JPH01179410A - Method and apparatus for forming thin film by cvd - Google Patents

Method and apparatus for forming thin film by cvd

Info

Publication number
JPH01179410A
JPH01179410A JP63001705A JP170588A JPH01179410A JP H01179410 A JPH01179410 A JP H01179410A JP 63001705 A JP63001705 A JP 63001705A JP 170588 A JP170588 A JP 170588A JP H01179410 A JPH01179410 A JP H01179410A
Authority
JP
Japan
Prior art keywords
substrate
vacuum chamber
gas
chamber
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63001705A
Other languages
Japanese (ja)
Inventor
Kumiko Katsurai
桂井 久美子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP63001705A priority Critical patent/JPH01179410A/en
Publication of JPH01179410A publication Critical patent/JPH01179410A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the mixing of impurities into a grown thin film by a method wherein reaction gas in a solid phase or a liquid phase is absorbed into a substrate in the first vacuum chamber, and energy rays are made to irradiate on the gas absorbed into the substrate. CONSTITUTION:The substrate holder 4, on which a substrate S is installed, is placed on the supporting stand 3 located in the first vacuum chamber 1A. The temperature of the substrate S is brought to the liquefying temperature or the solidifying temperature or below of reaction gas by the temperature adjusting means 10 located in the supporting stand 3. As a result, the reaction gas introduced into the vacuum chamber 1A is absorbed to the substrate S in a liquid phase or in a solid phase. Then, the substrate S passes through an aperture part 12 together with the holder 4, it is shifted to the second vacuum chamber 1B and placed on the supporting stand 3. The energy rays such as the ultraviolet rays and the like sent from a light source 5 are projected on the reaction gas absorbed to the substrate S through an optical system 6 and a window 7. A photochemical reaction is generated and a thin film is formed on the substrate S. As reactive gas is not diffused in the vacuum chamber 1B, no reaction product is adhered to the inner wall of the vacuum chamber 1B, and the cause of mixing impurities into a film can be removed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、反応エネルギー源として紫外線の如き「エネ
ルギー線」を使用し、これを反応性ガスに照射していわ
ゆる光化学反応を起こさせ、以って反応生成物からなる
薄膜を基板上に堆積させることによりfi4膜を製造す
る方法及びそれに使用される装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses "energy rays" such as ultraviolet rays as a reaction energy source, and irradiates a reactive gas with the energy rays to cause a so-called photochemical reaction. The present invention relates to a method for producing a fi4 film by depositing a thin film made of a reaction product on a substrate, and an apparatus used therefor.

〔従来の技術〕[Conventional technology]

この種の光化学反応を利用した薄膜の製造方法は、光C
νDと呼ばれ、特に半導体デバイス(例えばIC)の製
造分野において注目されている。
A method for producing thin films using this type of photochemical reaction is
It is called νD and is attracting attention particularly in the field of manufacturing semiconductor devices (eg, ICs).

光CVDでは、反応性ガス例えばジシラン(SiJa)
ガスやシ与ン(SiH4)ガスを真空室(真空チャンバ
ー)内に導入し、該真空室内に配置された基板に窓を通
して「励起光」を照射して前記ガスを例えば次式: 「励起光」 L ’A n 5iJb         (Sillz)
n + % n llzに従って「励起光」により光化
学反応を起こさせ、この反応生成物を薄膜として基板上
に形成させる。
In photoCVD, a reactive gas such as disilane (SiJa) is used.
Gas or SiH4 gas is introduced into a vacuum chamber (vacuum chamber), and the substrate placed in the vacuum chamber is irradiated with "excitation light" through a window, so that the gas is irradiated with, for example, the following formula: "Excitation light" ” L'A n 5iJb (Sillz)
A photochemical reaction is caused by "excitation light" according to n + % n llz, and the reaction product is formed as a thin film on the substrate.

反応生成物(SiRz)nは、固体で、更に光又は熱エ
ネルギーを受けることによって水素を分解放出し、究極
的にはシリコン(Si)になる。
The reaction product (SiRz)n is a solid, and upon receiving light or thermal energy, it decomposes and releases hydrogen, ultimately becoming silicon (Si).

なお、この場合、「励起光」としては、一般には紫外光
が使用されるが、これに限られるものではなく、マイク
ロ波、赤外線のように波長の長い電磁波から、極紫外線
、真空紫外線のように波長の極めて短い(例えば波長−
J=1000Å以下)電磁波まで使用可能であり、更に
最近では紫外線よりエネルギーの高いX線、放射線(α
線、β線、T線、中性子線、陽子線、重粒子線)電子ビ
ーム、イオンビーム、荷電ビーム、励起種ビーム、プラ
ズマ、粒子線なども使用される。従って、これらを総称
して、ここでは「エネルギー線」と呼ぶ。
In this case, the "excitation light" generally used is ultraviolet light, but it is not limited to this, and may include electromagnetic waves with long wavelengths such as microwaves and infrared rays, as well as extreme ultraviolet rays and vacuum ultraviolet rays. has an extremely short wavelength (e.g. wavelength -
J = 1000 Å or less) electromagnetic waves can be used, and more recently, X-rays and radiation (α
Electron beams, ion beams, charged beams, excited species beams, plasmas, particle beams, etc. are also used. Therefore, these are collectively referred to as "energy rays" here.

光cvDに使用される一般的な従来の装置は、例えば第
6図に示されるように、主として、真空室(1)と、こ
れを周囲から隔離するための気密ハウジング(2)と、
真空室(1)の下部に配置された支持台(3)と、支持
台(3)の上に載せられた、基板(S)を装着するため
の基板ホルダ(4)と、ハウジング(2)の外に置かれ
た「エネルギー線」光′tA(5)と、必要に応じて設
けられる「エネルギー線」光学系(6)と、真空室(1
)の上部に設けられた「エネルギー線」を入射させるた
めの窓(7)と、真空室(1)の底部に開口した反応性
ガス導入管(8)と、真空室(1)を真空に排気するた
めの排気装置(9)とからなる。
A typical conventional device used for optical CVD, as shown for example in FIG.
A support stand (3) placed at the bottom of the vacuum chamber (1), a substrate holder (4) placed on the support stand (3) for mounting the substrate (S), and a housing (2). ``Energy ray'' light 'tA (5) placed outside the ``energy ray'' optical system (6) provided as necessary, and vacuum chamber (1).
) at the top of the chamber (7) to allow the energy beam to enter, a reactive gas introduction tube (8) opened at the bottom of the vacuum chamber (1), and a window (7) installed at the top of the vacuum chamber (1) to evacuate the vacuum chamber (1). It consists of an exhaust device (9) for exhausting air.

窓(7)はそこを透過した「エネルギー線」が基板(S
)を照射できる位置にあり、「エネルギー線Jが紫外線
の場合、窓(7)の材料は、一般には石英、弗化カルシ
ウム、弗化マグネシウム等の紫外線を透過するもので作
られ、X1i1の場合は、薄いヘリリウム等で作られる
The window (7) allows the "energy rays" that pass through it to reach the substrate (S
), and if the energy ray J is an ultraviolet ray, the material of the window (7) is generally made of a material that transmits ultraviolet rays, such as quartz, calcium fluoride, or magnesium fluoride; is made of thin helium etc.

場合によ・っては、光源(5)例えば紫外線ランプは、
真空室(1)内部に内蔵されていてもよい。
In some cases, the light source (5), for example an ultraviolet lamp, is
It may be built inside the vacuum chamber (1).

しかし、「エネルギー線」が波長λ−2000Å以下の
真空紫外線や更にエネルギーの高い軟X線、電子ビーム
、イオンビーム、荷電ビーム、励起種ビーム、プラズマ
、粒子線、一部の放射線などの「エネルギー線」では、
窓を透過する材料がないか、又はあっても吸収が多くて
透過率が低く基板に届く光量が不足するなどの問題があ
って、窓を使用せずに、ピンホールの如き開口部(7′
)を真空室(1)の上部に設けている。
However, "energy rays" include vacuum ultraviolet rays with a wavelength of λ-2000 Å or less, higher-energy soft X-rays, electron beams, ion beams, charged beams, excited species beams, plasmas, particle beams, and some radiation. In "Line",
There are problems such as there is no material that can pass through the window, or even if there is material, there is a lot of absorption, low transmittance, and the amount of light that reaches the substrate is insufficient. ′
) is provided at the top of the vacuum chamber (1).

このような装置の一例を第7図に示す。真空室(1)に
、光化学反応を起こし基板(S)上に反応生成物による
薄膜が堆積されるような反応性ガス例えばジシラン(S
iJa)ガスが導入され、そして光源(5)から窓(7
)又は開口部(7′)を通して基板(S)に「エネルギ
ー線jが照射されるとジシランガスが分解して基板上に
「エネルギー線」の強度、基板温度その他の条件に応じ
て水素化シリコン又はシリコンの薄膜が堆積する。
An example of such a device is shown in FIG. The vacuum chamber (1) is filled with a reactive gas such as disilane (S) which causes a photochemical reaction and deposits a thin film of reaction products on the substrate (S).
iJa) gas is introduced and from the light source (5) to the window (7
) or when the substrate (S) is irradiated with the energy beam j through the opening (7'), the disilane gas decomposes and hydrogenated silicon or A thin film of silicon is deposited.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、いずれにせよ、反応性ガスの導入室と「
エネルギー線」を照射する照射室とは同一の真空室(1
)であり、そのため次のような問題点があった。
However, in any case, the reactive gas introduction chamber and the
The same vacuum chamber (1
), which caused the following problems.

即ち、反応性ガスを導入すると、当然のことながらガス
は真空室(1)内に均一に拡散し、これに「エネルギー
線」が照射されると、反応が進んで、中間生成物や最終
生成物が生成し、これらの生成物の一部は、ハウジング
(2)の内壁に付着する。
In other words, when a reactive gas is introduced, the gas naturally diffuses uniformly within the vacuum chamber (1), and when it is irradiated with "energy rays", the reaction progresses, producing intermediate products and final products. products are generated and some of these products adhere to the inner walls of the housing (2).

同種の薄膜を製造するとしても、同一の装置を利用して
多数の基板上に順に薄膜を形成する場合、次のガス導入
時に、内壁に付着した中間生成物や最終生成物が真空室
(1)内を漂い、これが次の「エネルギー線」照射の時
に過剰に反応が進んだり、或いは分解して不純物を生成
し、この不純物が生成する薄膜中に不純物として混入し
、その結果、不均質な薄膜が生成するという問題点があ
った。
Even if thin films of the same type are to be manufactured, if the same equipment is used to form thin films on multiple substrates in sequence, intermediate and final products adhering to the inner walls of the vacuum chamber (1 ), and during the next irradiation with energy rays, the reaction progresses excessively or decomposes to produce impurities, which are mixed into the formed thin film as impurities, resulting in a non-uniform There was a problem that a thin film was formed.

C問題点を解決するための手段〕 そのため、本発明者は、最初に、反応性ガスの導入と、
「エネルギー線」の照射を別々の真空室で実施すること
を着想したが、反応性ガスはガス故に導入した後、基板
と共に別の真空室に移動させることができない。そこで
、鋭意研究の結果、導入した反応性ガスを基板上に固相
又は液相で吸着させれば(例えば、基板上で反応性ガス
を固化又は液化すれば)、基板と共に別の真空室に移動
させることができることを見い出し、本発明を成すに至
った。
Means for Solving Problem C] Therefore, the present inventor first introduced a reactive gas,
The idea was to carry out the irradiation with "energy rays" in separate vacuum chambers, but since the reactive gas is a gas, it cannot be moved together with the substrate to another vacuum chamber after being introduced. As a result of extensive research, we have found that if the introduced reactive gas is adsorbed onto the substrate in a solid or liquid phase (for example, if the reactive gas is solidified or liquefied on the substrate), it can be transferred together with the substrate to another vacuum chamber. They have discovered that it can be moved, and have accomplished the present invention.

従って、本発明は、第1に、r第1の真空室内において
、基板上に反応性ガスを固相又は液相で吸着させ、 次いで、第2の真空室内において、前述の固相又は液相
で吸着させた反応性ガスに、「エネルギー線」を照射し
て化学反応を起こさせ、以て、その反応生成物からなる
薄膜を製造する方法」を提供する。
Therefore, the present invention firstly adsorbs a reactive gas onto the substrate in a solid phase or liquid phase in a first vacuum chamber, and then adsorbs the reactive gas in the aforementioned solid phase or liquid phase in a second vacuum chamber. A method for producing a thin film made of the reaction product by irradiating the reactive gas adsorbed with energy rays to cause a chemical reaction.

第2に、本発明は、「基板上に反応性ガスを固相又は液
相で吸着させるため、基板を所定温度以下に保持する温
度調節手段を備えた第1の真空室と、前述の固相又は液
相で吸着させた反応性ガスに、「エネルギー線」を照射
して化学反応を起こさせ、以て、その反応生成物からな
る薄膜を基板上に形成させる第2の真空室とからなるこ
とを特徴とするCVD装置」を提供する。
Second, the present invention provides a first vacuum chamber equipped with a temperature control means for maintaining the substrate at a predetermined temperature or lower in order to adsorb a reactive gas onto the substrate in a solid or liquid phase; A second vacuum chamber in which the reactive gas adsorbed in the phase or liquid phase is irradiated with "energy rays" to cause a chemical reaction, thereby forming a thin film made of the reaction product on the substrate. CVD equipment characterized by:

〔作用〕[Effect]

本発明に於いては、反応性ガスの導入は専ら第1の真空
室で行ない、そこで反応性ガスを基板上に固相又は液相
で吸着させ、その上で第2の真空室に移動させるので、
第1の真空室空間及び内壁には、存在するとしても同一
の反応性ガスしか存在しないことから、不純物が固相又
は液相に混入することがない。
In the present invention, the introduction of the reactive gas is carried out exclusively in the first vacuum chamber, where the reactive gas is adsorbed onto the substrate in a solid or liquid phase, and then transferred to the second vacuum chamber. So,
Since only the same reactive gas, if any, is present in the first vacuum chamber space and the inner wall, impurities are not mixed into the solid or liquid phase.

また、第2の真空室では反応性ガスの導入を行なわず、
かつ反応性ガスは基板上に固相又は液相で吸着させた状
態で第2の真空室に移動させるので、第2の真空室空間
及び内壁には、反応性ガスが実質的に存在しないことか
ら、「エネルギー線」に当たっても不純物又はその前駆
体が生成することがなく、その結果、不純物が薄膜中に
混入することがない。
In addition, no reactive gas is introduced in the second vacuum chamber,
In addition, since the reactive gas is transferred to the second vacuum chamber in a state in which it is adsorbed on the substrate in a solid phase or liquid phase, the reactive gas is substantially not present in the second vacuum chamber space and inner wall. Therefore, impurities or their precursors are not generated even when the film is exposed to "energy rays", and as a result, impurities are not mixed into the thin film.

反応性ガスを基板上に吸着させるには、基板を反応性ガ
スの固化又は液化温度より低く保持すればよい。固化又
は液化温度より十分に冷却しておけば、反応性ガスが確
率1またはこれに近い確率で基板上に固相又は液相で吸
着される。
In order to adsorb the reactive gas onto the substrate, the substrate may be maintained below the solidification or liquefaction temperature of the reactive gas. If the temperature is sufficiently cooled below the solidification or liquefaction temperature, the reactive gas will be adsorbed onto the substrate in the solid or liquid phase with a probability of 1 or close to this.

反応性ガスの吸着した基板を第1の真空室から第2の真
空室へ移動させる場合、基板は平行移動でも回転移動で
も或いは別の軌跡を描いて移動させてもよい。
When moving the substrate on which the reactive gas has been adsorbed from the first vacuum chamber to the second vacuum chamber, the substrate may be moved in parallel, in rotation, or in a different trajectory.

また、基板を移動させずに、第1の真空室及び第2の真
空室を移動させることにより、相対的に基板を移動させ
てもよい。
Alternatively, the substrate may be relatively moved by moving the first vacuum chamber and the second vacuum chamber without moving the substrate.

第1の真空室と第2の真空室とは、(イ)少なくとも基
板が通過し得る開口部を通じて連結していてもちよく、
或いは(ロ)第3の真空室を介して連結していてもよく
、(イ)、(ロ)の場合、開口部にシャッタを設け、こ
れにより必要に応じて再真空室を完全に分離できるよう
にしてもよい。
The first vacuum chamber and the second vacuum chamber may be (a) connected through an opening through which at least the substrate can pass;
Alternatively, (b) they may be connected via a third vacuum chamber, and in the cases of (a) and (b), a shutter may be provided at the opening, thereby allowing the re-vacuum chamber to be completely separated if necessary. You can do it like this.

開口部は、そのままでもよく、フィン(邪魔板)を設け
て反応性ガスの拡散又は移動を抑制してもよい。
The opening may be left as it is, or fins (baffle plates) may be provided to suppress diffusion or movement of the reactive gas.

基板ホルダが円筒形をしており、その円周面に基板を1
個又は多数個保持させ、基板ホルダを回転させることに
より基板の移動を行なうことも可能である。この場合、
基板ホルダはハウジングの一部を兼用してもよく、基板
ホルダと同心円を成す直径の大きい又は小さい円筒形の
ハウジングとの間に第1の真空室及び第2の真空室が形
成される。
The board holder has a cylindrical shape, and one board is placed on its circumferential surface.
It is also possible to move the substrate by holding one or more substrates and rotating the substrate holder. in this case,
The substrate holder may also serve as a part of the housing, and a first vacuum chamber and a second vacuum chamber are formed between the substrate holder and a concentric cylindrical housing having a large or small diameter.

また、更に円筒形の基板ホルダ上に多数の基板をらせん
状に並べ、基板ホルダを回転させると共に回転軸方向に
少しづつ進めることにより自動的な連続運転を行なうこ
とも可能である。
Further, it is also possible to perform automatic continuous operation by arranging a large number of substrates in a spiral shape on a cylindrical substrate holder and rotating the substrate holder and moving it little by little in the direction of the rotation axis.

本発明では、基板を予め清浄にするためにクリーニング
効果のある「エネルギー線」例えば近紫外光を照射した
り、照射する補助光源を設けてもよい。
In the present invention, in order to clean the substrate in advance, "energy rays" having a cleaning effect, such as near-ultraviolet light, may be irradiated, or an auxiliary light source for irradiation may be provided.

また、基板や真空室を定期的又は不定期にベーキングし
たり、ベーキング手段を設けてもよい。
Further, the substrate or the vacuum chamber may be baked periodically or irregularly, or baking means may be provided.

ベーキングにより不用意にハウジング内壁に吸着された
反応性ガスは、除去される。
The reactive gas that was inadvertently adsorbed on the inner wall of the housing due to baking is removed.

更に、製造した薄膜を養生又は熟成又は変性するために
アニールしたり、アニーリング手段を設けてもよい。ア
ニーリング手段として所定の「エネルギー線」を発光す
る補助光源を設けてもよい。
Furthermore, the thin film produced may be annealed for curing, aging, or denaturation, or an annealing means may be provided. An auxiliary light source that emits a predetermined "energy ray" may be provided as annealing means.

「エネルギー線」は、反応性ガスが固相又は液相で基板
全面に照射しても局所的に(所望により所定のパターン
状に)照射してもいずれでもよく、時間の経過と共に照
射位置を変化させてもよい。
"Energy rays" may be irradiated with reactive gas in solid or liquid phase over the entire surface of the substrate, or locally (in a predetermined pattern if desired), and the irradiation position changes over time. It may be changed.

「エネルギー線」の照射と同時に又は僅かに先行させて
又は照射の後に、加熱光(一般には可視光又は赤外光)
を照射してもよい。加熱光が僅かに先行する場合には、
基板に極めて近い位置で気化が起り、通常の気相分子の
光化学反応と同様の現象が再現されるが、第1の真空室
空間への反応性ガスの拡散は避けられる。
Heating light (generally visible or infrared light) simultaneously with or slightly preceding or after the irradiation of the "energy beam"
may be irradiated. If the heating light is slightly ahead,
Vaporization occurs very close to the substrate, reproducing a phenomenon similar to a normal photochemical reaction of gas-phase molecules, but diffusion of reactive gases into the first vacuum chamber space is avoided.

本発明では、製造しつつある薄膜の膜厚や特性をモニタ
ーしたり、モニター装置を設けてもよい。
In the present invention, the thickness and characteristics of the thin film being manufactured may be monitored or a monitoring device may be provided.

反応性ガスは常温で必ずしもガス状ではなく、強制的に
ガス化させたものでもよい。従って、ガス導入の経路で
ガスを加熱したり、加熱手段を設けてもよい。
The reactive gas is not necessarily gaseous at room temperature, and may be forcibly gasified. Therefore, the gas may be heated in the gas introduction route, or a heating means may be provided.

本発明のCVD装置において、第1の真空室(ガス導入
室)を多数設けて、一方でガスの導入を行ない、他方で
基板の取替えを行なうことにより、薄膜の製造効率を向
上させることができる。
In the CVD apparatus of the present invention, thin film manufacturing efficiency can be improved by providing a large number of first vacuum chambers (gas introduction chambers), one for introducing gas, and the other for replacing the substrate. .

また、異なる反応性ガスごとに第1の真空室(ガス導入
室)を多数設け、同一の第2の真空室(「エネルギー線
」照射室)で順に照射を行なえば、異なる薄膜をそれぞ
れ高純度で製造、積層することができ、それでいて第2
の真空室が1つで済むことからスペースが少なくて済む
In addition, if a number of first vacuum chambers (gas introduction chambers) are provided for each different reactive gas, and irradiation is performed in sequence in the same second vacuum chamber (“energy beam” irradiation chamber), different thin films can be produced with high purity. can be manufactured and laminated with
Since only one vacuum chamber is required, less space is required.

第2の真空室(照射室)は、複数あってもよい。There may be a plurality of second vacuum chambers (irradiation chambers).

この場合、異なる目的に使用する多種の「エネルギー線
」をそれぞれ最適の位置関係で照射することができる。
In this case, various types of "energy rays" used for different purposes can be irradiated in optimal positional relationships.

また、化学反応を起こす「エネルギー線」を局所的に照
射して成膜する場合、残りの部分は後の昇温過程(積極
的に加熱光を照射する場合もある)で気化するが、この
場合、気化した反応性ガスを排除する専用の真空室を設
けて実施してもよい。
In addition, when forming a film by locally irradiating "energy rays" that cause a chemical reaction, the remaining portion is vaporized during the subsequent temperature raising process (in some cases, active heating light is irradiated); In such cases, a dedicated vacuum chamber may be provided to remove the vaporized reactive gas.

〔実施例1・−・・・−薄膜製造装置〕第1図は、本実
施例の薄膜製造装置の垂直断面を説明する概念図である
[Example 1 - Thin film manufacturing apparatus] FIG. 1 is a conceptual diagram illustrating a vertical cross section of the thin film manufacturing apparatus of this example.

本装置は、主として、ガス導入室−第1の真空室(IA
)と「エネルギー線」照射室−第2の真空室(IB)と
、これらを周囲から隔離するための気密ハウジング(2
)と、各真空室内部に配置された支持台(3)と、この
上にR置された、基板(S)を装着するための基板ホル
ダ(4)と、第2の真空室(IB)の上部に設けられた
「エネルギー線」を入射させるための窓(7)又は開口
部と、第1の真空室(IA)の底部に開口した反応性ガ
ス導入管(8)と、各真空室を真空に排気するための排
気装置(9)と、支持台(3)内部に設けられた基板温
度調節手段(10)例えば冷却手段と、基板を平行移動
させるための基板移動手段(11)とからなる。
This device mainly consists of a gas introduction chamber-first vacuum chamber (IA
) and "energy beam" irradiation chamber - a second vacuum chamber (IB) and an airtight housing (2
), a support stand (3) arranged inside each vacuum chamber, a substrate holder (4) placed R on this for mounting a substrate (S), and a second vacuum chamber (IB). A window (7) or opening provided at the top of the window (7) for inputting the "energy ray", a reactive gas introduction tube (8) opened at the bottom of the first vacuum chamber (IA), and each vacuum chamber. an exhaust device (9) for evacuating the substrate to a vacuum, a substrate temperature control means (10) such as a cooling means provided inside the support stand (3), and a substrate moving means (11) for parallelly moving the substrate. Consisting of

第1の真空室(IA)と第2の真空室(IB)とは、開
口部(12)を介して連結しており、ここにはシャッタ
を設けてもよい、そして、基板移動手段(11)によっ
て、基板(S)は、基板ホルダ(4)と共に開口部(1
2)を通って再真空室の間を平行移動できる。
The first vacuum chamber (IA) and the second vacuum chamber (IB) are connected via an opening (12), which may be provided with a shutter, and a substrate moving means (11). ), the substrate (S) is inserted into the opening (1) together with the substrate holder (4).
2) allows parallel movement between the re-vacuum chambers.

更に、気密ハウジング(2)の外に、「エネルギー線」
の光源(5)と、必要に応じて設けられる「エネルギー
線」の光学系(6)が配設されている。
Furthermore, an "energy beam" is placed outside the airtight housing (2).
A light source (5) and an "energy beam" optical system (6) provided as necessary are provided.

基板温度調節手段(10)は、基板(S)を、導入され
た反応性ガスが基板上で液化又は固化する温度以下に冷
却することができる。ここでは、温度調節手段(10)
は、冷却装置だけからなるが、基板ホルダ(4)内部に
例えば電熱ヒータからなる加熱装置を設け、冷却装置と
加熱装置の両者で本発明の温度調節手段を構成してもよ
い。また、温度調節手段(10)は基板ホルダ(4)内
部に設けてもよい。
The substrate temperature control means (10) can cool the substrate (S) to a temperature below which the introduced reactive gas liquefies or solidifies on the substrate. Here, temperature control means (10)
Although it consists of only a cooling device, a heating device consisting of, for example, an electric heater may be provided inside the substrate holder (4), and both the cooling device and the heating device may constitute the temperature adjusting means of the present invention. Further, the temperature control means (10) may be provided inside the substrate holder (4).

窓(7)は、遠紫外線から赤外線までを透過する材料、
例えばフン化マグネシウムやフッ化カルシウムや石英か
らできている。
The window (7) is made of a material that transmits light from far ultraviolet to infrared rays.
For example, it is made from magnesium fluoride, calcium fluoride, and quartz.

光[(5)例えばエキシマレーザ装置から出力された「
エネルギー線」は、光学系(6)で必要に応じてビーム
径を絞って(例えばφ=1.5μm−1ml11)、基
板(S)を局所的に照射することも、またビーム径を広
げて基板全体を照射することもてき〔実施例2・−・−
・・・・・・−薄膜製造装置〕第2図は、本実施例の薄
膜製造装置の垂直断面を説明する概念図である。
Light [(5) For example, output from an excimer laser device
The energy beam can be used to locally irradiate the substrate (S) by narrowing down the beam diameter (for example, φ = 1.5 μm - 1 ml11) as necessary with the optical system (6), or by widening the beam diameter. It is also possible to irradiate the entire substrate [Example 2...
. . . - Thin Film Manufacturing Apparatus] FIG. 2 is a conceptual diagram illustrating a vertical cross section of the thin film manufacturing apparatus of this embodiment.

本装置は、主として、2つのガス導入室−第1の真空室
(IA)と1つの「エネルギー線J照射室=第2の真空
室(IB)からなる真空室と、第1の真空室(1^)に
隣接するガス導入予備室(14)と、これらを外界から
遮断し密閉する気密ハウジング(2)と、真空室内に置
かれる基板(S)を保持するための基板ホルダ(4)と
、基板(S)を所定温度以下に保持する為の温度調節手
段(10)と、基板(S)を前方正面から照射すること
のできる「エネルギー線」光源(5)と、必要に応じて
設けられる「エネルギー線」用光学系(6)と、「エネ
ルギー線」を透過させる窓(7)又は開口部と、ガス導
入予備室(14)内に反応性ガスを供給するガス導入管
(8)と、真空室やガス導入予備室(14)を真空にす
るための排気装置(9)とからなる。
This device mainly consists of a vacuum chamber consisting of two gas introduction chambers - a first vacuum chamber (IA) and one energy ray J irradiation chamber - a second vacuum chamber (IB), and a first vacuum chamber (IB). 1^), an airtight housing (2) that blocks and seals these from the outside world, and a substrate holder (4) for holding the substrate (S) placed in the vacuum chamber. , a temperature control means (10) for maintaining the substrate (S) at a predetermined temperature or lower, and an "energy ray" light source (5) capable of irradiating the substrate (S) from the front, provided as necessary. an optical system for "energy rays" (6), a window (7) or opening that transmits the "energy rays", and a gas introduction pipe (8) for supplying reactive gas into the gas introduction preliminary chamber (14). and an exhaust device (9) for evacuating the vacuum chamber and gas introduction preliminary chamber (14).

更に、ガス導入予備室(14)に開口するガス導入管(
8)の途中に開閉用バルブやガス流量を制御する為のバ
リアプル・リーク・バルブや、ガス導入予備室(14)
に開口するガス供給量をモニターするための真空計が設
けられている。これらは、いずれも第2図からは省略し
である。ガス導入予備室(14)に取りつけられた排気
装置(9)は、反応性ガス供給量を調節するためや、反
応性ガスを独自に排気するために使用される。
Furthermore, a gas introduction pipe (
8) In the middle, there is an opening/closing valve, a barrier pull leak valve to control the gas flow rate, and a preliminary gas introduction chamber (14).
A vacuum gauge is provided to monitor the amount of gas supplied. These are all omitted from FIG. 2. The exhaust device (9) attached to the gas introduction preliminary chamber (14) is used to adjust the amount of reactive gas supplied and to independently exhaust the reactive gas.

第1の真空室(IA)とガス導入予備室(14)との間
には、反応性ガスの導入を瞬時に開始あるいは停止する
ことのできるシャッタ(15)が設けられており、また
、第1の真空室(IA)と第2の真空室(IB)との間
には、ガスが他方に拡散するのを防止するシャッタ(1
3)又はフィンが設けられている。しかし、これらのシ
ャフタ(13)又はフィンは、場合により不要である。
A shutter (15) capable of instantaneously starting or stopping the introduction of reactive gas is provided between the first vacuum chamber (IA) and the gas introduction preliminary chamber (14). A shutter (1) is provided between the first vacuum chamber (IA) and the second vacuum chamber (IB) to prevent gas from diffusing to the other.
3) Or fins are provided. However, these shafts (13) or fins may be unnecessary.

ここでは、第1の真空室(IA)は2つあるが、これは
1つであってもよい。また、光源(5)及び光学系(6
)は、本発明の装置とは別体に設けてもよい。
Although there are two first vacuum chambers (IA) here, there may be one. In addition, a light source (5) and an optical system (6
) may be provided separately from the device of the present invention.

本実施例のシャッタ(15)はスライド式で、十分に高
速で開閉できるが、基板(S)表面との間隔は、成膜に
支障のない限りできるだけ狭いことが好ましい。
The shutter (15) of this embodiment is of a sliding type and can be opened and closed at a sufficiently high speed, but it is preferable that the distance from the surface of the substrate (S) be as narrow as possible without interfering with film formation.

反応性ガスを導入し、シャッタ(15)と排気・ガス供
給に係わるバルブ類を全閉した状態で、ガス導入予備室
(14)の体積をV、真空計によって知られる圧力をP
とするならば、該ガス導入予備室(14)内の反応性ガ
スの分子数Nは、K、を比例定数として、 N=KI  PV で決定される。
With the reactive gas introduced and the shutter (15) and valves related to exhaust and gas supply fully closed, the volume of the gas introduction preliminary chamber (14) is V, and the pressure known by the vacuum gauge is P.
Then, the number N of molecules of the reactive gas in the gas introduction preparatory chamber (14) is determined by N=KI PV where K is a constant of proportionality.

次にシャッタ(13)を閉じた状態で、シャッタ(15
)をT秒間開き、そして再び閉じたとき、圧力がPから
P゛に低下したとき、第1の真空室(IA)に導入され
た反応性ガスの分子数NRは、反応性ガスが1種類で、
アウトガスなどの不要なガス分子が無視できるならば、 NR=KI V (P−P”) で示される。
Next, with the shutter (13) closed,
) is opened for T seconds and then closed again, and when the pressure decreases from P to P', the number of reactive gas molecules NR introduced into the first vacuum chamber (IA) is equal to the number of reactive gases of one type. in,
If unnecessary gas molecules such as outgas can be ignored, it is expressed as NR=KIV(P-P'').

このとき、基板(S)上に吸着される反応性ガスの分子
数N、は、比例定数に2を用いて、Ns =KtN+t で表わされ、K2≦1である。
At this time, the number N of reactive gas molecules adsorbed onto the substrate (S) is expressed as Ns=KtN+t using 2 as the proportionality constant, and K2≦1.

Kz=1となるのは、基板(S)の温度が反応性ガスの
固化又は液化温度より十分に低く、そのため吸着する確
率が1となり、かつ第1の真空室(IA)内の排気を停
止させた場合である。これ以外は、K2〈1であり、K
!の値は基板(S)の温度、第1の真空室(1八)内の
形状や排気速度等によって決定される。
Kz = 1 because the temperature of the substrate (S) is sufficiently lower than the solidification or liquefaction temperature of the reactive gas, so the probability of adsorption is 1, and the evacuation in the first vacuum chamber (IA) is stopped. This is the case when Other than this, K2<1 and K
! The value of is determined by the temperature of the substrate (S), the shape inside the first vacuum chamber (18), the pumping speed, etc.

こうして、N、は決定値として求められ、成膜量もしく
は膜厚は、N、により知られるところとなる。
In this way, N is obtained as a determined value, and the amount or thickness of the film formed is known from N.

シャッタ(15)が十分に高速で、反応性ガスの粘性流
体的ふるまいを無視できる程度に圧力が小さければ、シ
ャッタ(15)を開ける直前にガス導入予備室(14)
内に均一に分布していた反応性ガスはシャンク(15)
を開けると同時に、基板(S)上に均一に入射又は衝突
するので、反応性ガスを基板上に均一に吸着させること
ができる。
If the shutter (15) is fast enough and the pressure is small enough to ignore the viscous fluid behavior of the reactive gas, the gas introduction pre-chamber (14) is opened immediately before the shutter (15) is opened.
The reactive gas that was uniformly distributed within the shank (15)
Since the reactive gas is uniformly incident on or collides with the substrate (S) upon opening, the reactive gas can be uniformly adsorbed onto the substrate.

吸着が完了し、場合によって排気を行ない第1の真空室
(IA)空間に漂うガス分子数が十分に少(なったら、
シャッタ(13)を開き、基板(S)を基板移動装置(
11)により第2の真空室(IB)に移動させる。
When adsorption is completed and the number of gas molecules floating in the first vacuum chamber (IA) space is sufficiently small (by exhausting if necessary),
Open the shutter (13) and move the substrate (S) to the substrate moving device (
11) to the second vacuum chamber (IB).

基板(S)が窓(7)又は開口部と対向する位置に配置
されたならば、シャッタ(13)を閉じ、再び排気する
と、第2の真空室(IB)内の清浄度又は清澄度を更に
高めることができる。
Once the substrate (S) is placed in a position facing the window (7) or opening, the shutter (13) is closed and evacuated again to improve the cleanliness or clarity in the second vacuum chamber (IB). It can be further increased.

光源(5)及び光学系(6)は、1種あるいは1個であ
る必要はな(、数個並列して、基板(S)の位置をその
都度変えて照射することも可能である。
The light source (5) and the optical system (6) do not need to be of one type or one type (although it is also possible to use several in parallel and irradiate the substrate (S) by changing the position each time.

この場合、反応性ガスの化学反応以外の目的例えば変性
、修飾、改質などの目的を達成する補助光源を含ませて
もよい。
In this case, an auxiliary light source may be included to accomplish purposes other than chemical reactions of the reactive gas, such as modification, modification, and modification.

本装置は、第1の真空室(IA)が2つあるので、最初
の成膜の後、別のガス導入室=第1の真空室(LA)で
異なる反応性ガスを導入し、同様にこれを固相又は液相
で吸着させ、その上で再び第2の真空室(IB)で「エ
ネルギー線」を照射することにより、最初の薄膜の上に
異なる薄膜を積層することができる。
This device has two first vacuum chambers (IA), so after the first film formation, a different reactive gas is introduced in another gas introduction chamber = the first vacuum chamber (LA), and the same process is performed. By adsorbing this in a solid phase or liquid phase and then irradiating it with "energy rays" again in a second vacuum chamber (IB), a different thin film can be laminated on top of the first thin film.

これらは何回でも操り返すことができる。These can be replayed as many times as you like.

〔実施例3・・・・・−−−−−一薄膜の製造〕実施例
2の装置(第2図参照)を用い、Siウェハからなる基
板(S)を基板ホルダ(4)にセントした後、真空室及
び場合によりガス導入予備室(14)を10−’Pa以
下に排気した。
[Example 3...---Manufacture of a thin film] Using the apparatus of Example 2 (see Figure 2), a substrate (S) made of a Si wafer was placed in a substrate holder (4). Thereafter, the vacuum chamber and, if necessary, the gas introduction preliminary chamber (14) were evacuated to 10-'Pa or less.

次に、基板(S)を第2の真空室(IB)において、基
板クリーニング効果のある「エネルギー線」を照射する
ことにより清浄にした。
Next, the substrate (S) was cleaned in a second vacuum chamber (IB) by irradiating it with "energy rays" that have a substrate cleaning effect.

排気と基板クリーニングを行う傍ら、基板(S)の温度
調節を開始し、温度調節手段(10)によって−50℃
まで冷却し、この温度を維持した。
While exhausting air and cleaning the substrate, temperature control of the substrate (S) was started, and temperature control means (10) was used to lower the temperature to -50°C.
and maintained at this temperature.

最初に第2図紙面に向かって左側のガス導入予備室(1
4)と第1の真空室(IA)を使用する。
First, start with the gas introduction preliminary chamber (1
4) and the first vacuum chamber (IA).

体積が1.51であるガス導入予備室(14)に予めI
Paのトリシラン(SiiHs)を溜めておき、基板(
S)を第1の真空室(IA)に移動し、シャッタ(15
)の下に置いた。基板(S)の温度は移動によって変わ
らず、−50℃である。
I was previously placed in the gas introduction preliminary chamber (14) with a volume of 1.51.
Trisilane (SiiHs) of Pa is stored and the substrate (
S) to the first vacuum chamber (IA) and close the shutter (15
). The temperature of the substrate (S) does not change due to the movement and is -50°C.

シャッタ(13)を閉め、シャッタ(15)を瞬時に全
開し、しばらくして全閉した。このとき、ガス導入予備
室(14)の圧力は、10− ”Paに低下したので、
ガス導入予備室(14)内の反応性ガスは、はとんどが
第1の真空室(IA)に吐出された。そのうちの9割が
、基板(S)に固相で吸着され、残りは排気された。
The shutter (13) was closed, the shutter (15) was instantaneously fully opened, and then fully closed after a while. At this time, the pressure in the gas introduction preliminary chamber (14) decreased to 10-''Pa, so
Most of the reactive gas in the gas introduction preliminary chamber (14) was discharged into the first vacuum chamber (IA). 90% of it was adsorbed on the substrate (S) as a solid phase, and the rest was evacuated.

次にシャフタ(13)を開き、基板(S)を第2の真空
室(IB)に水平移動させ、その上で、光源(5)から
強力な真空紫外線を含む「エネルギー線」を、基板(S
)表面の反応性ガス(固相又は液相)に向けて照射し、
光化学反応による成膜を行なった。
Next, the shutter (13) is opened, the substrate (S) is horizontally moved to the second vacuum chamber (IB), and the "energy beam" containing strong vacuum ultraviolet rays is applied from the light source (5) to the substrate (S). S
) Irradiate toward the reactive gas (solid or liquid phase) on the surface,
Film formation was performed by photochemical reaction.

これにより膜厚12人のシリコン薄膜が製造された。As a result, a silicon thin film with a thickness of 12 layers was manufactured.

次に第2図紙面に向かって右側のシャッタ(13)を開
き、基板(S)を−50℃に維持したまま第2図紙面に
向かって右側の第1の真空室(IA)に移動させた。そ
して、シャッタ(13)を閉じて、該真空室を閉鎖した
Next, open the shutter (13) on the right side facing the page of Figure 2, and move the substrate (S) to the first vacuum chamber (IA) on the right side facing the page of Figure 2 while maintaining the substrate (S) at -50°C. Ta. Then, the shutter (13) was closed to close the vacuum chamber.

この真空室には、同様にシャッタ(15)を介してガス
導入予備室(14)が隣接しており、この予備室(14
)に予め1.5Paのフン化モリブデン(MoF&)を
溜めておいた。
A gas introduction preliminary chamber (14) is also adjacent to this vacuum chamber via a shutter (15), and this preliminary chamber (14) is adjacent to this vacuum chamber via a shutter (15).
1.5 Pa of molybdenum fluoride (MoF&) was stored in advance.

そこで、シャンク(15)を開いてフン化モリブデンガ
スを第1の真空室(IA)に導入し、シリコン薄膜の上
に吸着させ、その後、シャフタ(13)を開いて、第2
の真空室(IB)に基板を移動させ、「エネルギー線」
を照射して光化学反応を行ない、膜厚7人のモリブデン
薄膜を形成させた。
Therefore, the shank (15) is opened to introduce molybdenum fluoride gas into the first vacuum chamber (IA) and adsorbed onto the silicon thin film.
Move the substrate to the vacuum chamber (IB) of
was irradiated to perform a photochemical reaction, forming a thin molybdenum film with a thickness of 7 mm.

この操作を交互に繰り返して合計で50層のシリコン薄
膜とモリブデン薄膜が交互に積層された金属超格子膜を
形成した。
This operation was repeated alternately to form a metal superlattice film in which a total of 50 layers of silicon thin films and molybdenum thin films were alternately laminated.

所要時間は約2時間の自動運転であった。The required time was approximately 2 hours of automatic operation.

〔実施例4−・・・−・−・・・薄膜製造装置〕第3図
は、本実施例の薄膜製造装置の垂直断面を説明する概念
図である。
[Example 4 - Thin film manufacturing apparatus] FIG. 3 is a conceptual diagram illustrating a vertical cross section of the thin film manufacturing apparatus of this example.

本装置は、主として、ガス導入室=第1の真空室(IA
)と「エネルギー線」照射室=第2の真空室(IB)か
らなる円弧状の2つの真空室と、第1の真空室(IA)
に隣接するガス導入予備室(14)と、ガス導入予備室
(14)にシャッタ(16)を介して隣接する反応性ガ
ス計量室(17)と、これら各室を外界から遮断し密閉
する円筒型の気密ハウジング(2)と、気密ハウジング
の内側部分を兼用する円筒型の基板ホルダ(4)と、基
板ホルダ(4)内部に配置された基板(S)を所定温度
以下に保持する為の温度調節手段(10)と、基板ホル
ダ(4)を回転させる基板移動手段(11)と、「エネ
ルギー線」光源(5)と、必要に応じて設けられる補助
光源(19)と、計量室(16)に反応性ガスを供給す
るガス導入管(8)と、真空室やガス導入予備室(14
)や計量室(16)を高真空に排気するための排気装置
(9)とからなる。
This device mainly consists of a gas introduction chamber = first vacuum chamber (IA
) and "energy ray" irradiation chamber = two arc-shaped vacuum chambers consisting of the second vacuum chamber (IB) and the first vacuum chamber (IA)
a gas introduction preliminary chamber (14) adjacent to the gas introduction preliminary chamber (14), a reactive gas measuring chamber (17) adjacent to the gas introduction preliminary chamber (14) via a shutter (16), and a cylinder that isolates and seals each of these chambers from the outside world. A mold airtight housing (2), a cylindrical substrate holder (4) that also serves as the inner part of the airtight housing, and a substrate (S) placed inside the substrate holder (4) for maintaining the temperature below a predetermined temperature. A temperature adjusting means (10), a substrate moving means (11) for rotating the substrate holder (4), an "energy beam" light source (5), an auxiliary light source (19) provided as necessary, and a measuring chamber ( 16), a gas introduction pipe (8) that supplies reactive gas to
) and an exhaust device (9) for evacuating the measuring chamber (16) to a high vacuum.

更に、ガス導入管(8)の途中に開閉用バルブやガス流
量を制御する為のバリアプル・リーク・バルブや、計量
室(17)に開口するガス供給量をモニターするための
真空計が設けられている。これらは、いずれも第3図か
らは省略しである。
Furthermore, an opening/closing valve, a barrier pull leak valve for controlling the gas flow rate, and a vacuum gauge for monitoring the gas supply amount opening into the metering chamber (17) are installed in the middle of the gas introduction pipe (8). ing. These are all omitted from FIG. 3.

第1の真空室(IA)とガス導入予備室(14)との間
には、反応性ガスの導入を瞬時に開始あるいは停止する
ことのできるシャッタ(15)が、ガス導入予備室(1
4)と計量室(17)との間には、同様なシャッタ(1
6)がそれぞれ設けられており、また、ガス導入予備室
(14)の中心には、反応性ガスを均一に分散させるた
めのフィン(18)が設けられている。
A shutter (15) capable of instantaneously starting or stopping the introduction of reactive gas is provided between the first vacuum chamber (IA) and the gas introduction preliminary chamber (14).
A similar shutter (1) is installed between the measuring chamber (17) and the measuring chamber (17).
6), and a fin (18) for uniformly dispersing the reactive gas is provided at the center of the gas introduction preliminary chamber (14).

ガス導入予備室(14)には、ここを真空にしたり、反
応性ガス量を調整するために用いられる排気装置(9)
やバルブ(不図示)や加熱手段が、必要に応じて設けら
れている。
The gas introduction preliminary chamber (14) is equipped with an exhaust device (9) that is used to create a vacuum here and adjust the amount of reactive gas.
A valve (not shown) and a heating means are provided as necessary.

また、第1の真空室(IA)と第2の真空室(IB)と
の間には、反応性ガスが他方に拡散するのを抑制するフ
ィン(18)が設けられている。
Further, a fin (18) is provided between the first vacuum chamber (IA) and the second vacuum chamber (IB) to suppress diffusion of the reactive gas to the other.

補助光源’(19)は、ここではクリーニング効果のあ
る「エネルギー線」例えば近紫外線を発光する。
The auxiliary light source' (19) here emits "energy rays" with a cleaning effect, for example near ultraviolet rays.

〔実施例5−・・・・・−・−薄膜の製造〕実施例4の
装置(第3図参照)を用い、Siウェハからなる基板(
S)2枚を基板ホルダ(4)の対称位置に取りつけた後
、真空室、ガス導入予備室(14)及び計量室(17)
内を10−’Pa以下に排気した。
[Example 5 - Manufacture of thin film] Using the apparatus of Example 4 (see Figure 3), a substrate made of a Si wafer (
S) After attaching the two sheets to the symmetrical positions of the substrate holder (4), open the vacuum chamber, gas introduction preparatory chamber (14) and measuring chamber (17).
The inside was evacuated to below 10-'Pa.

基板(S)を、クリーニング用補助光源(19)の照射
位置に移動させ、ここにおいて例えば近紫外線を照射し
て基板(S)表面を清浄にした。
The substrate (S) was moved to the irradiation position of the cleaning auxiliary light source (19), and here, for example, near ultraviolet light was irradiated to clean the surface of the substrate (S).

次いで、温度調節手段(10)を作動させて基板(S)
を−50℃に保持した。
Next, the temperature control means (10) is activated to cool the substrate (S).
was maintained at -50°C.

以下、第3図紙面で上にあるガス導入予備室(14)に
関する説明(イ)と、下にあるガス導入予備室(14)
に関する説明(ロ)とに分ける。
The following is an explanation (A) regarding the gas introduction preliminary chamber (14) located at the top of the paper in Figure 3, and the gas introduction preliminary chamber (14) located at the bottom.
It is divided into (b) and (b).

(イ)40℃に保温したガス導入予備室(14)のシャ
ッタ(15)及び(16)はともに全閉し、体積200
ccの計量室(17)に10Paのトリシランを導入し
た。
(a) The shutters (15) and (16) of the gas introduction preliminary chamber (14) kept at 40°C are both fully closed, and the volume is 200°C.
Trisilane at 10 Pa was introduced into the measuring chamber (17) of the cc.

そして、シャッタ(16)を開き、600ccの予備室
(14)に反応性ガスを導入して5秒後シャッタ(16
)を閉じた。このとき、計量室(17)の圧力は2.5
Paに低下し、従って、予備室(14)内に閉じ込めら
れたトリシランは1.5Pa−j!となる。
Then, the shutter (16) is opened and reactive gas is introduced into the 600cc preliminary chamber (14), and after 5 seconds, the shutter (16) is opened.
) closed. At this time, the pressure in the measuring chamber (17) is 2.5
Pa and thus the trisilane trapped in the prechamber (14) is 1.5 Pa-j! becomes.

基板(S)を第1の真空室(IA)に移動させた後、シ
ャッタ(15)を瞬時に全開して、予備室(14)内の
トリシランを基板(S)に均一に吸着させ、再びシャッ
タ(15)を全閉した。
After moving the substrate (S) to the first vacuum chamber (IA), the shutter (15) is instantly fully opened to uniformly adsorb the trisilane in the preliminary chamber (14) to the substrate (S), and then The shutter (15) was fully closed.

予備室(14)に残るトリシランは10−”Pa以下で
あることが予備実験で確かめられているので、ここでは
無視する。
Since it has been confirmed in preliminary experiments that the trisilane remaining in the preliminary chamber (14) is below 10-''Pa, it will be ignored here.

第1の真空室(IA)に導入されたトリシランの8割が
基板(S)に吸着され、残りは排気された。
Eighty percent of the trisilane introduced into the first vacuum chamber (IA) was adsorbed onto the substrate (S), and the remainder was evacuated.

基板ホルダ(4)を移動手段(11)により回転させて
、基板(S)を第2の真空室(IB)に移動させ、「エ
ネルギー線」例えば真空紫外光を基板面に照射し、吸着
されたトリシランを光化学分解した。
The substrate holder (4) is rotated by the moving means (11) to move the substrate (S) to the second vacuum chamber (IB), and the substrate surface is irradiated with "energy rays" such as vacuum ultraviolet light to remove the adsorbed material. Trisilane was photochemically decomposed.

このとき、水素が吸着層から放出されたが、排気された
。十分に照射して吸着層をシリコン化した後、点灯した
補助光源(19)の照射位置に移動させた。このとき、
成膜したシリコン薄膜は補助光源(19)の「エネルギ
ー線」で照射されても悪影響はない。
At this time, hydrogen was released from the adsorption layer and was exhausted. After sufficient irradiation to siliconize the adsorption layer, it was moved to the irradiation position of the auxiliary light source (19) that was turned on. At this time,
Even if the formed silicon thin film is irradiated with the "energy beam" of the auxiliary light source (19), there will be no adverse effect.

(ロ)前項でトリシランを計量、導入した例と同様に、
55℃に保温したガス導入予備室(14)から2.3P
a ・1のMo (Co) 6を第1の真空室(IA)
に移動させた一50℃の基板(S)上に均一に吸着させ
た。
(b) Similar to the example of measuring and introducing trisilane in the previous section,
2.3P from the gas introduction preliminary chamber (14) kept at 55℃
a ・1 Mo (Co) 6 in the first vacuum chamber (IA)
It was uniformly adsorbed onto a substrate (S) that had been moved to -50°C.

次いで、基板(S)を第2の真空室(1B)に移動させ
て、光源(5)で「エネルギー線」を照射することによ
りモリブデン薄膜を形成した。
Next, the substrate (S) was moved to the second vacuum chamber (1B), and a molybdenum thin film was formed by irradiating it with "energy rays" from the light source (5).

こうして、交互に成膜することにより、膜厚18人のシ
リコン薄膜と膜厚10人のモリブデンIPIJ、が合計
で200層積層した金属多層膜を製造した。
In this way, by alternately forming the films, a metal multilayer film was manufactured in which a total of 200 layers of 18-thick silicon thin film and 10-thick molybdenum IPIJ were laminated.

所要時間は約2時間30分であった。各層の界面は平坦
で境界の明確な多層膜が得られた。
The time required was approximately 2 hours and 30 minutes. A multilayer film with clear boundaries and flat interfaces between each layer was obtained.

〔実施例6・・−・・−・−薄膜製造装置〕第4図は、
本実施例の薄膜製造装置の垂直断面を説明する概念図で
ある。
[Example 6...--Thin film manufacturing device] Figure 4 shows the following:
FIG. 2 is a conceptual diagram illustrating a vertical cross section of the thin film manufacturing apparatus of this embodiment.

本装置は、主として、ガス導入室=第1の真空室(IA
)と「エネルギー線」照射室=第2の真空室(IB)か
らなる円弧状の真空室と、第1の真空室(1^)に隣接
するガス導入予備室(14)と、これら各室を外界から
遮断し密閉する円筒型の気密ハウジング(2)と、気密
ハウジングの内側部分を兼用する円筒型の基板ホルダ(
4)と、基板ホルダ(4)内部に配置された基板(S)
を所定温度以下に保持する為の温度調節手段(10)と
、基板ホルダ(4)を回転させる基板移動手段(11)
と、「エネルギー線」光源(5)と、マスク(20)の
パターンを投影する光学系(6)と、必要に応じて設け
られる補助光源(19)、(21)と、ガス導入予備室
(14)に開口したガス導入管(8)と、真空室やガス
導入予備室(14)を高真空に排気するための排気手段
(9)とからなる。
This device mainly consists of a gas introduction chamber = first vacuum chamber (IA
) and the "energy beam" irradiation chamber = arc-shaped vacuum chamber consisting of the second vacuum chamber (IB), the preliminary gas introduction chamber (14) adjacent to the first vacuum chamber (1^), and each of these chambers. A cylindrical airtight housing (2) that isolates and seals the board from the outside world, and a cylindrical board holder (2) that also serves as the inner part of the airtight housing.
4) and a substrate (S) placed inside the substrate holder (4)
temperature control means (10) for maintaining the substrate below a predetermined temperature; and substrate movement means (11) for rotating the substrate holder (4).
, an "energy beam" light source (5), an optical system (6) that projects the pattern of the mask (20), auxiliary light sources (19) and (21) provided as necessary, and a gas introduction preliminary chamber ( It consists of a gas introduction pipe (8) opened to the gas introduction pipe (14), and an exhaust means (9) for evacuating the vacuum chamber and the gas introduction preliminary chamber (14) to a high vacuum.

更に、ガス導入管(8)の途中に開閉用バルブやガス流
量を制御する為のバリアプル・リーク・バルブや、予備
室(14)に開口したガス供給量をモニターするための
真空計が設けられている。これらは、いずれも第4図か
らは省略しである。
Furthermore, an opening/closing valve, a barrier pull leak valve to control the gas flow rate, and a vacuum gauge to monitor the gas supply amount opened to the preliminary chamber (14) are installed in the middle of the gas introduction pipe (8). ing. These are all omitted from FIG. 4.

第1の真空室(IA)とガス導入予備室(14)との間
には、反応性ガスの導入を瞬時に開始あるいは停止する
ことのできるシャッタ(15)が設けられており、また
、第1の真空室(IA)と第2の真空室(IB)との間
及びその他の個所に、ガスが他方に拡散するのを抑止す
るフィン(18)が設けられている。
A shutter (15) capable of instantaneously starting or stopping the introduction of reactive gas is provided between the first vacuum chamber (IA) and the gas introduction preliminary chamber (14). Fins (18) are provided between the first vacuum chamber (IA) and the second vacuum chamber (IB) and at other locations to prevent gas from diffusing into the other.

「エネルギー線」は、ここではX線又は真空紫外線であ
る。
"Energy rays" here are X-rays or vacuum ultraviolet rays.

光学系(6)は必要に応じて基板(S)の表面上で「エ
ネルギー線」の焦点を合わせることができる。
The optical system (6) can focus the "energy beam" on the surface of the substrate (S) as required.

本実施例においては、「エネルギー線」は、固相又は液
相で吸着している反応性ガス分子を化学反応させること
のできるものであって、用途に応じ、軟X線、真空紫外
線、電子ビーム、イオンビームなどを選ぶことができる
In this example, "energy rays" are capable of chemically reacting reactive gas molecules adsorbed in a solid or liquid phase, and depending on the application, they can be soft X-rays, vacuum ultraviolet rays, or electron beams. You can choose beam, ion beam, etc.

補助光源(21)は、赤外線、可視光線又は近紫外線領
域の光を発光する加熱光源であり、前工程でマスク(2
0)を介して「エネルギー線」を照射(露光)したとき
、その影になった部分に吸着されている未反応の反応性
ガス分子を、補助光源(21)からの「エネルギー線」
で照射することにより加熱し再び気化させるためのもの
である。気化した反応性ガスは、排気装置(9)により
速やかに排気される。従って、露光後にエツチングする
必要がない。
The auxiliary light source (21) is a heating light source that emits light in the infrared, visible, or near ultraviolet region, and is
When the "energy ray" is irradiated (exposure) through the auxiliary light source (21), the unreacted reactive gas molecules adsorbed in the shadowed area are exposed to the "energy ray" from the auxiliary light source (21).
This is for heating and vaporizing it again by irradiating it with water. The vaporized reactive gas is quickly exhausted by the exhaust device (9). Therefore, there is no need for etching after exposure.

補助光源(19)は、例えば、紫外線を発光するもので
、基板(S)及びその上に堆積した薄膜の表面をクリー
ニングすることができる。
The auxiliary light source (19) emits ultraviolet light, for example, and can clean the surface of the substrate (S) and the thin film deposited thereon.

補助光源(19)、(21)は、共に、膜質の改質に用
いることもできる。
Both of the auxiliary light sources (19) and (21) can also be used to modify film quality.

また、ガス導入予備室(14)には、図示していない加
熱手段が設けられており、これにより室内を加温するこ
とができる。
Further, the gas introduction preliminary chamber (14) is provided with a heating means (not shown), which can heat the room.

〔実施例7−・−・・−・・−・薄膜の製造〕実施例6
の装置(第4図参照)を用い、Siウェハからなる基F
i(S)を基板ホルダ(4)に取りつけた後、シャッタ
(15)を全開して、真空室とガス導入予備室(14)
内を10−’Pa以下に排気した。
[Example 7-・-・・-・・・・Manufacture of thin film] Example 6
A substrate F made of a Si wafer was prepared using a device (see Fig. 4).
After attaching i(S) to the substrate holder (4), fully open the shutter (15) and open the vacuum chamber and gas introduction preliminary chamber (14).
The inside was evacuated to below 10-'Pa.

基板(S)を点灯したクリーニング用補助光源(19)
の前に移動させ、紫外線照射による表面クリーニングを
行いながら、温度調節手段(10)により基板温度を一
60℃に保持した。
Auxiliary light source for cleaning (19) lighting the board (S)
The temperature of the substrate was maintained at -60° C. by the temperature control means (10) while the surface was cleaned by ultraviolet irradiation.

シャッタ(15)を全閉し、ガス導入予備室(14)に
120Pa−1の−(co) bガスを導入した後、基
板(S)をシャッタ(15)の真下に移動させた。
After fully closing the shutter (15) and introducing -(co)b gas at 120 Pa-1 into the gas introduction preparatory chamber (14), the substrate (S) was moved directly below the shutter (15).

ここで、シャッタ(15)を瞬時に全開し、1秒後に全
閉した。この結果、ガス導入予備室(14)には10P
a−Itのガスが残り、第1の真空室(IA)に導入さ
れたガスの9割が基板(S)に吸着され、残りは排気さ
れた。
Here, the shutter (15) was instantaneously fully opened and 1 second later fully closed. As a result, 10P is placed in the gas introduction preliminary chamber (14).
The a-It gas remained, 90% of the gas introduced into the first vacuum chamber (IA) was adsorbed by the substrate (S), and the rest was exhausted.

基板(S)をマスク(20)の正面に移動させ、マスク
パターンを介して光源(5)から軟X線を照射した。
The substrate (S) was moved in front of the mask (20), and soft X-rays were irradiated from the light source (5) through the mask pattern.

次に基板ホルダ(4)を回転させて、基板(S)をハロ
ゲン・ランプよりなる補助光源(21)の正面に移動さ
せ、ランプを点灯して加熱した。
Next, the substrate holder (4) was rotated to move the substrate (S) in front of the auxiliary light source (21) consisting of a halogen lamp, and the lamp was turned on to heat it.

これにより、マスクパターンの影で軟X線が照射されな
かった部分の未反応の反応性ガスは、気化し、排気され
た。その結果、基板(S)上にはパターン状のタングス
テン薄膜が残った。
As a result, the unreacted reactive gas in the portions that were not irradiated with soft X-rays due to the shadow of the mask pattern was vaporized and exhausted. As a result, a patterned tungsten thin film remained on the substrate (S).

更に、基板(S)をクリーニング用補助光源(19)の
正面に移動させ、パターン状に形成されたタングステン
薄膜に紫外線を照射して膜質の改善を行なった。
Furthermore, the substrate (S) was moved to the front of the auxiliary light source for cleaning (19), and the tungsten thin film formed in a pattern was irradiated with ultraviolet rays to improve the film quality.

以上のプロセスにより、Si基板上に幅0.1μで膜厚
が800人の金属タングステンの線状の薄膜が形成され
た。
Through the above process, a linear thin film of metallic tungsten having a width of 0.1 μm and a thickness of 800 μm was formed on the Si substrate.

〔実施例8−・−・・・薄膜製造装置〕第5図は、本実
施例の薄膜製造装置の垂直断面を説明する概念図である
[Example 8--Thin film manufacturing apparatus] FIG. 5 is a conceptual diagram illustrating a vertical cross section of the thin film manufacturing apparatus of this example.

本装置は、主として、ガス導入室=第1の真空室(IA
)と「エネルギー線」照射室=第2の真空室(IB)か
らなる円弧状の真空室と、これを外界から遮断し密閉す
る円筒型の気密ハウジング(2)と、気密ハウジングの
内側部分を兼用する円筒型の基板ホルダ(4)と、基板
ホルダ(4)内部に配置された基板(S)を所定温度以
下に保持する為の温度調節手段(10)と、基板ホルダ
(4)を連続回転させる基板移動手段(11)と、真空
紫外光を発光する「エネルギー線」光源(5)と、必要
に応じて設けられる補助光源(19)、(21)と、第
1の真空室(IA)に開口したガス導入管(8)と、真
空室を超真空に排気するための排気装置(9)とからな
る。
This device mainly consists of a gas introduction chamber = first vacuum chamber (IA
) and the "energy beam" irradiation chamber = an arc-shaped vacuum chamber consisting of a second vacuum chamber (IB), a cylindrical airtight housing (2) that blocks and seals it from the outside world, and an inner part of the airtight housing. A cylindrical substrate holder (4) that also serves as a substrate holder (4), a temperature control means (10) for maintaining the substrate (S) placed inside the substrate holder (4) below a predetermined temperature, and a substrate holder (4) that is connected continuously. A rotating substrate moving means (11), an "energy beam" light source (5) that emits vacuum ultraviolet light, auxiliary light sources (19) and (21) provided as necessary, and a first vacuum chamber (IA ) and an exhaust device (9) for evacuating the vacuum chamber to ultra-vacuum.

更に、ガス導入管(8)の途中に開閉用パルプやガス流
量を制御する為のバリアプル・リーク・バルブが設けら
れている。これらは、いずれも第5図からは省略しであ
る。
Furthermore, a barrier pull leak valve for controlling opening/closing pulp and gas flow rate is provided in the middle of the gas introduction pipe (8). These are all omitted from FIG. 5.

第1の真空室(IA)と第2の真空室(IB)との間及
びその他の個所に、ガスが他方に拡散するのを抑止する
フィン(18)が設けられている。
Fins (18) are provided between the first vacuum chamber (IA) and the second vacuum chamber (IB) and at other locations to prevent gas from diffusing into the other.

補助光a (19)は、プラズマ導入管(19a)とプ
ラズマ放電電極(19b)からなり、発生する「エネル
ギー線」はプラズマで、特にアルゴン・プラズマは、基
板表面にある自然酸化膜を除去する強力なりリーニング
効果を有する。これにより薄膜との密着性が向上する。
The auxiliary light a (19) consists of a plasma introduction tube (19a) and a plasma discharge electrode (19b), and the "energy rays" generated are plasma, especially argon plasma, which removes the natural oxide film on the substrate surface. It has a powerful leaning effect. This improves the adhesion with the thin film.

水素プラズマは、自然酸化膜を除去する弱いクリーニン
グ効果の外に薄膜表面を活性化(励起)する効果があり
、目的の薄膜によっては仮に薄膜中に水素が混入しても
障害が少ないという利点がある。
Hydrogen plasma has the effect of activating (exciting) the thin film surface in addition to its weak cleaning effect of removing natural oxide films, and depending on the target thin film, it has the advantage that even if hydrogen gets mixed into the thin film, there will be few problems. be.

補助光源(21)からの「エネルギー線」は、紫外線で
、基板表面をクリーニングすることができるが、この「
エネルギー線」は、反応性ガスの反応を引き起こす能力
がない。
The "energy rays" from the auxiliary light source (21) are ultraviolet rays that can clean the substrate surface;
"Energy rays" are incapable of causing reactions in reactive gases.

ここでは、ガス導入管(8)の先端開口部は第5図紙面
に垂直な方向に長い長方形をしており、その長手方向の
寸法は、基板(S)の同方向の寸法よりも十分大きく、
かつ吹き出されるガスの分子数は先端開口1部のどこで
も一様である。
Here, the tip opening of the gas introduction tube (8) has a rectangular shape that is long in the direction perpendicular to the plane of the paper in Figure 5, and its longitudinal dimension is sufficiently larger than the dimension of the substrate (S) in the same direction. ,
In addition, the number of molecules of the gas blown out is uniform throughout the tip opening.

尚、この装置では、光源(5)としてプラズマ導入管(
L9a)及びプラズマ放電電極(19b)からなるもの
を使用し、それによりプラズマ全体又はプラズマに含ま
れる電子若しくは紫外線光子のみを化学反応に用いる「
エネルギー線」として用いてもよい。
In addition, in this device, a plasma introduction tube (
L9a) and a plasma discharge electrode (19b), whereby the entire plasma or only the electrons or ultraviolet photons contained in the plasma are used for the chemical reaction.
It may also be used as an energy beam.

〔実施例9・・−・・・・・・・−薄膜の製造〕実施例
8の装置(第5図参照)を用い、真空室を10−’Pa
以下に排気した後、プラズマガス導入管(19a)より
Arガスを導入し、プラズマ放電電極(19b)に13
.56MHz、 40Vの電圧を印加して放電を起こし
ながら基板ホルダ(4)を1回転させ、各基板(S)の
表面を連続的にクリーニングした。
[Example 9 - Production of thin film] Using the apparatus of Example 8 (see Figure 5), the vacuum chamber was heated to 10-'Pa.
After evacuation to the following, Ar gas is introduced from the plasma gas introduction tube (19a), and 13
.. The surface of each substrate (S) was continuously cleaned by rotating the substrate holder (4) once while applying a voltage of 56 MHz and 40 V to cause discharge.

次に放電をやめ、再び真空室内を10− ’Pa以下に
排気し、温度調節手段(10)によって基板の温度を−
55℃に保持した。
Next, the discharge is stopped, the vacuum chamber is again evacuated to below 10-'Pa, and the temperature of the substrate is adjusted to - by the temperature control means (10).
It was maintained at 55°C.

高純度水素をプラズマガス導入管(19a)より導入し
て10Paの圧力に維持した。プラズマ放電電極(L9
b)に13.56MIIz、20Vの電圧をかけて水素
プラズマを発生させ、基板ホルダ(4)を毎分3回転の
速度で第5図紙面上で時計回りに回転させた。水素プラ
ズマは、既述の通り薄膜表面を活性化する効果がある。
High purity hydrogen was introduced through the plasma gas introduction tube (19a) and maintained at a pressure of 10 Pa. Plasma discharge electrode (L9
Hydrogen plasma was generated by applying a voltage of 13.56 MIIz and 20 V to b), and the substrate holder (4) was rotated clockwise on the plane of FIG. 5 at a speed of 3 revolutions per minute. As mentioned above, hydrogen plasma has the effect of activating the thin film surface.

同時に補助光源(21)及び反応用光源(5)も点灯し
、ガス導入管(8)より静かに微量ずつトリシランの吐
出を開始した。トリシランの吐出量は最初のうちは徐々
に増加させ、毎分150Pa −1に達したら一定にし
た。
At the same time, the auxiliary light source (21) and the reaction light source (5) were also turned on, and trisilane began to be quietly discharged little by little from the gas introduction tube (8). The discharge amount of trisilane was gradually increased at first, and after reaching 150 Pa −1 per minute, it was kept constant.

この結果、各基板(S)表面には1回転する毎に約50
人ずつのアモルファス・シリコン薄膜が形成され、3時
間の連続運転で各基板上に膜*2.5μmのシリコン薄
膜を得た。
As a result, approximately 50
Amorphous silicon thin films were formed one by one, and a 2.5 μm silicon thin film was obtained on each substrate after 3 hours of continuous operation.

〔発明の効果〕〔Effect of the invention〕

以上の様に本発明によれば、反応性ガスの導入を行なう
第1の真空室と「エネルギー線」の照射を行なう第2の
真空室とに分離したので、第1の真空室が「エネルギー
線」の照射によって生じる反応生成物、中間体、分解物
、破片、細かい塊、過剰反応物などで汚染されることが
なく、そのため何度も成膜を行なっても、常に均質な薄
膜が製造される。
As described above, according to the present invention, the first vacuum chamber is separated into the first vacuum chamber where the reactive gas is introduced and the second vacuum chamber where the "energy rays" are irradiated. There is no contamination by reaction products, intermediates, decomposition products, fragments, fine lumps, excess reactants, etc. that are generated by irradiation with rays, so even after repeated depositions, a uniform thin film is always produced. be done.

また、第1の真空室では、「エネルギー線」の照射に伴
う制約がなくなるため、形状設計の自由度が高まり、均
一なガス拡散を行なうことができ、その場合には、基板
全体で均一な膜厚の薄膜を得ることができる。
In addition, in the first vacuum chamber, there are no restrictions associated with irradiation with "energy rays", so the degree of freedom in shape design increases, and uniform gas diffusion can be achieved. A thin film can be obtained.

吸着、光化学反応、昇温、基板クリーニングなど、各プ
ロセスの段階ごとに、ガス導入や各種「エネルギー線」
の照射に最適な位置に基板を移動させ、配置することが
可能になることから、ガス導入装置や光源が例えば、基
板面への均一な吸着、照射といった要求に対し最も効果
的な機能を現わす形状をとることができる上にスペース
に制限がなくなるので、大きなものを設けても、何種類
、何個設けてもよい。
At each stage of the process, such as adsorption, photochemical reactions, temperature increases, and substrate cleaning, gas introduction and various "energy beams" are used.
This allows the substrate to be moved and placed in the optimal position for irradiation, allowing the gas introduction device and light source to achieve the most effective functions, such as uniform adsorption and irradiation on the substrate surface. Since it can take the shape of a wasp and there is no space limitation, it is possible to install large ones or any number of different types.

実施例2.4.6.8の装置では、反応性ガスの導入が
基板の正面からできるので、ガス導入装置の工夫だけで
基板にガス分子を均一に入射させることができる。従っ
て、基板の温度分布が適当な範囲内にあれば均一な吸着
層を形成し、結果的に均一な膜厚を得ることができる。
In the apparatus of Example 2.4.6.8, since the reactive gas can be introduced from the front of the substrate, gas molecules can be made uniformly incident on the substrate simply by devising the gas introduction device. Therefore, if the temperature distribution of the substrate is within an appropriate range, a uniform adsorption layer can be formed and, as a result, a uniform film thickness can be obtained.

実施例2と4の装置では、第1の真空室(IA)を2個
設けているので、異なる成分の膜を交互に積層する場合
に、互いの反応性ガスが混ざらずに済むという利点があ
り、同じ理由により、ガス交換のための長い排気時間が
不要になり、プロセスを短時間化する効果がある。
In the apparatuses of Examples 2 and 4, two first vacuum chambers (IA) are provided, which has the advantage that reactive gases do not mix with each other when films of different components are alternately stacked. For the same reason, there is no longer a need for long exhaust times for gas exchange, which has the effect of shortening the process time.

各種「エネルギー線」の照射口あるいは窓の正面に基板
を配置することができるため、「エネルギー線」の入射
角も垂直になり基板との距翻も最小にとれるため、高効
率な照射が行なえる。
Since the substrate can be placed in front of the irradiation port or window for various types of energy rays, the angle of incidence of the energy rays is also vertical and the distance from the substrate can be minimized, allowing for highly efficient irradiation. Ru.

また、必要に応じて何種類でも「エネルギー線」の光源
を設けることができるので、基本の反応ガス吸着分子に
対する化学反応を施すほかに、昇温、アニーリング、改
質改善、基板クリーニングなど多種類の過程を短時間に
施すことができる。特に、基板クリーニングから吸着過
程への移行は、実施例4.6.8の装置では1秒以内で
行なえることから、吸着直前の基板にアウトガス等によ
る不純物が付着する可能性と極めて小さくなる。
In addition, as many types of "energy ray" light sources can be installed as needed, in addition to performing basic chemical reactions on adsorbed molecules of reactive gases, there are many other types of light sources such as temperature raising, annealing, modification improvement, and substrate cleaning. The process can be carried out in a short time. In particular, since the transition from substrate cleaning to the adsorption process can be performed within 1 second in the apparatus of Example 4.6.8, the possibility that impurities due to outgas etc. will adhere to the substrate immediately before adsorption is extremely small.

実施例8の装置では、クリーニング用補助光源(19)
を用いたために吸着過程中もクリーニング作用を施せる
から基板に汚染分子が吸着する可能性が更に小さくなる
。また、実施例8では、クリーニング効果により次の吸
着の直前に、表面を活性化する効果がある。
In the device of Example 8, the cleaning auxiliary light source (19)
Since the cleaning action can be performed even during the adsorption process, the possibility of adsorption of contaminant molecules to the substrate is further reduced. Furthermore, in Example 8, the cleaning effect has the effect of activating the surface immediately before the next adsorption.

基板の位置を移動することにより、各実施例の装置は連
続成膜や自動運転が可能である。実施例2では、照射室
(第2の真空室)を増加すると共に、両端に基板を出し
入れする真空室を設けることにより、順に多数の基板に
薄膜を形成でき、また、ガス導入室(第1の真空室)の
真空度を低下させずに済む。
By moving the position of the substrate, the apparatus of each embodiment can perform continuous film formation or automatic operation. In Example 2, thin films can be sequentially formed on a large number of substrates by increasing the number of irradiation chambers (second vacuum chambers) and providing vacuum chambers at both ends for loading and unloading substrates. There is no need to reduce the degree of vacuum in the vacuum chamber (vacuum chamber).

また、この装置は、−度に多数の基板を基板ホルダに取
りつけ、次々に成膜することができるから、真空を破壊
して基板の出し入れをする回数が大幅に凍るほかに、多
数枚を連続的にプロセス処理することにより、生産時間
を飛曜的に短縮できる。
In addition, this equipment can attach a large number of substrates to the substrate holder at the same time and deposit them one after another. Production time can be dramatically shortened by processing the product in a timely manner.

実施例8の装置において、シート状の基板を用い、これ
を基板ホルダに巻きつけて円筒状にするか、予め円筒形
にした基板を取りつけることにより、大面積あるいは円
筒形に成膜することができ、この方法で例えば感光ドラ
ムを製造することができる。
In the apparatus of Example 8, it is possible to form a film over a large area or in a cylindrical shape by using a sheet-like substrate and wrapping it around a substrate holder to form a cylindrical shape, or by attaching a cylindrical substrate in advance. For example, photosensitive drums can be manufactured using this method.

成膜が何回でも連続的にできることから、実施例9のよ
うに厚い膜を容易に製造できる。また、同様の理由で複
数のガス導入室(第1の真空室)を設けた実施例2と4
の装置では異なる成分の膜を多数層重ねた多層膜を容易
に製造することができ(実施例3と5)、ガス導入室(
第1の真空室)が1つしかない実施例8の装置でも、導
入ガスの種類や、混合ガスを導入した場合、その成分比
を変えることによって多層の超格子や多層膜を、短時間
で製造できるという効果がある。
Since the film can be formed continuously any number of times, a thick film as in Example 9 can be easily manufactured. Furthermore, for the same reason, Examples 2 and 4 were provided with multiple gas introduction chambers (first vacuum chamber).
With this apparatus, it is possible to easily produce a multilayer film with many layers of different components (Examples 3 and 5), and the gas introduction chamber (
Even in the apparatus of Example 8, which has only one (first vacuum chamber), multilayer superlattices and multilayer films can be formed in a short time by changing the type of introduced gas and the component ratio when introducing a mixed gas. It has the advantage of being manufacturable.

更に、低温プロセスであるため、多層膜の界面で拡散が
起こりに<<、実施例2〜5のように、反応性ガスの種
類ごとに専用のガス導入室(第1の真空室)を設けた場
合には、層と層との境界が明瞭になり、しかも互いに他
の層の原子を膜中に取り込んだり混じり合うことの極め
て少い即ち、各層の純度の高い良質な多層膜を形成する
ことができる。
Furthermore, since it is a low-temperature process, diffusion occurs at the interface of the multilayer film.As in Examples 2 to 5, a dedicated gas introduction chamber (first vacuum chamber) was provided for each type of reactive gas. In this case, the boundaries between the layers are clear, and atoms from other layers are hardly incorporated into the film or mixed with each other, that is, a high-quality multilayer film with high purity of each layer is formed. be able to.

以上のように、実施例2.4、場合により8の装置では
、良質な界面を有する各層の成分の純度の高い、多数層
の、多層膜もしくは超格子を、多数の基板に高速に生産
し、かつその操作を自動化できるという効果がある。
As described above, the apparatus of Example 2.4, and in some cases 8, can rapidly produce multilayer films or superlattices with high quality interfaces and high purity of components in each layer on a large number of substrates. , and its operation can be automated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜5図は、本発明の各種実施例にかかる薄膜製造装
置の垂直断面を説明する概念図である。 第6.7図は、従来の薄膜製造装置の垂直断面を説明す
る概念図である。 〔主要部分の符号の説明〕 S・−・−・一基板 1−−−−−−−−−一真空室 IA−・−・−−一−−−−第1の真空室1 B−−・
−・−−−−−一第2の真空室2・−・・−・・・−気
密ハウジング 3・−・−・−・・・支持台 4・−−一−−−−−・一基板ホルダ 5・−・・・−・・「エネルギー線」光源6−・・・・
−・−光学系 7−・・・・−窓 7 ’ −−−−−・開口部 8−・−・−−一−−反応性ガス導入管9・−−一−−
−−・・・排気装置 10・−一−−−−−−−・温度調節手段11−・・−
−−一−−−基板移動手段12・・−・−−−〜−・・
開口部 13・・・−一−−−・・・シャフタ 14・・−−m−−−−・−ガス導入予備室15、16
−・・シャッタ 17−・−・・・−・・ガス計量室 18・・・・−・・・フィン 19a・・−・プラズマガス導入管 19b−・−プラズマ放電電極 19−−一−−・・−・−補助の「エネルギー線」光源
20−・・−・−・・・・マスク
1 to 5 are conceptual diagrams illustrating vertical cross sections of thin film manufacturing apparatuses according to various embodiments of the present invention. FIG. 6.7 is a conceptual diagram illustrating a vertical cross section of a conventional thin film manufacturing apparatus. [Explanation of symbols of main parts] S・---・One substrate 1---One vacuum chamber IA---One---First vacuum chamber 1 B---・
−・−−−−−1 Second vacuum chamber 2 −・・−−・Airtight housing 3 −−・−・−・Support stand 4・−−1−−−−−・1 board Holder 5 --- "Energy ray" light source 6 ---
---Optical system 7--Window 7' ----Opening 8---Reactive gas introduction tube 9----
---Exhaust device 10--1-----Temperature adjustment means 11--
---1----Substrate moving means 12...--------...
Opening portion 13...-1--Shaft 14...--m---Gas introduction preliminary chamber 15, 16
--- Shutter 17 --- Gas measuring chamber 18 --- Fin 19a --- Plasma gas introduction pipe 19b --- Plasma discharge electrode 19 ---・−・−Auxiliary “energy ray” light source 20−・−・−・・・・Mask

Claims (1)

【特許請求の範囲】 1 第1の真空室内において、基板上に反応性ガスを固
相又は液相で吸着させ、 次いで、第2の真空室内において、前述の固相又は液相
で吸着させた反応性ガスに、「エネルギー線」を照射し
て化学反応を起こさせ、以て、その反応生成物からなる
薄膜を製造する方法。 2 基板上に反応性ガスを固相又は液相で吸着させるた
め、基板を所定温度以下に保持する温度調節手段を備え
た第1の真空室と、前述の固相又は液相で吸着させた反
応性ガスに、「エネルギー線」を照射して化学反応を起
こさせ、以て、その反応生成物からなる薄膜を基板上に
形成させる第2の真空室とからなることを特徴とするC
VD装置。
[Claims] 1. A reactive gas is adsorbed onto the substrate in a solid phase or liquid phase in a first vacuum chamber, and then adsorbed in the aforementioned solid phase or liquid phase in a second vacuum chamber. A method of producing a thin film made of the reaction product by irradiating a reactive gas with energy rays to cause a chemical reaction. 2. In order to adsorb the reactive gas onto the substrate in a solid phase or liquid phase, a first vacuum chamber equipped with a temperature control means for maintaining the substrate at a predetermined temperature or lower, and a first vacuum chamber equipped with a temperature control means for maintaining the substrate at a predetermined temperature or less, and a reactive gas adsorbed in the solid phase or liquid phase described above. and a second vacuum chamber in which a reactive gas is irradiated with an "energy ray" to cause a chemical reaction, thereby forming a thin film made of the reaction product on the substrate.
VD device.
JP63001705A 1988-01-07 1988-01-07 Method and apparatus for forming thin film by cvd Pending JPH01179410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63001705A JPH01179410A (en) 1988-01-07 1988-01-07 Method and apparatus for forming thin film by cvd

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63001705A JPH01179410A (en) 1988-01-07 1988-01-07 Method and apparatus for forming thin film by cvd

Publications (1)

Publication Number Publication Date
JPH01179410A true JPH01179410A (en) 1989-07-17

Family

ID=11508968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63001705A Pending JPH01179410A (en) 1988-01-07 1988-01-07 Method and apparatus for forming thin film by cvd

Country Status (1)

Country Link
JP (1) JPH01179410A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198033A (en) * 1988-02-03 1989-08-09 Toshiba Corp Formation of thin film
JPH02161724A (en) * 1988-12-14 1990-06-21 Sony Corp Low temperature film forming equipment
JPH03272111A (en) * 1990-03-22 1991-12-03 Mitsubishi Electric Corp Bobbin for surface package type transformer
JPH06342757A (en) * 1994-04-15 1994-12-13 Semiconductor Energy Lab Co Ltd Laser processing device
US5861337A (en) * 1991-05-28 1999-01-19 Semiconductor Energy Laboratory Co., Ltd. Method for annealing a semiconductor
US6329229B1 (en) 1993-11-05 2001-12-11 Semiconductor Energy Laboratory Co., Ltd. Method for processing semiconductor device, apparatus for processing a semiconductor and apparatus for processing semiconductor device
US6576534B1 (en) 1991-09-21 2003-06-10 Semiconductor Energy Laboratory Co., Ltd. Method for forming a semiconductor
US6897100B2 (en) 1993-11-05 2005-05-24 Semiconductor Energy Laboratory Co., Ltd. Method for processing semiconductor device apparatus for processing a semiconductor and apparatus for processing semiconductor device
US7097712B1 (en) 1992-12-04 2006-08-29 Semiconductor Energy Laboratory Co., Ltd. Apparatus for processing a semiconductor
JP2009062615A (en) * 2007-09-04 2009-03-26 Tera Semicon Corp Source gas feeder
JP2011096986A (en) * 2009-11-02 2011-05-12 Tokyo Electron Ltd Film forming device, film forming method and storage medium

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198033A (en) * 1988-02-03 1989-08-09 Toshiba Corp Formation of thin film
JPH02161724A (en) * 1988-12-14 1990-06-21 Sony Corp Low temperature film forming equipment
JPH03272111A (en) * 1990-03-22 1991-12-03 Mitsubishi Electric Corp Bobbin for surface package type transformer
US6494162B1 (en) 1991-05-28 2002-12-17 Semiconductor Energy Laboratory Co., Ltd. Method for annealing a semiconductor
US6770143B2 (en) 1991-05-28 2004-08-03 Semiconductor Energy Laboratory Co., Ltd. Method for annealing a semiconductor
US5861337A (en) * 1991-05-28 1999-01-19 Semiconductor Energy Laboratory Co., Ltd. Method for annealing a semiconductor
US6174374B1 (en) 1991-05-28 2001-01-16 Semiconductor Energy Laboratory Co., Ltd. Method for annealing a semiconductor
US6576534B1 (en) 1991-09-21 2003-06-10 Semiconductor Energy Laboratory Co., Ltd. Method for forming a semiconductor
US6924212B2 (en) 1991-09-21 2005-08-02 Semiconductor Energy Laboratory Co., Ltd. Method for forming a semiconductor
US7368367B2 (en) 1991-09-21 2008-05-06 Semiconductor Energy Laboratory Co., Ltd. Method for forming a semiconductor
US7097712B1 (en) 1992-12-04 2006-08-29 Semiconductor Energy Laboratory Co., Ltd. Apparatus for processing a semiconductor
US6329229B1 (en) 1993-11-05 2001-12-11 Semiconductor Energy Laboratory Co., Ltd. Method for processing semiconductor device, apparatus for processing a semiconductor and apparatus for processing semiconductor device
US6897100B2 (en) 1993-11-05 2005-05-24 Semiconductor Energy Laboratory Co., Ltd. Method for processing semiconductor device apparatus for processing a semiconductor and apparatus for processing semiconductor device
JPH06342757A (en) * 1994-04-15 1994-12-13 Semiconductor Energy Lab Co Ltd Laser processing device
JP2009062615A (en) * 2007-09-04 2009-03-26 Tera Semicon Corp Source gas feeder
JP2011096986A (en) * 2009-11-02 2011-05-12 Tokyo Electron Ltd Film forming device, film forming method and storage medium

Similar Documents

Publication Publication Date Title
JP2635021B2 (en) Deposition film forming method and apparatus used for the same
EP0909986A1 (en) Photolithographic processing method and apparatus
JPH0794488A (en) Cleaning method of vacuum treatment device assembly
JPH01179410A (en) Method and apparatus for forming thin film by cvd
US5952061A (en) Fabrication and method of producing silicon films
EP0240306B1 (en) Method for forming deposited film
JPH04240729A (en) Pattern formation
JPH11106911A (en) Thin film forming device and formation of compound thin film using it
JPH0644553B2 (en) Optical vapor deposition method and optical vapor deposition apparatus
JPS63308910A (en) Manufacture of thin film applying energy beam irradiation and its equipment
JP4094127B2 (en) Amorphous silicon production equipment
WO2024042597A1 (en) Semiconductor device manufacturing method and semiconductor manufacturing device
JPS63207121A (en) Method and apparatus for manufacturing thin film by photo-cvd
TW512461B (en) Single-substrate-heat-processing apparatus and method for performing reformation and crystallization
JPS6064426A (en) Method and device for forming vapor-phase reaction thin- film
JPS6152231B2 (en)
JP2680644B2 (en) Photo-excited etching method
JPS61241913A (en) Manufacture of gallium nitride film
JPH0717146Y2 (en) Wafer processing equipment
JPH01125922A (en) Manufacture of thin film by radiation cvd and apparatus used therefor
JP2008144277A (en) Method for producing amorphous silicon thin film
JPH01127677A (en) Selective formation of thin film by thermochemical vapor growth method
JPS6246515A (en) Thin film forming method
JPH06167599A (en) Production method for multilayer film mirror for x-ray
JP3205037B2 (en) Substrate for forming polysilicon thin film and method for producing the same