if it is warped. For this reason, the use of electrostatic chucks that utilize electrostatic attraction to attract and hold a substrate in close contact with the surface of a flat insulating layer is increasing. This electrostatic chuck has a plurality of electrodes such as two semicircular plate electrodes arranged in one plane so as to form a suction electrode whose outer diameter is larger than the diameter of the substrate to be processed. It is embedded in an insulator so that a common flat insulating layer is formed on both sides, and examples of its structure include, for example, Japanese Patent Publication No. 63-11426.
It is shown in the publication No. In this structure example, the electrostatic chuck consists of two aluminum semicircular plate electrodes arranged in one plane with their diametric sides facing each other, and a circular suction electrode embedded in an insulating material such as polyethylene. It is considered as something. In the case of an electrostatic chuck with such a structure, as shown in FIG. 4, the application of RF bias to the substrate is performed by connecting the non-grounded side terminal of the RF power source through the capacitor 21 that constitutes a high-pass filter. This is done by connecting to a suction electrode. Here, the reference numeral 23 is a DC power supply, which supplies a suction voltage to the electrostatic chuck 11. Further, reference numeral 22 indicates a low-pass filter consisting of a solenoid. However, such conventional electrostatic chucks have the following problems.

【0006】(1) この種の静電チャックを基板台と
して用いた場合、絶縁層表面の基板で覆われない部分に
も成膜され、膜が堆積する。堆積厚さが100 μm程
度になると、膜の内部応力のため、膜が剥がれはじめ、
基板にパーティクル汚染が生じるという問題があった。 基板表面はサブミクロンオーダの微細構造であるため、
同等の大きさをもつパーティクルが付着すると、半導体
装置の歩留りが著しく低下する。
(1) When this type of electrostatic chuck is used as a substrate stand, a film is deposited even on the portion of the surface of the insulating layer that is not covered by the substrate. When the deposition thickness reaches approximately 100 μm, the film begins to peel off due to internal stress in the film.
There was a problem that particle contamination occurred on the substrate. Since the substrate surface has a fine structure on the submicron order,
If particles of similar size adhere, the yield of semiconductor devices will drop significantly.

【0007】この問題を解決するため、装置内に堆積し
た膜を、厚さが100 μm程度に達する前に、ふっ素
系のエッチングガスをプラズマ生成室内に導入してプラ
ズマ化し、このプラズマを膜に作用させて除去するドラ
イクリーニング方法が用いられている。しかしながら、
静電チャック周辺の膜を効率よく落とすためにRFバイ
アスを印加すると、静電チャック本体も同時にエッチン
グされ、静電チャックの絶縁物がセラミックスである場
合には、セラミックスの構成成分であるカーボン,ナト
リウムおよびその他の重金属により、反応室内部の汚染
が進むという問題があり、高速クリーニングができず、
このために装置のクリーニング時間が長くなり、装置の
稼動率を下げるという問題があった。静電チャックの絶
縁物にセラミックスを用いる理由は、絶縁物を例えばポ
リエチレンとした場合、ポリエチレンの軟化温度が12
0 ℃前後と低く、一方、低温成膜を特長とするECR
型プラズマ処理装置でも、成膜時の基板温度が150 
〜200 ℃に達しうることから、静電チャックの低温
保持が必要となるが、ポリエチレンなどの有機合成樹脂
は熱伝導率が小さく、静電チャックの低温保持に多くの
配慮を必要とするからである。
In order to solve this problem, before the film deposited in the apparatus reaches a thickness of about 100 μm, a fluorine-based etching gas is introduced into the plasma generation chamber to turn it into plasma, and this plasma is applied to the film. A dry cleaning method is used to remove the particles by removing them. however,
When RF bias is applied to efficiently remove the film around the electrostatic chuck, the electrostatic chuck body is also etched at the same time, and if the insulator of the electrostatic chuck is ceramic, carbon and sodium, which are the constituent components of the electrostatic chuck, are etched. There is a problem that the inside of the reaction chamber becomes contaminated due to heavy metals and other heavy metals, and high-speed cleaning is not possible.
For this reason, there was a problem in that the cleaning time of the device was increased, and the operating rate of the device was lowered. The reason why ceramics are used as the insulator of an electrostatic chuck is that when the insulator is made of polyethylene, for example, the softening temperature of polyethylene is 12
On the other hand, ECR is characterized by low-temperature film formation.
Even with type plasma processing equipment, the substrate temperature during film formation is 150℃.
Since the electrostatic chuck can reach ~200°C, it is necessary to keep the electrostatic chuck at a low temperature, but organic synthetic resins such as polyethylene have low thermal conductivity and require a lot of consideration to keep the electrostatic chuck at a low temperature. be.

【0008】(2) 近年、半導体製造装置のスループ
ットを向上させるため、基板の直径が大きくなり、これ
に伴って静電チャック本体も大形化されつつある。しか
し基板の直径が200 mmオーダになると、基板周縁
部の電界を均一化するためには、直径が200 mmオ
ーダよりも十分大きい吸引電極を使用する必要があるが
、この場合には、静電チャックの大きさが、静電チャッ
クを既存のプラズマ処理装置に使用する場合などに制約
を受けることから、吸引電極を静電チャックの外径一杯
まで埋め込むこととなり、信頼性のある静電チャックを
得ることが非常に困難であるという問題があった。
(2) In recent years, in order to improve the throughput of semiconductor manufacturing equipment, the diameter of substrates has become larger, and electrostatic chuck bodies have also become larger accordingly. However, when the diameter of the substrate becomes on the order of 200 mm, it is necessary to use a suction electrode with a diameter sufficiently larger than on the order of 200 mm in order to equalize the electric field around the edge of the substrate. Because the size of the chuck is limited when using an electrostatic chuck with existing plasma processing equipment, the suction electrode is embedded to the full outer diameter of the electrostatic chuck, making it possible to create a reliable electrostatic chuck. The problem was that it was very difficult to obtain.

【0009】本発明の目的は、装置内部のドライクリー
ニング時に、RFバイアスを印加して装置内を汚染させ
ることなく基板台周辺を高速にクリーニングすることが
でき、かつ大径の基板に対応して基板の全表面に膜厚,
 膜質の均一な膜を形成することのできるECR型プラ
ズマ処理装置を提供することである。
An object of the present invention is to be able to clean the area around the substrate table at high speed without contaminating the inside of the device by applying an RF bias when dry cleaning the inside of the device, and to be able to handle large diameter substrates. Film thickness on the entire surface of the substrate,
An object of the present invention is to provide an ECR type plasma processing apparatus capable of forming a film with uniform film quality.

【0010】0010

【課題を解決するための手段】上記課題を解決するため
に、この発明においては、両端面にそれぞれマイクロ波
透過窓とプラズマ引出し窓とを備えるとともにメインコ
イルにより同軸に囲まれ内部に電子サイクロトロン共鳴
磁場領域が形成される軸対称のプラズマ生成室と、前記
プラズマ引出し窓を介してプラズマ生成室と連通し内部
に被処理基板を保持する基板台が配される反応室と、該
基板台にRFバイアスを印加するRF電源とを備えてな
るECR型プラズマ処理装置を、前記基板台に、外径が
被処理基板の径より大きい吸引電極を形成するように一
平面内に配された2枚の半円形平板電極など複数の電極
が該複数の板状電極の同側に共通の平坦な絶縁層が形成
されるように絶縁物内に埋め込まれ静電引力により前記
絶縁層の表面に被処理基板を密着状態に吸引保持する静
電チャックが用いられるとともに、該絶縁層表面の周縁
側が、絶縁層を介して吸引電極と有意な幅をもって対向
するリング状対向面を有する, 外径が吸引電極よりも
大きいリング状金属面により覆われた装置とするものと
する。
[Means for Solving the Problems] In order to solve the above problems, in the present invention, both end faces are provided with a microwave transmission window and a plasma extraction window, respectively, and the main coil coaxially surrounds the main coil and has electron cyclotron resonance inside. an axially symmetrical plasma generation chamber in which a magnetic field region is formed; a reaction chamber that communicates with the plasma generation chamber through the plasma extraction window and has a substrate stand therein that holds a substrate to be processed; An ECR type plasma processing apparatus equipped with an RF power supply for applying a bias is mounted on the substrate table with two plates arranged in one plane so as to form a suction electrode whose outer diameter is larger than the diameter of the substrate to be processed. A plurality of electrodes such as semicircular plate electrodes are embedded in an insulator so that a common flat insulating layer is formed on the same side of the plurality of plate electrodes, and the surface of the insulating layer is attached to the substrate to be processed by electrostatic attraction. An electrostatic chuck is used that attracts and holds the insulating layer in close contact with the insulating layer, and the outer diameter of the insulating layer has a ring-shaped opposing surface that faces the attracting electrode with a significant width between the peripheral edge of the surface of the insulating layer and the attracting electrode. The device shall be covered by a ring-shaped metal surface larger than the

【0011】この場合、静電チャックの絶縁層表面の周
縁側をリング状に覆う金属面は、高さが該金属面の内側
の絶縁層表面よりも低くなるように、かつ内径が被処理
基板の径よりも小さくなるように形成すれば好適である
In this case, the ring-shaped metal surface covering the peripheral edge of the insulating layer surface of the electrostatic chuck is designed such that its height is lower than the insulating layer surface inside the metal surface, and its inner diameter is smaller than the substrate to be processed. It is preferable if the diameter is smaller than the diameter of the diameter.

【0012】そして、このように、リング状金属面の内
側の,被処理基板が密着状態に吸引保持される絶縁層表
面がリング状金属面より高く形成された静電チャックを
基板台に用いるプラズマ処理装置を、装置の内部に付着
した膜をエッチングガスを用いて除去するドライクリー
ニングが、静電チャックの絶縁層表面を被処理基板と同
一基板の両面にアルミニウムを蒸着してなる保護板で覆
って行われる装置とすれば好適である。
[0012] As described above, plasma processing using an electrostatic chuck as a substrate stage in which the surface of the insulating layer on the inside of the ring-shaped metal surface, on which the substrate to be processed is suctioned and held in close contact, is formed higher than the ring-shaped metal surface. Dry cleaning, which uses etching gas to remove the film that adheres to the inside of the processing equipment, covers the surface of the insulating layer of the electrostatic chuck with a protective plate made by vapor-depositing aluminum on both sides of the same substrate as the processing target. It is preferable to use a device that performs this process.

【0013】なお、静電チャックの絶縁層表面の周縁側
をリング状に覆う金属面は金属スパッタ膜として形成す
るのがよい。
[0013] The metal surface covering the peripheral edge of the insulating layer surface of the electrostatic chuck in a ring shape is preferably formed as a metal sputtered film.

【0014】[0014]

【作用】このように、絶縁層表面の周縁側が、絶縁層を
介して吸引電極と有意な幅をもって対向するリング状対
向面を有する, 外径が吸引電極よりも大きいリング状
金属面により覆われた静電チャックを基板台に用いるこ
とにより、RF電源を静電チャックの吸引電極に接続し
たとき、リング状金属面が絶縁層を誘電体として吸引電
極と容量結合されていることから、この金属面にも基板
とほぼ等しい負のバイアス電位が生じる。そして、リン
グ状金属面は吸引電極の周縁側を基板に対してシールド
するから、基板の周縁側電界が均一化されるとともに、
金属面には電界強度が半径方向に強くなる電界分布が形
成され、発散磁界とカスプ磁界とでほぼ均一化された基
板前面側のプラズマを均一化して、基板中央部から周縁
部まで膜厚, 膜質の均一な膜を形成することができる
。実験によれば、従来の膜厚分布4〜5%が2〜3%に
抑えられた。
[Operation] In this way, the peripheral edge side of the surface of the insulating layer is covered with a ring-shaped metal surface having a larger outer diameter than the attracting electrode and having a ring-shaped opposing surface facing the attracting electrode with a significant width through the insulating layer. When an RF power source is connected to the attraction electrode of the electrostatic chuck by using an electrostatic chuck as a substrate stand, the ring-shaped metal surface is capacitively coupled to the attraction electrode using the insulating layer as a dielectric. A negative bias potential approximately equal to that of the substrate is also generated on the metal surface. Since the ring-shaped metal surface shields the peripheral edge of the attraction electrode from the substrate, the electric field on the peripheral edge of the substrate is made uniform, and
An electric field distribution is formed on the metal surface where the electric field strength becomes stronger in the radial direction, and the plasma on the front side of the substrate, which is almost uniform, is made uniform by the divergent magnetic field and the cusp magnetic field, and the film thickness is increased from the center of the substrate to the periphery. A film with uniform quality can be formed. According to experiments, the conventional film thickness distribution of 4 to 5% was suppressed to 2 to 3%.

【0015】そして、静電チャックの絶縁層表面の周縁
側をリング状に覆う金属面を、高さが該金属面の内側の
絶縁層表面よりも低くなるように、かつ内径が被処理基
板の径よりも小さくなるように形成すれば、絶縁層表面
の周縁部に膜が堆積せず、従って、クリーニング時に、
絶縁層に含まれるカーボン, ナトリウムおよびその他
の重金属により装置内部が汚染されることがない。これ
により、例えば装置内部に堆積したSiO膜をクリーニ
ング, 除去する際、静電チャックにRFバイアスを印
加してふっ素系クリーニングガス中のF+ をリング状
金属面上に堆積したSiO膜に大量に供給することがで
き、絶縁層表面の周縁部が露出している場合と比べ、3
〜10倍のエッチングレートでSiO膜を除去すること
ができる。
[0015] Then, the ring-shaped metal surface covering the peripheral edge of the insulating layer surface of the electrostatic chuck is arranged so that the height is lower than the inner insulating layer surface of the metal surface and the inner diameter is the same as that of the substrate to be processed. If it is formed to be smaller than the diameter, a film will not be deposited on the peripheral edge of the insulating layer surface, and therefore, during cleaning,
The inside of the device will not be contaminated by carbon, sodium, and other heavy metals contained in the insulating layer. For example, when cleaning or removing a SiO film deposited inside the device, an RF bias is applied to the electrostatic chuck to supply a large amount of F+ in the fluorine-based cleaning gas to the SiO film deposited on the ring-shaped metal surface. 3 compared to the case where the peripheral edge of the insulating layer surface is exposed.
The SiO film can be removed at an etching rate of ~10 times.

【0016】また、装置内部のドライクリーニング時に
、静電チャックの絶縁層表面を、被処理基板と同一基板
の両面にアルミニウムを蒸着してなる保護板で覆うよう
にすると、保護板に金属板を用いる場合と比較して保護
板が軽量となり、特に、装置が、基板の被処理面を鉛直
方向下向きとして処理を行う装置の場合に保護板の吸着
が確実に行われ、誤って絶縁層がエッチングガスにより
侵されるおそれがなくなる。従って、絶縁層中のカーボ
ン, ナトリウムおよびその他の重金属による装置内汚
染のおそれがなくなり、次の成膜時の,これら物質によ
る基板の汚染を避けて、製作される半導体装置の歩留り
を向上させることができる。
Furthermore, when dry cleaning the inside of the apparatus, if the surface of the insulating layer of the electrostatic chuck is covered with a protection plate made by vapor-depositing aluminum on both sides of the same substrate as the substrate to be processed, a metal plate can be used as the protection plate. The protection plate is lighter compared to the case where the protection plate is used, and the protection plate is reliably adsorbed, especially when the device processes the substrate with the surface to be processed facing downward in the vertical direction, which prevents the insulating layer from being accidentally etched. There is no risk of being attacked by gas. Therefore, there is no risk of contamination within the device due to carbon, sodium, and other heavy metals in the insulating layer, and the yield of manufactured semiconductor devices is improved by avoiding contamination of the substrate with these substances during the next film formation. Can be done.

【0017】また、リング状の金属面を金属スパッタ膜
により形成すると、金属面を寸法精度高く、かつ製造技
術上も容易に形成することができる。
Furthermore, if the ring-shaped metal surface is formed using a metal sputtered film, the metal surface can be formed with high dimensional accuracy and with ease in terms of manufacturing technology.

【0018】[0018]

【実施例】図1および図2に本発明によるプラズマ処理
装置の一実施例を示す。これらの図において、図3およ
び図4と同一の部材には同一符号が付されている。2枚
の半円形平板電極を一平面内に直径側を対向させて並べ
た吸引電極11A を埋め込む円板状セラミックスの基
板9側絶縁層表面は、周縁側が中央部よりも高さが低い
リング状に形成され、この面と、この面と中央部の面と
の段差部側面と,円板状セラミックスの周壁面とにAl
によるスパッタ膜12が形成されている。絶縁層表面周
縁側のリング状の面は、内径を基板9の径よりも10〜
20mm小さく形成して、中央部の絶縁層表面に吸着,
保持された基板9が吸着時の搬送誤差により位置ずれが
あっても、絶縁層表面を確実に覆うようにするとともに
、Alスパッタ膜のリング状の面と吸引電極11A と
の間に容量結合に十分な幅のリング状対向面が形成され
るようにしている。また、中央部の絶縁層表面と周縁部
のリング状の面との段差は30μmとし、Alスパッタ
膜の厚さを20μmとして、基板9が中央部の絶縁層表
面に確実に密着状態に吸引保持されるようにするととも
に、基板9の下面とAlスパッタ膜との間隙を小さくし
、かつ段差部のスパッタ膜を介することにより、基板9
とAlスパッタ膜とを実質接触状態として、RFバイア
ス印加時にAlスパッタ膜に現れる負のバイアス電位が
基板9と実質同一となるようにしている。
Embodiment FIGS. 1 and 2 show an embodiment of a plasma processing apparatus according to the present invention. In these figures, the same members as in FIGS. 3 and 4 are given the same reference numerals. The surface of the insulating layer on the side of the disc-shaped ceramic substrate 9 in which the suction electrode 11A, which is composed of two semicircular flat plate electrodes arranged in one plane with their diameter sides facing each other, is formed into a ring whose peripheral side is lower in height than the central part. Aluminum is formed on this surface, the side surface of the step between this surface and the central surface, and the peripheral wall surface of the disc-shaped ceramic.
A sputtered film 12 is formed. The ring-shaped surface on the peripheral edge side of the surface of the insulating layer has an inner diameter 10 to 10 mm larger than the diameter of the substrate 9.
Formed 20mm smaller and adsorbed to the surface of the insulating layer in the center.
Even if the held substrate 9 is misaligned due to transportation error during suction, the surface of the insulating layer is reliably covered, and capacitive coupling is prevented between the ring-shaped surface of the Al sputtered film and the suction electrode 11A. A ring-shaped opposing surface with a sufficient width is formed. In addition, the level difference between the surface of the insulating layer at the center and the ring-shaped surface at the periphery is set to 30 μm, and the thickness of the Al sputtered film is set to 20 μm to ensure that the substrate 9 is held in close contact with the surface of the insulating layer at the center by suction. In addition, by reducing the gap between the lower surface of the substrate 9 and the Al sputtered film and using the sputtered film at the stepped portion, the substrate 9
and the Al sputtered film are substantially in contact with each other, so that the negative bias potential appearing on the Al sputtered film when an RF bias is applied is substantially the same as that on the substrate 9.

【0019】また、上述のように、静電チャックの絶縁
層表面の周縁側のリング状金属面をAlスパッタ膜とす
ることにより、リング状金属面を金属板等で形成する場
合と比較して、基板の下面と金属板上面とのギャップを
正確に確保することができ、また、製造技術上も形成が
容易である。
Furthermore, as mentioned above, by forming the ring-shaped metal surface on the peripheral edge side of the insulating layer surface of the electrostatic chuck with an Al sputtered film, compared to the case where the ring-shaped metal surface is formed of a metal plate, etc. , it is possible to accurately ensure a gap between the lower surface of the substrate and the upper surface of the metal plate, and it is also easy to form in terms of manufacturing technology.

【0020】静電チャックがこのように形成された装置
内部のドライクリーニング時には、基板が吸着保持され
る絶縁層表面は、被処理基板と同一部材の両面にAlを
スパッタ付着させた保護板により覆われる。この保護板
は、反応室7と隣接する,図示されないロードロック室
から搬入され、反応室7を大気開放することなく、成膜
工程につづいてドライクリーニング工程に入ることがで
きる。また、この発明で対象とする被処理基板はSiウ
エーハであり、両面をAlのスパッタ膜で覆ってもAl
の金属板より軽量であり、静電チャックの吸着面が鉛直
方向下向きの場合、より確実に保護板を吸引保持するこ
とができる。
When dry cleaning the inside of an apparatus in which an electrostatic chuck is formed in this manner, the surface of the insulating layer on which the substrate is attracted and held is covered with a protective plate made of sputtered Al on both sides of the same member as the substrate to be processed. be exposed. This protective plate is carried in from a load lock chamber (not shown) adjacent to the reaction chamber 7, and can be subjected to a dry cleaning process following the film forming process without opening the reaction chamber 7 to the atmosphere. Further, the target substrate to be processed in this invention is a Si wafer, and even if both sides are covered with an Al sputtered film, the Al
It is lighter than the metal plate of the electrostatic chuck, and when the suction surface of the electrostatic chuck faces downward in the vertical direction, it is possible to more reliably suction and hold the protection plate.

【0021】静電チャックがこのように形成されたプラ
ズマ処理装置を用いて成膜およびクリーニングを行う際
のそれぞれの手順の一例を以下に示す。
An example of each procedure for film formation and cleaning using a plasma processing apparatus in which an electrostatic chuck is formed as described above will be shown below.

【0022】図示されていないマイクロ波電源から周波
数が2.45GHz のマイクロ波を導波管1とマイク
ロ波透過窓2とを介して、真空排気されたプラズマ生成
室3内へ導入するとともに、メインコイル5により、プ
ラズマ生成室3内のマイクロ波透過窓近傍に約0.09
Tの磁界を形成し、プラズマ生成ガス導入系4からN2
 Oをプラズマ生成室3内へ、反応ガス導入系6からS
iH4 を反応室内へそれぞれ30SCCM, 15S
CCMの流量で供給すると、まずプラズマ生成室3内で
は、マイクロ波透過窓近傍でマイクロ波と磁界との相互
作用によりマイクロ波電力が効率よくプラズマ生成ガス
に吸収されてプラズマ化され、このプラズマは、メイン
コイル5が形成する発散磁界に沿い、基板9方向へ移動
しつつ、反応室7内に供給された反応ガスSiH4 を
分解, 活性化する。一方、反応室7内には、メインコ
イル5と、メインコイル5と直列に接続されたサブコイ
ル15とにより、成膜上最適の位置にカスプ面を有する
カスプ磁界が形成されており、このカスプ磁界ならびに
静電チャック11に供給される,周波数が400kHz
, 電力が800 WのRFバイアスにより、基板9前
面側のプラズマ密度が均一化され、かつ基板9に現れる
負のバイアス電位によりプラズマ中のO+ が基板に注
入されて基板表面反応が活性化され、膜厚分布および膜
質の良好なSiO膜が形成される。膜厚分布は従来の4
〜5%に対し、2〜3%の分布が得られた。しかし、こ
のとき、基板まわりのリング状金属面にもSiO膜が堆
積する。
Microwaves with a frequency of 2.45 GHz are introduced from a microwave power supply (not shown) into the evacuated plasma generation chamber 3 through the waveguide 1 and the microwave transmission window 2, and the main By the coil 5, about 0.09 mm is generated near the microwave transmission window in the plasma generation chamber 3.
A magnetic field of T is formed, and N2 is supplied from the plasma generation gas introduction system 4.
O into the plasma generation chamber 3, S from the reaction gas introduction system 6
iH4 was introduced into the reaction chamber at 30 SCCM and 15 S, respectively.
When supplied at the CCM flow rate, first in the plasma generation chamber 3, the microwave power is efficiently absorbed by the plasma generation gas due to the interaction between the microwave and the magnetic field near the microwave transmission window, and this plasma is converted into plasma. , moves toward the substrate 9 along the divergent magnetic field formed by the main coil 5, decomposing and activating the reaction gas SiH4 supplied into the reaction chamber 7. On the other hand, in the reaction chamber 7, a cusp magnetic field having a cusp surface at an optimal position for film formation is formed by the main coil 5 and the sub-coil 15 connected in series with the main coil 5. and the frequency is 400kHz, which is supplied to the electrostatic chuck 11.
, The RF bias with a power of 800 W equalizes the plasma density on the front side of the substrate 9, and the negative bias potential appearing on the substrate 9 injects O+ in the plasma into the substrate to activate the substrate surface reaction. A SiO film with good film thickness distribution and film quality is formed. The film thickness distribution is the same as the conventional 4
A distribution of 2-3% was obtained for ~5%. However, at this time, the SiO film is also deposited on the ring-shaped metal surface around the substrate.

【0023】そこで、基板9を50枚処理して、リング
状金属面上の膜が20μm程度の厚みに堆積したところ
でドライクリーニングの工程に入る。この工程は、第1
ステップとして100 分間、エッチングガスとしてS
F6 を100SCCM の流量でプラズマ生成室3内
へ供給してECR (電子サイクロトロン共鳴) プラ
ズマを発生させるとともに、サブコイル15の電流の向
きを反対にして装置内にミラー磁界を作り、活性なイオ
ン, ラジカルを反応室7の側壁に積極的に供給して、
側壁に堆積した膜を効果的にエッチング除去する。第2
ステップとして30分間、SF6 を50SCCMの流
量で供給するとともに、RF電力を600 W供給する
と、主にリング状金属面に活性なイオン, ラジカルが
供給され、堆積した膜が効果的にエッチングされる。第
3ステップとして、SF6 をN2 Oに切り換え、か
つ反応室7内にSiH4を供給することにより、装置内
部へ1μm厚の成膜を行い、装置内部表面からのガス放
出とパーティクルの飛散とを防止して、クリーニング工
程を終了する。
Then, after processing 50 substrates 9 and depositing a film on the ring-shaped metal surface to a thickness of about 20 μm, a dry cleaning process is started. This process is the first
S as etching gas for 100 minutes as a step.
F6 is supplied into the plasma generation chamber 3 at a flow rate of 100 SCCM to generate ECR (electron cyclotron resonance) plasma, and the direction of the current in the subcoil 15 is reversed to create a mirror magnetic field within the device to generate active ions and radicals. is actively supplied to the side wall of the reaction chamber 7,
To effectively remove a film deposited on a side wall by etching. Second
By supplying SF6 at a flow rate of 50 SCCM and RF power of 600 W for 30 minutes as a step, active ions and radicals are supplied mainly to the ring-shaped metal surface, and the deposited film is effectively etched. As the third step, by switching SF6 to N2 O and supplying SiH4 into the reaction chamber 7, a 1 μm thick film is formed inside the device to prevent gas release from the internal surface of the device and scattering of particles. Then, the cleaning process is completed.

【0024】[0024]

【発明の効果】以上に述べたように、本発明においては
、プラズマ処理装置内の基板台に静電チャックを用い、
かつこの静電チャックを、絶縁層表面の周縁側が、絶縁
層を介して吸引電極と有意な幅をもって対向するリング
状対向面を有する, 外径が吸引電極よりも大きいリン
グ状金属面により覆われた構造としたので、静電チャッ
クの吸引電極にRF電源を接続したとき、この金属面に
も基板とほぼ等しい負のバイアス電位が生じる。そして
、リング状金属面は吸引電極の周縁側を基板に対してシ
ールドするから、基板の周縁側電界が均一化されるとと
もに、金属面には電界強度が半径方向に強くなる電界分
布が形成され、基板中央部から周縁部までの全表面に膜
厚, 膜質の均一な膜を形成することができる。
Effects of the Invention As described above, in the present invention, an electrostatic chuck is used on the substrate table in the plasma processing apparatus,
The electrostatic chuck is covered with a ring-shaped metal surface having a ring-shaped opposing surface that faces the suction electrode with a significant width between the insulation layer and the outer diameter of the suction electrode. Because of this structure, when an RF power source is connected to the attraction electrode of the electrostatic chuck, a negative bias potential approximately equal to that of the substrate is generated on this metal surface as well. Since the ring-shaped metal surface shields the peripheral edge of the attraction electrode from the substrate, the electric field on the peripheral edge of the substrate is made uniform, and an electric field distribution is formed on the metal surface in which the electric field strength increases in the radial direction. , it is possible to form a film with uniform thickness and quality over the entire surface of the substrate from the center to the periphery.

【0025】また、静電チャックの絶縁層表面の周縁側
をリング状に覆う金属面を、高さが該金属面の内側の絶
縁層表面よりも低くなるように、かつ内径が被処理基板
の径よりも小さくなるように形成することにより、絶縁
層表面の周縁部に膜が堆積せず、従って、クリーニング
時に、絶縁層に含まれるカーボン,ナトリウムおよびそ
の他の重金属により装置内部が汚染されることがない。 これにより、例えば装置内部に堆積したSiO膜をクリ
ーニング, 除去する際、静電チャックにRFバイアス
を印加してふっ素系クリーニングガス中のF+ をリン
グ状金属面上に堆積したSiO膜に大量に供給すること
ができ、絶縁層表面の周縁部が露出している場合と比べ
、3〜10倍のエッチングレートでSiO膜を除去する
ことができる。具体的な一例として、実施例の項で示し
たクリーニングの第2ステップに従来必要とした100
 分程度の時間を30分程度に短縮することができるよ
うになった。
Further, the metal surface covering the peripheral edge of the insulating layer surface of the electrostatic chuck in a ring shape is arranged so that the height thereof is lower than the surface of the insulating layer inside the metal surface, and the inner diameter is similar to that of the substrate to be processed. By forming the insulating layer to be smaller than the diameter, a film will not be deposited on the periphery of the insulating layer surface, and the inside of the device will not be contaminated by carbon, sodium, and other heavy metals contained in the insulating layer during cleaning. There is no. For example, when cleaning or removing a SiO film deposited inside the device, an RF bias is applied to the electrostatic chuck to supply a large amount of F+ in the fluorine-based cleaning gas to the SiO film deposited on the ring-shaped metal surface. The SiO film can be removed at an etching rate that is 3 to 10 times higher than when the peripheral edge of the insulating layer surface is exposed. As a specific example, 100
It has become possible to shorten the time from about a minute to about 30 minutes.

【0026】そして、装置内部のドライクリーニング時
に、静電チャックの絶縁層表面を、被処理基板と同一基
板の両面にアルミニウムを蒸着してなる保護板で覆うこ
とにより、保護板が金属板より軽量であることから、特
に、装置が、基板の被処理面を鉛直方向下向きとして処
理を行う装置の場合に保護板の吸着が確実に行われ、誤
って絶縁層がエッチングガスにより侵されるおそれがな
くなる。従って、絶縁層中のカーボン, ナトリウムお
よびその他の重金属による装置内汚染のおそれがなくな
り、次の成膜時の,これら物質による基板の汚染を避け
て、製作される半導体装置の歩留りを向上させることが
できる。
During dry cleaning inside the device, the surface of the insulating layer of the electrostatic chuck is covered with a protective plate made by vapor-depositing aluminum on both sides of the same substrate as the substrate to be processed, so that the protective plate is lighter than a metal plate. Therefore, especially in the case where the device performs processing with the surface of the substrate to be processed facing vertically downward, the protection plate is reliably adsorbed and there is no possibility that the insulating layer will be erroneously attacked by the etching gas. . Therefore, there is no risk of contamination within the device due to carbon, sodium, and other heavy metals in the insulating layer, and the yield of manufactured semiconductor devices is improved by avoiding contamination of the substrate with these substances during the next film formation. Can be done.

【0027】また、静電チャックの絶縁層表面の周縁部
をリング状に覆う金属面を金属スパッタ膜で形成するこ
とにより、金属面を寸法精度高く、かつ製造技術上も容
易に形成することができる。
Furthermore, by forming the metal surface that covers the peripheral edge of the surface of the insulating layer of the electrostatic chuck in a ring shape with a metal sputtered film, the metal surface can be formed with high dimensional accuracy and with ease in terms of manufacturing technology. can.

【0028】このように、本発明によれば、基板を汚染
することなく、基板の全表面に膜厚、膜質が均一で膜質
の良好な膜を形成し、かつクリーニングを高速に行うこ
とができる効果が得られる。
As described above, according to the present invention, a film with uniform thickness and quality can be formed on the entire surface of the substrate without contaminating the substrate, and cleaning can be performed at high speed. Effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明によるプラズマ処理装置構造の一実施例
を示す縦断面図
FIG. 1 is a vertical cross-sectional view showing an embodiment of the structure of a plasma processing apparatus according to the present invention.

【図2】本発明によるプラズマ処理装置の基板台を構成
する静電チャック構造の一実施例を示す図であって、同
図(a) は静電チャックへのRFバイアス電力の供給
方法を合わせて示す, 基板台の全体構成図、同図(b
)は同図(a) におけるA部の拡大図
FIG. 2 is a diagram showing an embodiment of an electrostatic chuck structure constituting a substrate stage of a plasma processing apparatus according to the present invention, and FIG. The overall configuration diagram of the board stand is shown in the same figure (b
) is an enlarged view of part A in figure (a).

【図3】従来のプラズマ処理装置の一構成例を示す縦断
面図
[Fig. 3] A vertical cross-sectional view showing an example of the configuration of a conventional plasma processing apparatus.

【図4】従来のプラズマ処理装置の,図3と異なる構造
例を示す縦断面図
[Fig. 4] A vertical cross-sectional view showing an example of a structure different from that in Fig. 3 of a conventional plasma processing apparatus.

【符号の説明】[Explanation of symbols]

2    マイクロ波透過窓 3    プラズマ生成室 5    メインコイル 7    反応室 8    プラズマ引出し窓 9    基板(被処理基板) 10    基板台 11    静電チャック 11A  吸引電極 12    金属面 15    サブコイル 20    RF電源 2 Microwave transmission window 3 Plasma generation chamber 5 Main coil 7 Reaction chamber 8 Plasma drawer window 9 Substrate (substrate to be processed) 10    PCB stand 11 Electrostatic chuck 11A Suction electrode 12 Metal surface 15 Sub coil 20 RF power supply

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】両端面にそれぞれマイクロ波透過窓とプラ
ズマ引出し窓とを備えるとともにメインコイルにより同
軸に囲まれ内部に電子サイクロトロン共鳴磁場領域が形
成される軸対称のプラズマ生成室と、前記プラズマ引出
し窓を介してプラズマ生成室と連通し内部に被処理基板
を保持する基板台が配される反応室と、該基板台にRF
バイアスを印加するRF電源とを備え、プラズマ生成室
内で生成されたプラズマを用いて被処理基板の表面に膜
形成あるいはエッチングなどの処理を施すプラズマ処理
装置において、前記基板台に、外径が被処理基板の径よ
り大きい吸引電極を形成するように一平面内に配された
2枚の半円形平板電極など複数の電極が該複数の板状電
極の同側に共通の平坦な絶縁層が形成されるように絶縁
物内に埋め込まれ静電引力により前記絶縁層の表面に被
処理基板を密着状態に吸引保持する静電チャックが用い
られるとともに、該絶縁層表面の周縁側が、絶縁層を介
して吸引電極と有意な幅をもって対向するリング状対向
面を有する, 外径が吸引電極よりも大きいリング状金
属面により覆われていることを特徴とするプラズマ処理
装置。
Claims: 1. An axially symmetrical plasma generation chamber which is provided with a microwave transmission window and a plasma extraction window on both end faces, is coaxially surrounded by a main coil, and has an electron cyclotron resonance magnetic field region formed therein; and the plasma extraction chamber. A reaction chamber that communicates with a plasma generation chamber through a window and has a substrate stand therein that holds a substrate to be processed, and an RF
In a plasma processing apparatus that is equipped with an RF power supply that applies a bias and performs processing such as film formation or etching on the surface of a substrate to be processed using plasma generated in a plasma generation chamber, the substrate table has an outer diameter covered with A common flat insulating layer is formed on the same side of a plurality of electrodes such as two semicircular plate electrodes arranged in one plane so as to form an attraction electrode larger than the diameter of the processing substrate. An electrostatic chuck is used which is embedded in an insulator and sucks and holds the substrate to be processed in close contact with the surface of the insulating layer by electrostatic attraction, and the peripheral edge side of the surface of the insulating layer is attached to the insulating layer. 1. A plasma processing device characterized by being covered with a ring-shaped metal surface having a larger outer diameter than the suction electrode and having a ring-shaped opposing surface facing the suction electrode with a significant width through the plasma processing apparatus.
【請求項2】請求項第1項に記載のプラズマ処理装置に
おいて、静電チャックの絶縁層表面の周縁側をリング状
に覆う金属面は、高さが該金属面の内側の絶縁層表面よ
りも低くなるように、かつ内径が被処理基板の径よりも
小さくなるように形成されていることを特徴とするプラ
ズマ処理装置。
2. In the plasma processing apparatus according to claim 1, the metal surface covering the peripheral edge of the surface of the insulating layer of the electrostatic chuck in a ring shape has a height higher than the surface of the insulating layer inside the metal surface. 1. A plasma processing apparatus characterized in that the plasma processing apparatus is formed so that the inner diameter thereof is smaller than the diameter of a substrate to be processed.
【請求項3】請求項第2項に記載のプラズマ処理装置に
おいて、リング状金属面の内側の,被処理基板が密着状
態に吸引保持される絶縁層表面が、該装置の内部に付着
した膜をエッチングガスを用いて除去するドライクリー
ニング時に、被処理基板と同一基板の両面にアルミニウ
ムを蒸着してなる保護板により覆われることを特徴とす
るプラズマ処理装置。
3. The plasma processing apparatus according to claim 2, wherein the surface of the insulating layer on the inside of the ring-shaped metal surface, on which the substrate to be processed is suctioned and held in close contact, is a film attached to the inside of the apparatus. 1. A plasma processing apparatus characterized in that during dry cleaning in which the same substrate as the substrate to be processed is removed using an etching gas, the substrate is covered with a protective plate made by vapor-depositing aluminum on both sides of the same substrate.
【請求項4】請求項第1項または第2項に記載のプラズ
マ処理装置において、静電チャックの絶縁層表面の周縁
側をリング状に覆う金属面は金属スパッタ膜として形成
されることを特徴とするプラズマ処理装置。
4. The plasma processing apparatus according to claim 1 or 2, wherein the metal surface covering the peripheral edge of the insulating layer surface of the electrostatic chuck in a ring shape is formed as a metal sputtered film. plasma processing equipment.
JP3031142A 1991-02-27 1991-02-27 Plasma processing equipment Pending JPH04271122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3031142A JPH04271122A (en) 1991-02-27 1991-02-27 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3031142A JPH04271122A (en) 1991-02-27 1991-02-27 Plasma processing equipment

Publications (1)

Publication Number Publication Date
JPH04271122A true JPH04271122A (en) 1992-09-28

Family

ID=12323192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3031142A Pending JPH04271122A (en) 1991-02-27 1991-02-27 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JPH04271122A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6087614A (en) * 1996-11-20 2000-07-11 Tokyo Electron Limited Plasma treating device
US6215087B1 (en) 1996-11-14 2001-04-10 Tokyo Electron Limited Plasma film forming method and plasma film forming apparatus
US6218299B1 (en) 1996-11-14 2001-04-17 Tokyo Electron Limited Semiconductor device and method for producing the same
US6320154B1 (en) 1996-11-14 2001-11-20 Tokyo Electron Limited Plasma processing method
US6443165B1 (en) 1996-11-14 2002-09-03 Tokyo Electron Limited Method for cleaning plasma treatment device and plasma treatment system
US6727182B2 (en) 1996-11-14 2004-04-27 Tokyo Electron Limited Process for the production of semiconductor device
WO2011105163A1 (en) * 2010-02-26 2011-09-01 三菱重工業株式会社 Plasma film-forming apparatus and plasma film-forming method
JP2019057547A (en) * 2017-09-20 2019-04-11 株式会社日立ハイテクノロジーズ Plasma processing apparatus and plasma processing method
JP2019087637A (en) * 2017-11-07 2019-06-06 日本特殊陶業株式会社 Method of protecting ceramic base material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6215087B1 (en) 1996-11-14 2001-04-10 Tokyo Electron Limited Plasma film forming method and plasma film forming apparatus
US6218299B1 (en) 1996-11-14 2001-04-17 Tokyo Electron Limited Semiconductor device and method for producing the same
US6320154B1 (en) 1996-11-14 2001-11-20 Tokyo Electron Limited Plasma processing method
US6355902B2 (en) 1996-11-14 2002-03-12 Tokyo Electron Limited Plasma film forming method and plasma film forming apparatus
US6443165B1 (en) 1996-11-14 2002-09-03 Tokyo Electron Limited Method for cleaning plasma treatment device and plasma treatment system
US6727182B2 (en) 1996-11-14 2004-04-27 Tokyo Electron Limited Process for the production of semiconductor device
US6087614A (en) * 1996-11-20 2000-07-11 Tokyo Electron Limited Plasma treating device
WO2011105163A1 (en) * 2010-02-26 2011-09-01 三菱重工業株式会社 Plasma film-forming apparatus and plasma film-forming method
JP2011181599A (en) * 2010-02-26 2011-09-15 Mitsubishi Heavy Ind Ltd Apparatus and method for plasma film-forming
JP2019057547A (en) * 2017-09-20 2019-04-11 株式会社日立ハイテクノロジーズ Plasma processing apparatus and plasma processing method
JP2019087637A (en) * 2017-11-07 2019-06-06 日本特殊陶業株式会社 Method of protecting ceramic base material

Similar Documents

Publication Publication Date Title
KR100857747B1 (en) Plasma confinement by use of preferred rf return path
US20120145186A1 (en) Plasma processing apparatus
JP5976377B2 (en) Method for controlling adhesion of fine particles to substrate to be processed and processing apparatus
TWI734185B (en) Plasma processing apparatus
US20060121195A1 (en) Plasma processing apparatus and method for manufacturing electrostatic chuck
JP3583289B2 (en) Plasma processing apparatus and plasma processing method
KR20190085825A (en) Plasma processing apparatus
KR20070011186A (en) Method and apparatus for dynamic plasma treatment of bipolar esc system
JP4322484B2 (en) Plasma processing method and plasma processing apparatus
JP4642809B2 (en) Plasma processing method and plasma processing apparatus
JP2006165093A (en) Plasma processing device
JPH10144668A (en) Plasma treating method
JPH04271122A (en) Plasma processing equipment
JP2000091247A (en) Plasma processing device
JP2774367B2 (en) Apparatus and method for plasma process
JP2000164582A (en) Plasma processing system
JPS63253628A (en) Plasma treatment apparatus
JPH03153885A (en) Method and device for reducing contamination of wafer particle
JP3964803B2 (en) Plasma processing equipment
JP4231362B2 (en) Plasma processing apparatus and plasma processing method
JP2003077904A (en) Apparatus and method for plasma processing
CN114695046A (en) Plasma processing device and processing method
JP2000150487A (en) Plasma treatment method
JP4902054B2 (en) Sputtering equipment
TWI431681B (en) Cleaning method and a vacuum processing device