JPS62278284A - Surface treatment device - Google Patents

Surface treatment device

Info

Publication number
JPS62278284A
JPS62278284A JP12172386A JP12172386A JPS62278284A JP S62278284 A JPS62278284 A JP S62278284A JP 12172386 A JP12172386 A JP 12172386A JP 12172386 A JP12172386 A JP 12172386A JP S62278284 A JPS62278284 A JP S62278284A
Authority
JP
Japan
Prior art keywords
surface treatment
gas
substrate
treated
species
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12172386A
Other languages
Japanese (ja)
Inventor
Kenichi Ichimura
健一 市村
Atsushi Sekiguchi
敦 関口
Koji Noma
野間 弘二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP12172386A priority Critical patent/JPS62278284A/en
Publication of JPS62278284A publication Critical patent/JPS62278284A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To execute a uniform surface treatment without damage by providing a means for ejecting gas to be treated which uniformizes the time from the generation of surface treating seeds until the arrival thereof on a substrate surface to execute uniform surface treatment over the entire surface of the treating surface of the substrate. CONSTITUTION:A radiant gas is introduced through a valve 9 into an electric discharge chamber 1 and high-frequency electric power is impressed from a power source 8 to generate plasma 2. On the other hand, the gas to be treated is ejected from an ejecting member 6 for the gas to be treated moving back and forth in a horizontal direction via a valve 10 onto the substrate 5 in a treatment chamber 3. The generated surface treating seeds are, therefore, sprayed uniformly onto the surface of the substrate 5.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は半導体デバイスの絶縁膜、保護膜、半導体膜、
金属膜等の薄膜製造、エツチング、表面クリーニング、
表面改質等の表面処理を行なう表面処理装置の改良に関
するものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) The present invention provides an insulating film, a protective film, a semiconductor film,
Manufacturing of thin films such as metal films, etching, surface cleaning,
This invention relates to improvements in surface treatment equipment that performs surface treatments such as surface modification.

(従来の技術) 第8図は従来のLTEプラズマを利用する表面処理装置
(新しい技術であるため文献は少い。特願昭59−18
6955.特願昭6O−064298)の正面断面図で
ある。図示しない気体供給装置からバルブ9を通して所
定の放電気体を、石英管で作られた放電室1の中に導く
ととも1こ、この放電室1に連通ずる処理室3に設けら
れた排気バルブ11(図示しない排気ポンプに接続され
ている)で両室内の気体を排気して気体圧力を所定値に
保ち、13.56MHzの高周波電源8の出力電圧を、
放電室1の周りに巻回された放電用コイル7に印加して
放電室1内に、前記放電気体のプラズマ2を発生させる
。(放電用コイル7を使用する代りに、この放電空間を
挟んで対向する一対の電極板を設け、この電極間に高周
波電圧などの交番電圧や直流電圧を印加してプラズマ放
電を発生させることもある。
(Prior art) Figure 8 shows a conventional surface treatment device using LTE plasma (there are few documents because it is a new technology.
6955. It is a front sectional view of Japanese Patent Application No. 6O-064298). A predetermined discharge electric body is guided from a gas supply device (not shown) through a valve 9 into a discharge chamber 1 made of a quartz tube. (connected to an exhaust pump not shown) exhausts the gas in both chambers to maintain the gas pressure at a predetermined value, and the output voltage of the 13.56 MHz high frequency power source 8 is
A voltage is applied to the discharge coil 7 wound around the discharge chamber 1 to generate plasma 2 of the discharge electric body within the discharge chamber 1 . (Instead of using the discharge coil 7, it is also possible to provide a pair of electrode plates facing each other with the discharge space in between, and apply an alternating voltage such as a high frequency voltage or a direct current voltage between these electrodes to generate plasma discharge.) be.

なお高周波電g8の周波数は、10kHz〜数百GHz
間のものを選定しているが、IGHz附近よりも高い周
波数を用いる場合には、放電用コイル7や前記の一対の
電極板の代りに、放電室1を包み込むような形のマイク
ロ波キャビティが設置されそれによってプラズマ放電を
発生させることがある。) 処理室3内で基体5の保持する基体ホルダー4は、必要
しこ応じて基体5の温度を所望値に調整することのでき
る加熱冷却機構をその内部に具えている。(図示は省略
)。また図示しない気体供給系からは、バルブ1oを通
して被処理気体が気体導入リング状管120に入り、リ
ング状管12゜内側の多数の気体吹き出し孔140から
気体が基体5の上部に向って噴出されている。この被処
理気体もまた前述のJI(′気バルブ11を通して排気
されている。
The frequency of high-frequency electric g8 is 10kHz to several hundred GHz.
However, when using a frequency higher than around IGH, a microwave cavity shaped to wrap around the discharge chamber 1 is used instead of the discharge coil 7 and the pair of electrode plates described above. installed, thereby generating a plasma discharge. ) The substrate holder 4, which holds the substrate 5 in the processing chamber 3, has a heating and cooling mechanism therein that can adjust the temperature of the substrate 5 to a desired value as necessary. (Illustration omitted). Further, from a gas supply system (not shown), the gas to be treated enters the gas introduction ring-shaped tube 120 through the valve 1o, and the gas is ejected toward the upper part of the substrate 5 from a large number of gas blow-off holes 140 inside the ring-shaped tube 12°. ing. This gas to be treated is also exhausted through the aforementioned JI valve 11.

さて、放電室1内に生ずる放電は、放電室1内の気体の
種類、気体の圧力、印加される高周波電力の大小によっ
て異なるが、一般に、圧力が高く電力が小さい領域では
高周波グロー放電となり、圧力が低く電力が大きい領域
ではLTE (LocalThermal Equil
ibrium)プラズマ放電(厳密には準熱平衡プラズ
マ放電であるが、LTEという言葉が常用されている)
となる。ただしここでいう高周波グロー放電とは、輝度
のあまり高くないプラズマが放電室1内にほぼ一様に広
く発生している状態であり、一方LTEプラズマ放電と
は、非常に輝度の高いプラズマが放電室1内の局所に閉
じ込められた状態となっていて、その周囲を取り囲んで
高周波グロー放電状のグロー200が存在するような放
電状態を指している。
Now, the discharge that occurs in the discharge chamber 1 varies depending on the type of gas in the discharge chamber 1, the pressure of the gas, and the magnitude of the applied high-frequency power, but generally, in areas where the pressure is high and the power is low, a high-frequency glow discharge occurs. In areas where pressure is low and power is high, LTE (Local Thermal Equil
ibrium) plasma discharge (strictly speaking, it is quasi-thermal equilibrium plasma discharge, but the term LTE is commonly used)
becomes. However, the high-frequency glow discharge referred to here is a state in which plasma with not very high brightness is generated almost uniformly and widely within the discharge chamber 1, whereas LTE plasma discharge is a state in which plasma with very high brightness is discharged. This refers to a discharge state in which a glow 200 in the form of a high-frequency glow discharge exists surrounding a locally confined state within the chamber 1.

この第8図の装置は、このLTEプラズマ放電を利用す
るもので、プラズマ中の反応活性種は、両室1,3の境
界150から処理室3内に導入され、それが、気体導入
リング状管120から噴出した被処理気体と反応して、
基体5の表面に所定の表面処理が施されるものである。
The apparatus shown in FIG. 8 utilizes this LTE plasma discharge, and reactive active species in the plasma are introduced into the processing chamber 3 from the boundary 150 between the two chambers 1 and 3, which is shaped like a gas introduction ring. Reacts with the gas to be treated ejected from the pipe 120,
The surface of the base 5 is subjected to a predetermined surface treatment.

このように、プラズマによって表面処理をする場合、プ
ラズマに基体5が直接液するときは、プラズマ中の荷電
粒子が基体5に衝撃を与えて損傷を生じ、基体5上に作
製された半導体デバイスの電気的特性を劣化させる等の
不異合を生ずることがある。この劣化は、例えば、MO
3型半導体デバイスではvthの変動、バイポーラ型半
導体デバイスではhfeの変動等となって強く表われる
。Qt今のように、半導体デバイスの集積度が極めて大
きいものになったり、化合物半導体デバイスを製造する
ようになると、微小の荷電粒子の衝撃によって電気特性
の劣化を招くことが著るしくなる。
In this way, when surface treatment is performed using plasma, when the substrate 5 is directly immersed in the plasma, the charged particles in the plasma impact the substrate 5 and cause damage, causing damage to the semiconductor devices fabricated on the substrate 5. Discrepancies such as deterioration of electrical characteristics may occur. This deterioration is caused by, for example, MO
In 3-type semiconductor devices, this is strongly manifested as a variation in vth, and in bipolar-type semiconductor devices, it appears as a variation in hfe. QtAs the degree of integration of semiconductor devices becomes extremely large, or as compound semiconductor devices are manufactured, the impact of minute charged particles will significantly deteriorate electrical characteristics.

この不異合を除くため、第8図に示しておいたように境
界150には、荷電粒子の移動を阻止するか調整するた
めの電圧が印加された金w450が設置されることがあ
る。この場合は、プラズマからの活性種と短波長光によ
ってのみ表面処理が行なねれるため、基体5の処理表面
上には荷電粒子が存在しないか少くなるのである。
In order to eliminate this mismatch, as shown in FIG. 8, gold w450 may be installed at the boundary 150 to which a voltage is applied to prevent or adjust the movement of charged particles. In this case, since the surface treatment is performed only by active species from the plasma and short wavelength light, there are no or fewer charged particles on the treated surface of the substrate 5.

さて、この第8図の装置による表面処理では、上記のよ
うに荷電粒子による損傷をも調整でき。
Now, with the surface treatment using the apparatus shown in FIG. 8, damage caused by charged particles can also be controlled as described above.

成膜装置では高品質の薄膜を高速で作成するなどの利点
があるが、その一方で処理室内の雰囲気が強い活性を持
つため被処理気体の導入方法によって次の問題を生じた
The film forming apparatus has the advantage of producing high-quality thin films at high speed, but on the other hand, the atmosphere inside the processing chamber is highly active, which causes the following problems depending on the method of introducing the gas to be processed.

(発明が解決しようとする問題点) 従来の成膜装置においては、被処理気体をバルブ10を
介して基体上部へ導入するのに中空の被処理気体噴出リ
ング120を設けて、リングの内側に被処理気体を噴出
する多数の細孔140を配置し、薄膜の膜厚分布の均一
を確保するため被処理気体噴出リング120と基体5と
の間の距離をかなり離す方法が採用されていた。
(Problems to be Solved by the Invention) In the conventional film forming apparatus, a hollow to-be-treated gas ejection ring 120 is provided to introduce the to-be-treated gas to the upper part of the substrate through the valve 10. A method has been adopted in which a large number of pores 140 for ejecting the gas to be treated are arranged and the distance between the gas to be treated ring 120 and the substrate 5 is kept considerably large in order to ensure uniform thickness distribution of the thin film.

そして、このように距離を離したため、問題を生じた。And because of this distance, problems arose.

それは処理室3の空間中で反応が進むことになり、走査
型電子顕微鏡SEMでl1lI察すると基体5の表面に
生成した薄膜は、非常に粗雑なものになり、到底、半導
体デバイスとして使用できないものとなったのである。
The reaction proceeds in the space of the processing chamber 3, and when observed using a scanning electron microscope (SEM), the thin film formed on the surface of the substrate 5 is extremely rough and cannot be used as a semiconductor device. It became.

さりとて、前記の距離を短縮させるときは、作成される
薄膜は、基体5の表面の央部で薄く、周辺部で厚く、極
めて不均一なものになってしまった。成膜以外の表面処
理1例えばエツチング等の装置でも同様の問題が生じて
いる。
However, when the distance was shortened, the thin film formed was thinner at the center of the surface of the substrate 5 and thicker at the periphery, making it extremely non-uniform. Similar problems occur with equipment for surface treatment other than film formation, such as etching.

(発明の目的) 本発明は上記の問題を解決し、均一性の優れた表面処理
や膜質と膜厚の均一性の、ともに優れた薄膜を作成でき
る装置の提供を目的とする。
(Objective of the Invention) An object of the present invention is to solve the above-mentioned problems and provide an apparatus capable of producing a thin film having excellent uniformity in surface treatment and excellent film quality and uniformity in film thickness.

(問題点を解決するための手段) 上記した不具合の原因を探求して次のことが判明した。(Means for solving problems) After investigating the cause of the above-mentioned problem, we found the following.

即ち、以下薄膜作成装置を例にとって述べると、放電室
1から処理室3に放出される反応活性種と放置両者また
はその一方(以下、単に放射物という)は、極めて活性
が強いため、噴出リング120の細孔140から噴出し
た被処理気体は極く短時間のうちに表面処理種(ここで
は薄膜生成種)を作るが、この表面処理種もまた活性が
強く忽ちのうちに粉状物を作り、寿命は非常に短い。こ
のため、基体5と噴出リング120の間の距離が短いと
きは、基体5の表面に作成される薄膜は表面処理種の多
い周辺部はど緻密で厚く、表面処理種の反応の進んだ央
部になるほど膜質が粗く薄いものとなり、距離を離すと
きは、表面処理種の反応の進んだものばかりとなって、
基体5の表面の生成膜厚は均一になるが膜質が非常に粗
雑なものになってしまうのである。薄膜作成以外の表面
処理でも同様の不都合を生ずる。
That is, taking the thin film forming apparatus as an example below, the reactive active species and/or the left alone (hereinafter simply referred to as emitted matter) released from the discharge chamber 1 into the processing chamber 3 are extremely active, so the ejection ring The gas to be treated ejected from the pores 140 of 120 creates surface treatment species (thin film generation species here) in a very short time, but this surface treatment species is also highly active and instantly removes powdery substances. It is made and has a very short lifespan. Therefore, when the distance between the substrate 5 and the ejection ring 120 is short, the thin film formed on the surface of the substrate 5 is dense and thick at the periphery where the surface treatment species are abundant, and at the center where the reaction of the surface treatment species has progressed. As the distance increases, the film quality becomes rougher and thinner, and when the distance is increased, the reaction of the surface treatment species is more advanced.
Although the thickness of the film formed on the surface of the substrate 5 becomes uniform, the quality of the film becomes very rough. Similar inconveniences occur in surface treatments other than thin film formation.

本発明はこの問題を解決する手段として次のものを採用
した。
The present invention employs the following as a means to solve this problem.

即ち、放電気体の導入系と電力印加手段とを設けた放電
室と;被処理気体の導入系と排気系とを設け基体を設置
する処理室と;を備え。
That is, it includes a discharge chamber provided with an introduction system for a discharge body and a power application means; and a processing chamber provided with an introduction system and an exhaust system for a gas to be treated and in which a substrate is installed.

該放電室で発生したプラズマ中の反応活種性と放射光の
両者またはその一方(以下、放射物という)で、該被処
理気体を照射することによって表面処理種を作り、該表
面処理種あるいは該表面処理種と反応活性種を用いて該
基体の表面処理を行なう表面処理装置において。
A surface treatment species is created by irradiating the gas to be treated with reactive active species in the plasma generated in the discharge chamber and/or synchrotron radiation (hereinafter referred to as radiation), and the surface treatment species or In a surface treatment apparatus that performs surface treatment on the substrate using the surface treatment species and the reactive species.

該表面処理種の発生からそれが該基体表面に到着して処
理に利用されるまでの時間を、該基体の処理表面の全面
に亘って均一化させるような被処理気体噴出手段を設け
たものである。
A device provided with a treatment gas jetting means that equalizes the time from generation of the surface treatment species to arrival at the substrate surface and use for treatment over the entire surface of the substrate to be treated. It is.

(実施例) 以下、図に基いて本発明の詳細な説明する。(Example) Hereinafter, the present invention will be explained in detail based on the drawings.

第1図は、本発明の実施例の表面処理装置の正面断面図
である。第8図と同一の部材には同一の符号を付して説
明を省略する。
FIG. 1 is a front sectional view of a surface treatment apparatus according to an embodiment of the present invention. The same members as in FIG. 8 are designated by the same reference numerals and their explanations will be omitted.

この第1図の装置では第8図の被処理気体噴出リング1
20の代りに被処理気体の噴出部材6が設けられている
。その要部は第2図及び第3図(第2図のA−A断面図
。ただし、磁石は央部に寄せて描いである。)に拡大し
て詳細を示すように、円筒12の内部には、基体5の表
面に向けて開口する複数の小さい筒状の、放射物の通過
孔14があり、これら通過孔14は基体5の表面に対し
ほぼ均一な開口面積を保証するよう、その開口を分布さ
せている。各通過孔14の筒の側壁には簡の中央に向っ
て小径の被処理気体の噴出細孔13が多数設けられてい
る。バルブ10を経由した被処理気体は、いったん、筒
状の通過孔14を囲んで設けられた空洞部15に入った
のち、前記の噴出細孔13から筒状通過孔14の央部に
向って噴出される。また1通過孔14の上部には、接地
された金網16を設けて、プラズマ中の荷電粒子を遮蔽
している。金11i!116に適当な電位をもたせるこ
とにより荷電粒子の遮蔽効果を加減し、ときには荷電粒
子を積極的にとり入れることができる。
In the apparatus shown in FIG. 1, the gas injection ring 1 shown in FIG.
Instead of 20, a spouting member 6 for the gas to be treated is provided. The main parts are shown in detail inside the cylinder 12 as shown in enlarged detail in FIGS. 2 and 3 (A-A sectional view in FIG. has a plurality of small cylindrical projectile passage holes 14 opening toward the surface of the base body 5, and these passage holes 14 are arranged so as to ensure a substantially uniform opening area with respect to the surface of the base body 5. The openings are distributed. A large number of small-diameter ejection pores 13 for the gas to be treated are provided in the side wall of the tube of each passage hole 14 toward the center of the tube. The gas to be treated that has passed through the valve 10 once enters a cavity 15 provided surrounding the cylindrical passage hole 14, and then flows from the ejection pore 13 toward the center of the cylindrical passage hole 14. It is squirted. Further, a grounded wire mesh 16 is provided above the first passage hole 14 to shield charged particles in the plasma. Gold 11i! By applying an appropriate potential to 116, the shielding effect of charged particles can be adjusted, and in some cases, charged particles can be actively taken in.

なお、噴出部材6および金網16を絶縁物で作成荷電粒
子の調整は、磁気的に行なうことも可能であって、一点
鎖線で示すように放射物の通過孔14の周囲に磁極対6
1.62を設置するなどして、筒状通過孔14を横切る
磁場を設けてもよい。
Note that the ejection member 6 and the wire mesh 16 are made of an insulating material, and the charged particles can also be adjusted magnetically.
1.62 may be installed to provide a magnetic field across the cylindrical passage hole 14.

磁場を設けたときの荷電粒子の軌跡を矢印63で示す。Arrows 63 indicate the trajectory of charged particles when a magnetic field is applied.

このときは、湾曲して進行する荷電粒子を受は止める庇
64を設けることがある。
At this time, a curved eaves 64 may be provided to catch the advancing charged particles.

上記構成の被処理気体の噴出部材6の設置によって前記
した従来の装置の問題は、解決される。
By installing the treatment gas ejection member 6 having the above-mentioned configuration, the problems of the conventional apparatus described above are solved.

以下、SiN膜の作製の場合を例にとってこの装置の動
作を説明する。
The operation of this apparatus will be described below, taking as an example the case of producing a SiN film.

SiN膜を作製する場合には、バルブ9を介して放電気
体N2を放電室1内に導入し、電源8から高周波電力を
印加して放電を起させプラズマを発生させる。一方、バ
ルブ1oを介して被処理気体の噴出部材6から被処理気
体SiH4を噴出させ、前記の放電で生じたN2の反応
活性種と反応させる。
When producing a SiN film, a discharge body N2 is introduced into the discharge chamber 1 through a bulb 9, and high frequency power is applied from a power source 8 to cause discharge and generate plasma. On the other hand, the process gas SiH4 is ejected from the process gas ejection member 6 via the valve 1o, and reacts with the reactive active species of N2 generated in the discharge.

矢印51は、基体ホルダー4が、(図示しない駆動装置
によって)噴出部材6に対して水平方向に往復運動する
ことを示すもので、この動作によって、発生した表面処
理種はまんべんなく基体5の表面に散布されることにな
る。
An arrow 51 indicates that the substrate holder 4 reciprocates in the horizontal direction with respect to the jetting member 6 (by a drive device not shown). Through this movement, the generated surface treatment species are evenly distributed on the surface of the substrate 5. It will be distributed.

通過孔14が小径でその数が多いときには、この往復運
動を省略できる。
When the passage holes 14 have a small diameter and are large in number, this reciprocating movement can be omitted.

さて、金網16があるので、この装置の場合は中性の反
応活性種24と放射光のみが反応活性種の通過孔14を
通る。基体5に荷電粒子が衝突しないので損傷のない良
質の膜が得られる。放電から薄膜堆積までの過程を更に
詳しく述へると、励起状態の進んだ状態のプラズマ2か
らは多量の真空紫外光(波長200r+m以下)23が
放射されており、多数の噴出細孔13から噴出されたS
 1H4(光分解波長160nm以下)は、この真空紫
外光23を吸収して分解する。そして反応機構の詳細は
明らかにされていないが1分解で生じたシラン系活性種
即ち、表面処理種とLTEプラズマから拡散した窒素の
反応活性種は、基体5上部の空間或いは基体5の表面で
反応し、基体5の表面に薄膜が堆積され、これによって
、成膜速度はや−遅いものの非常に良質の薄膜が得られ
るも、のである。
Now, since the wire mesh 16 is provided, in this device, only the neutral reactive species 24 and the synchrotron radiation pass through the reactive species passage holes 14. Since charged particles do not collide with the substrate 5, a good quality film without damage can be obtained. To describe the process from discharge to thin film deposition in more detail, a large amount of vacuum ultraviolet light (wavelength 200 r+m or less) 23 is emitted from the plasma 2 in an advanced state of excitation, and a large amount of vacuum ultraviolet light (wavelength 200 r+m or less) 23 is emitted from the numerous ejection pores 13. squirted S
1H4 (photodecomposition wavelength of 160 nm or less) absorbs this vacuum ultraviolet light 23 and decomposes it. Although the details of the reaction mechanism have not been clarified, the silane-based active species generated during 1 decomposition, that is, the surface treatment species and the reactive active species of nitrogen diffused from the LTE plasma, are present in the space above the substrate 5 or on the surface of the substrate 5. As a result, a thin film is deposited on the surface of the substrate 5, and although the deposition rate is rather slow, a very high quality thin film can be obtained.

第4a図、第4b図は、第1図の装置の被処理気体の噴
出部材6の他の実施例の、第3図に相当する断面図であ
って反応活性種の通過孔14の開口面積を最大限にとる
よう、その断面形状を扇状にして、真空紫外光を大量に
基体5の表面に取り入れて有効に利用しようとしている
ものである。
4a and 4b are sectional views corresponding to FIG. 3 of another embodiment of the treatment gas ejection member 6 of the apparatus shown in FIG. In order to maximize this, the cross-sectional shape is fan-shaped, and a large amount of vacuum ultraviolet light is introduced onto the surface of the substrate 5 for effective use.

第5図(側断面)及び第6図(その開口部の平面図)は
、反応活性種の通過孔14の側壁からではなく、噴出部
材6の下面に多数の噴出細孔を設け、基体5の表面に対
して垂直に被処理気体を噴出したものである。気体の反
応空間がより狭くなるため良質の薄膜が得られる効果が
ある。また、第2図及び第3図と、第5図及び第6図の
双方の被処理気体噴出口をそなえた装置によっても膜厚
及び膜質の分布の均一性の良好な良質の薄膜を作製する
ことができる。水平方向の相対運動(矢印51)の外に
、垂直方向の相対運動5oも効果があり、併用すれば一
層良い薄膜が得られる。
5 (side cross section) and FIG. 6 (plan view of the opening thereof), a large number of ejection pores are provided on the lower surface of the ejection member 6 rather than from the side wall of the reactive species passage hole 14, and the base 5 The gas to be treated is ejected perpendicularly to the surface. Since the gas reaction space becomes narrower, a high-quality thin film can be obtained. In addition, a high-quality thin film with good uniformity in film thickness and film quality distribution can also be produced using an apparatus equipped with the gas jet ports shown in FIGS. 2 and 3 and in FIGS. 5 and 6. be able to. In addition to the relative movement in the horizontal direction (arrow 51), the relative movement in the vertical direction 5o is also effective, and when used in combination, an even better thin film can be obtained.

なお、充分な相対運動53があるときは、第7図のよう
に噴出部材6として単純な直線状の細管を採用しても、
良い効果が得られる。
Note that when there is sufficient relative movement 53, even if a simple linear thin tube is used as the ejection member 6 as shown in FIG.
A good effect can be obtained.

上記では成膜装置を中心シして本発明の有効性を述へた
が、バルブ9を介して放電気体NF、を放電室1内に導
入し、一方、バルブ10を介して被処理気体02を導入
することにより、基板表面でSiのエツチングを行なっ
たり、表面クリ一二ングを行なうことも可能である。
Although the effectiveness of the present invention has been described above with a focus on the film forming apparatus, the discharge body NF is introduced into the discharge chamber 1 through the valve 9, while the to-be-processed gas 02 is introduced through the valve 10. By introducing this, it is also possible to perform Si etching or surface cleaning on the substrate surface.

この際にも本発明の装置は極めて均一な、そして損傷の
少い表面処理を行なうことができる。
Even in this case, the apparatus of the present invention can perform extremely uniform surface treatment with less damage.

(発明の効果) 本発明によれば、半導体デバイスにおいて、損傷の少い
均一な表面処理を行いうる表面処理装置が得られる。
(Effects of the Invention) According to the present invention, a surface treatment apparatus that can perform uniform surface treatment with less damage on a semiconductor device can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の表面処理装置の正面断面図。 事7図4 JA trr実jとfir(の季(p−す子
、ぼ、囚。 第2図は第1図の装置の被処理気体の噴出部材の拡大断
面図。 第3図は第2図の噴出部材のA−A断面図。 第4a、4b図は噴出部材の他の実施例の同様の断面図
。 第5図、第6図はそれぞれ噴出部材の他の実施例の第2
図、第3図と同様の図。 第8図は従来の表面処理装置の正面断面図61−一一一
放電室、2−−−−LTEプラズマ、3−−−−処理室
、4−一一一基体ホルダー、5−−−−基体、6−被処
理気体噴出部材、8−J−高周波電源、9−−放電気体
導入系、10−−−一被処理気体導入系、12−−−一
円筒、13−−−−被処理気体の噴出細孔、14ニー放
射物の通過孔、15−−−一空洞部、16−−−−金網
、51.53−−−−水平方向の相対運動。 50−−−一垂直方向の相対運動、 61.62−−−
一磁石。 特許出願人 日電アネルバ株式会社 代理人 弁理士 村 上 健 次 ]3 FIG、5
FIG. 1 is a front sectional view of a surface treatment apparatus according to an embodiment of the present invention. 7 Figure 4 JA trr real j and fir (no season (p-suko, bo, prisoner. Fig. 4a and 4b are similar sectional views of other embodiments of the ejection member. Figs. 5 and 6 are sectional views of other embodiments of the ejection member, respectively.
Figure, similar to Figure 3. FIG. 8 is a front sectional view of a conventional surface treatment apparatus 61-111 discharge chamber, 2----LTE plasma, 3----processing chamber, 4-111 substrate holder, 5---- Substrate, 6--to-be-treated gas ejection member, 8--J--high frequency power source, 9--discharging body introduction system, 10---1 to-be-treated gas introducing system, 12--1 cylinder, 13---to be treated Gas ejection pore, 14 knee projectile passage hole, 15---one cavity, 16---wire mesh, 51.53---horizontal relative movement. 50---One vertical relative movement, 61.62---
One magnet. Patent applicant: Nichiden Anelva Co., Ltd. Agent: Kenji Murakami] 3 FIG, 5

Claims (7)

【特許請求の範囲】[Claims] (1)放電気体の導入系と電力印加手段とを設けた放電
室と;被処理気体の導入系と排気系とを設け基体を設置
する処理室と;を備え、 該放電室で発生したプラズマ中の反応活性種と放射光の
両者またはその一方(以下、放射物という)で、該被処
理気体を照射することによって表面処理種を作り、該表
面処理種あるいは該表面処理種と反応活性種を用いて該
基体の表面に表面処理を行なう表面処理装置において、 該表面処理種の発生からそれが該基体表面に到着して表
面処理を行なうまでの時間を、該基体の処理表面の全面
に亘って均一化させる如き被処理気体噴出手段を設けた
ことを特徴とする表面処理装置。
(1) A discharge chamber provided with an introduction system for a discharge body and a power application means; a processing chamber provided with an introduction system and an exhaust system for a gas to be treated and in which a substrate is installed; plasma generated in the discharge chamber; A surface treatment species is created by irradiating the gas to be treated with reactive active species and/or synchrotron radiation (hereinafter referred to as radiation), and the surface treatment species or the surface treatment species and the reactive active species are In a surface treatment device that performs surface treatment on the surface of the substrate using A surface treatment apparatus comprising a means for ejecting a gas to be treated so as to uniformize the gas over the area.
(2)被処理気体噴出手段が、互に基体の表面に沿った
方向に相対運動する、被処理気体の噴出部材と基体の保
持部材とを備えることを特徴とする特許請求の範囲第1
項記載の表面処理装置。
(2) The first aspect of the present invention is characterized in that the processing gas ejection means includes a processing gas ejection member and a substrate holding member that move relative to each other in a direction along the surface of the substrate.
The surface treatment device described in Section 1.
(3)被処理気体噴出手段が、基体の表面に垂直な方向
に相対運動する、被処理気体の噴出部材と基体の保持部
材を備えることを特徴とする特許請求の範囲第1または
2項記載の表面処理装置。
(3) Claim 1 or 2, characterized in that the treatment gas jetting means comprises a treatment gas jetting member and a substrate holding member that move relative to each other in a direction perpendicular to the surface of the substrate. surface treatment equipment.
(4)被処理気体噴出手段が、放電室と基体との間に位
置して、複数の放射物の通過孔とその周辺に設けられた
多数の被処理気体の噴出細孔とを有する、被処理気体の
噴出部材を含むことを特徴とする特許請求の範囲第1、
2または3項記載の表面処理装置。
(4) The treatment gas ejection means is located between the discharge chamber and the base body, and has a plurality of projectile passage holes and a large number of treatment gas ejection pores provided around the holes. Claim 1, characterized in that it includes a processing gas ejection member;
The surface treatment device according to item 2 or 3.
(5)放射物の通過孔に、該荷電粒子の通過を制御する
手段を設けたことを特徴とする特許請求の範囲第4項記
載の表面処理装置。
(5) The surface treatment apparatus according to claim 4, wherein the radiation passage hole is provided with means for controlling passage of the charged particles.
(6)荷電粒子の通過の制御が、通過孔に設けられた金
網による電場を利用するものである特許請求の範囲第5
項記載の表面処理装置。
(6) Control of the passage of charged particles utilizes an electric field created by a wire mesh provided in the passage hole, claim 5.
The surface treatment device described in Section 1.
(7)荷電粒子の通過の制御が、通過孔を横断して設け
られた磁場を利用するものである特許請求の範囲第5項
記載の表面処理装置。
(7) The surface treatment apparatus according to claim 5, wherein the passage of charged particles is controlled using a magnetic field provided across the passage hole.
JP12172386A 1986-05-27 1986-05-27 Surface treatment device Pending JPS62278284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12172386A JPS62278284A (en) 1986-05-27 1986-05-27 Surface treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12172386A JPS62278284A (en) 1986-05-27 1986-05-27 Surface treatment device

Publications (1)

Publication Number Publication Date
JPS62278284A true JPS62278284A (en) 1987-12-03

Family

ID=14818286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12172386A Pending JPS62278284A (en) 1986-05-27 1986-05-27 Surface treatment device

Country Status (1)

Country Link
JP (1) JPS62278284A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990012126A1 (en) * 1989-03-31 1990-10-18 Canon Kabushiki Kaisha Method of forming polycrystalline film by chemical vapor deposition
JP2927944B2 (en) * 1989-03-31 1999-07-28 キヤノン株式会社 Method for forming polycrystalline film by chemical vapor deposition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990012126A1 (en) * 1989-03-31 1990-10-18 Canon Kabushiki Kaisha Method of forming polycrystalline film by chemical vapor deposition
JP2927944B2 (en) * 1989-03-31 1999-07-28 キヤノン株式会社 Method for forming polycrystalline film by chemical vapor deposition

Similar Documents

Publication Publication Date Title
US6417111B2 (en) Plasma processing apparatus
US5367139A (en) Methods and apparatus for contamination control in plasma processing
JP2020514554A (en) Plasma reactor and diamond-like carbon deposition or treatment in plasma reactor
KR102714917B1 (en) Apparatus for treating substrate and method for treating substrate
KR101708935B1 (en) Surface processing method
WO2017119074A1 (en) Gas supply device
US11626269B2 (en) Chamber seasoning to improve etch uniformity by reducing chemistry
WO2019108855A1 (en) Atmospheric pressure linear rf plasma source for surface modification and treatment
US6564810B1 (en) Cleaning of semiconductor processing chambers
JP2000068227A (en) Method for processing surface and device thereof
JP2000269201A (en) Method and apparatus for plasma treatment
JP2004353066A (en) Plasma source and plasma treatment system
JPS62278284A (en) Surface treatment device
JP4450407B2 (en) Plasma processing apparatus and processing method
JP2797307B2 (en) Plasma process equipment
JPS62204520A (en) Manufacture of thin film
JPS62216638A (en) Device for treating surface
JPS62180747A (en) Electric discharge reaction device
JPS61166975A (en) Formation of film
JPS6314862A (en) Surface treatment device
JPS63166971A (en) Method and apparatus for surface treatment
JPS62229841A (en) Vacuum treatment apparatus
JPH0831751A (en) Plasma processing equipment
JPS6272114A (en) Radical-beam photo-cvd device
JP3134942B2 (en) Wafer stage pretreatment method