JP4094127B2 - Amorphous silicon production equipment - Google Patents

Amorphous silicon production equipment Download PDF

Info

Publication number
JP4094127B2
JP4094127B2 JP20202798A JP20202798A JP4094127B2 JP 4094127 B2 JP4094127 B2 JP 4094127B2 JP 20202798 A JP20202798 A JP 20202798A JP 20202798 A JP20202798 A JP 20202798A JP 4094127 B2 JP4094127 B2 JP 4094127B2
Authority
JP
Japan
Prior art keywords
thin film
chamber
substrate
amorphous silicon
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20202798A
Other languages
Japanese (ja)
Other versions
JP2000031058A (en
Inventor
道夫 石川
征典 橋本
直人 辻
太郎 森村
陽子 小柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP20202798A priority Critical patent/JP4094127B2/en
Publication of JP2000031058A publication Critical patent/JP2000031058A/en
Application granted granted Critical
Publication of JP4094127B2 publication Critical patent/JP4094127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Recrystallisation Techniques (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はアモルファスシリコン薄膜を形成する技術分野に関する。
【0002】
【従来の技術】
液晶表示パネルの技術分野では、表示速度と表示品質を向上させるために、近年は単純マトリクス駆動方式に代え、薄膜トランジスタを用いたアクティブマトリクス駆動方式が主流となっている。
【0003】
薄膜トランジスタは、a-Si(アモルファスシリコン)薄膜、poly-Si(ポリシリコン)薄膜、又は単結晶Si薄膜のいずれにも形成できるが、コストや生産性の観点から、基板上に先ずa-Si薄膜を形成し、後工程において脱水素処理を行った後、レーザアニールによってa-Si薄膜をpoly-Si薄膜に変化させる技術が採用されている。
【0004】
図7の符号101は、従来技術のa-Si薄膜形成装置であり、搬送室110を中心にして、その周囲に、仕込取出室111と予備加熱室112が1台ずつと、反応室1151〜1154が4台配置されている。
【0005】
このa-Si薄膜形成装置101では、搬送室110、予備加熱室112、反応室1151〜1154内を予め真空排気しておき、仕込取出室111内に所定枚数の基板を装着した後、真空排気し、搬送室110内に配置された基板搬送ロボット119によって予備加熱室112内に基板を搬入し、所定温度に昇温させた後、所望の反応室1151〜1154内に搬入し、プラズマCVD法によってa-Si薄膜を形成した後、仕込取出室111内に戻している。
【0006】
そして、仕込取出室111内に装着した基板の全てにa-Si薄膜が形成され、仕込取出室111内に戻された後、仕込取出室111内から基板を大気中に取り出し、図示しない加熱処理装置内で脱水素処理を行った後、a-Si薄膜をレーザアニールし、poly-Si薄膜を形成していた。
【0007】
上記のようにa-Si薄膜をレーザアニールしてpoly-Si薄膜を製造する場合には、a-Si薄膜中に水素が多量に含まれていると、a-Siがpoly-Si化する際に、水素が吹き出してpoly-Si薄膜表面がクレーター状になるという不都合がある。そのため、一般的には、a-Si薄膜中の水素濃度を1.0原子%程度(Si:5×1022個/cm3に対し、H:5×1020個/cm3程度)まで低下させる必要があると言われている。
【0008】
a-Si薄膜を脱水素処理する場合、a-Si薄膜を高温に加熱するほど残留水素濃度は低くできるが、高温にしすぎると脱水素処理中にa-Si薄膜が部分的にpoly-Si化し、その後でレーザアニール処理を行っても、良質なpoly-Si薄膜が得られなくなるという問題がある。従って、脱水素処理の温度を低温にせざるを得ないが、そのための脱水素処理には長時間を要するという問題がある。
【0009】
【発明が解決しようとする課題】
本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、脱水素処理時間が短いa-Si薄膜形成方法を提供することにある。
【0010】
【課題を解決するための手段】
一般に、a-Si薄膜を形成する場合、基板を真空雰囲気中に置き、SiH4ガス、Arガス、H2ガス等の原料ガスや希釈ガスを導入し、プラズマを発生させて基板表面にシリコン層を成長させて形成している。
【0011】
このようなプラズマCVD法を用いて形成したa-Si薄膜中には、水素が多量に含まれる。例えば300℃で形成したa-Si薄膜中には10〜20原子%含まれる。その場合、a-Si薄膜を形成した基板を加熱すればa-Si薄膜中の水素は減少するが、a-Si薄膜を形成した基板を大気中に取り出し、一旦温度が低下した基板を再度昇温させて水素を放出させる場合、長時間加熱する必要がある。
【0012】
本発明の発明者等は、a-Si薄膜を形成した基板を大気に曝さずに直ちに加熱すると、短時間で脱水素処理を行えることを見出した。
【0013】
本発明は上記知見に基いて創作されたものであり、請求項1記載の発明は、プラズマCVD法によって基板表面にアモルファスシリコン薄膜を成膜する反応室と、赤外線を照射する赤外線加熱装置とを有するアモルファスシリコン製造装置であって、基板搬送ロボットが配置され、真空排気可能な搬送室を有し、前記反応室は前記搬送室に接続され、前記赤外線加熱装置は、前記搬送室に設けられ、前記赤外線加熱装置は前記アモルファスシリコン薄膜の脱水素処理用であり、前記基板が前記反応室から搬出される際に、前記反応室内で前記基板表面に形成された前記アモルファスシリコン薄膜に前記赤外線加熱装置から前記赤外線が照射されるように構成されたアモルファスシリコン製造装置である。
【0014】
請求項2記載の発明は、プラズマCVD法によって基板表面にアモルファスシリコン薄膜を成膜する反応室と、赤外線を照射する赤外線加熱装置とを有するアモルファスシリコン製造装置であって、基板搬送ロボットが配置され、真空排気可能な搬送室を有し、前記反応室は前記搬送室に接続され、前記赤外線加熱装置は前記アモルファスシリコン薄膜の脱水素処理用であり、前記赤外線加熱装置は、前記搬送室に設けられ、前記アモルファスシリコン薄膜は、前記基板が前記基板搬送ロボットで前記反応室から前記搬送室に搬送される際に前記赤外線加熱装置から前記赤外線が照射されて加熱されるように構成されたアモルファスシリコン製造装置である。
【0015】
請求項記載の発明は、プラズマCVD法によって基板表面にアモルファスシリコン薄膜を成膜する反応室と、赤外線を照射する赤外線加熱装置とを有するアモルファスシリコン製造装置であって、前記基板が前記反応室から搬出される際に、前記反応室内で前記基板表面に形成された前記アモルファスシリコン薄膜に前記赤外線が照射されるように構成されたアモルファスシリコン製造装置である。
【0016】
請求項記載の発明は、請求項3記載のアモルファスシリコン製造装置であって、基板搬送ロボットが配置され、真空排気可能な搬送室を有し、前記反応室は前記搬送室に接続され、前記赤外線加熱装置は、前記搬送室に設けられ、前記アモルファスシリコン薄膜は、前記基板が前記基板搬送ロボットで前記反応室から前記搬送室に搬送される際に加熱されるように構成されたアモルファスシリコン製造装置である。
【0017】
本発明のアモルファスシリコン薄膜製造方法は上記のように構成されており、真空雰囲気中で基板表面にCVD法によってアモルファスシリコン薄膜を形成した後、前記基板を真空雰囲気中に置いたまま、前記アモルファスシリコン薄膜を形成したときの温度以上に昇温させ、脱水素処理を行っている。従って、基板は大気に曝されず、温度も低下しないので、短時間で脱水素処理を行うことができる。
【0018】
その場合の脱水素処理は、a-Si薄膜を、その形成温度以上に加熱する必要があるが、a-Si薄膜の脱水素処理の温度が高いほどa-Si薄膜中の水素濃度を低くすることができる。
【0019】
一方、プラズマCVD装置は一般にNF3ガスを用いてクリーニングを行うため、高温での使用に対しては、反応室を耐フッ素の耐食性材料で構成する必要がある。しかし、実際には450℃での成膜プロセスやクリーニングプロセスに完全に耐えられる材料は存在しない。
【0020】
よって、PECVD成膜はできるだけ低温で行い、脱水素処理はできるだけ高温で行う方が望ましいが、膜質との関係から、CVD法の作製温度は350℃が下限であり、脱水素処理の温度は420℃が下限である。
【0021】
また、a-Si薄膜を550℃以上加熱すると部分的なpoly-Si化が起こってしまうため、脱水素処理の温度は、その温度が上限となる。従って、脱水素処理の温度は、420℃以上550℃未満(実際には530℃以下)となる。
【0022】
脱水素処理を行う際には、赤外線の照射が可能な加熱装置を用い、加熱装置と基板とを相対移動させながら真空雰囲気中でa-Si薄膜に赤外線を照射することができる。この場合には、a-Si薄膜形成装置全体を小型化することができ、また、全体の処理速度を向上させることができる。
【0023】
他方、脱水素処理は、アモルファスシリコン薄膜を形成する反応室とは異なる反応室内で行うことも可能であり、この場合は、基板を静止させて脱水素処理を行うことができる。
【0024】
なお、本発明に於いて基板を脱水素処理する真空雰囲気は低圧力であればよく、真空雰囲気中にアルゴンガスや窒素ガス等のa-Si薄膜に影響を与えない不活性ガスを導入する場合も含まれる。ホットプレート上に基板を載置して加熱する場合、不活性ガスを導入すると基板の温度制御性が向上して好ましい。
【0025】
【発明の実施の形態】
本発明の実施形態を図面を用いて説明する。
図1を参照し、符号1は、本発明を適用可能なa-Si薄膜形成装置を示している。
【0026】
このa-Si薄膜形成装置1は、搬送室10を有しており、その周囲には、搬送室10を中心にして、1台の仕込取出室11及び予備加熱室12と、4台の反応室151〜154が配置されている。
【0027】
仕込取出室11と搬送室10と各反応室151〜154は独立して真空排気できるように構成されており、上記構成のa-Si薄膜形成装置1を使用し、a-Si薄膜を形成する場合、予め各室10〜12、151〜154を真空排気しておく。次に、仕込取出室11内だけを大気に曝し、板厚0.5〜3mm程度の大口径のガラス基板を所定枚数配置し、大気との間の扉を閉じる。
【0028】
仕込取出室11内を所定圧力まで真空排気した後、搬送室10との間の仕切を開ける。搬送室10内には基板搬送ロボット19が配置されており、仕込取出室11内のガラス基板を1枚取り出し、予備加熱室12内に搬入する。
【0029】
予備加熱室12内でガラス基板を加熱し、a-Si薄膜の形成温度まで昇温させた後、所望の反応室(ここでは符号151で示す反応室とする)に搬入し、反応室151と搬送室10との間の仕切を閉じる。
【0030】
各反応室151〜154にはガス導入系(図示せず)が接続され、所望種類のガスを導入できるように構成されている。また、搬入されたガラス基板を載置する載置部にはヒータが設けられており、ガラス基板を所望の温度に維持できるように構成されている。
【0031】
ガラス基板の搬入後、載置部上に載置し、420℃に昇温させた状態で、ガス導入系からシランガスとアルゴンガスを流量比5:95の割合で導入する。次いで、反応室151内の電極に電圧を印加し、導入ガスのプラズマを発生させ、プラズマCVD法によってガラス基板表面にa-Si薄膜を成長させる。
【0032】
a-Si薄膜を所定膜厚(00〜1000Å)まで成長させた後、基板搬送ロボット19によって、そのガラス基板を反応室151 から搬送室10内に搬出する。
図2の符号4は、そのガラス基板を示しており、搬送ロボット19のアーム25の先端に乗せられた状態になっている。
【0033】
搬送室10天井の、各反応室151〜154の搬出入口付近の位置には、赤外線加熱装置161〜164がそれぞれ配置されており、各反応室151〜154から搬出される基板は、赤外線加熱装置161〜164の直下位置をそれぞれ通過するように構成されている。
【0034】
各赤外線加熱装置161〜164は、直線状の赤外線ランプ27と、反射鏡29とを有しており、該反射鏡29は、赤外線ランプ27の後方に配置され、赤外線ランプ27が放射した赤外線を反射しながら集光するように構成されている。
【0035】
搬送室10天井の赤外線ランプ27の直下位置には、石英窓21が気密に設けられており、赤外線ランプ27から放射された赤外線22は、直接又は反射鏡28で反射された後、石英窓21を透過して搬送室10内に照射され、直線状に焦点を結ぶように構成されている。
【0036】
a-Si薄膜が形成されたガラス基板4を反応室151内から搬出する際に、その反応室151の搬出入口上の赤外線加熱装置161に通電しておくと、カラス基板4は赤外線22の焦点位置を通過し、焦点部分のa-Si薄膜が集中して加熱される。
【0037】
各赤外線照射装置161〜162は、その赤外線ランプ27の長手方向がガラス基板4の搬出方向とは垂直方向に配置されており、直線状の焦点は、ガラス基板4の搬出方向とは略垂直に伸びている。その結果、ガラス基板4を一定速度で搬出すると、ガラス基板4の先頭から最後尾まで均一に赤外線22が照射され、ガラス基板4全体が均一に加熱されるようになっている。
【0038】
この場合、赤外線ランプ27への投入電力を調節したり、ガラス基板4の搬出速度(移動速度)を調節することで、ガラス基板4を所望温度に昇温させることができる。
【0039】
赤外線加熱装置161により、ガラス基板4がa-Si薄膜が形成されたときの基板温度以上(且つa-Siの結晶化温度である550℃未満)に加熱されると、a-Si薄膜から水素が放出される。その水素は、真空排気によってa-Si薄膜形成装置1外に排気される。
【0040】
このように、1枚のガラス基板4上のa-Si薄膜の脱水素処理を行い、そのガラス基板4を搬出入室11に戻す。そして、予備加熱室12内で予備加熱が終了したガラス基板を空の反応室151内に搬入し、a-Si薄膜の成長を開始する。
【0041】
このとき、他の反応室152〜154内でもa-Si薄膜の成長プロセスは並行して行われており、a-Si薄膜形成が終了すると赤外線加熱装置162〜164に通電し、ガラス基板に赤外線を照射しながら所定速度で搬出し、脱水素処理を行い、搬出入室11内に戻す。
【0042】
以上のように、脱水素処理が終了したガラス基板は搬出入室11内に戻す。搬出入室11に装着したガラス基板が全て戻ったところで、搬出入室11と搬送室10との間の仕切を閉じ、搬出入室11を大気に開放してガラス基板を取り出す。
【0043】
以上説明したように、本発明によれば、a-Si薄膜を形成したガラス基板を大気中に取り出す前に脱水素処理を行うことができるので、脱水素処理を行う際に、a-Si薄膜が形成された直後の昇温した状態のガラス基板を少し加熱するだけで済む。従って、ガラス基板の加熱時間が非常に短くて済み、また真空雰囲気中で処理されることから水素が放出されやすくなっており、処理時間が短縮する。
【0044】
図4は、赤外線加熱装置161〜164の電力が150W及び450Wのときのガラス基板の移動速度と、脱水素処理後のa-Si薄膜中の残留水素濃度の関係を示すグラフである。電力が大きい方が残留水素濃度は小さくなるが、いずれの場合でも、移動速度が速くなるとガラス基板温度が低下する結果、脱水素処理が不十分になり、残留水素濃度が大きくなることが分かる。このときの測定条件は、ガラス基板周囲の雰囲気圧力5Pa、焦点幅5mm、焦点長400mmであった。
【0045】
なお、上記のa-Si薄膜形成装置1では、赤外線加熱装置161〜164を各反応室151〜154の入口上に配置したが、強力な赤外線を放出できる赤外線加熱装置を用いると脱水素処理の際のガラス基板の移動速度を速くできるので、反応室151〜154の入口上ではなく、搬出入室11の入口の上部にだけ赤外線照射装置を設けることができる。
【0046】
以上は、ガラス基板を移動させながら脱水素処理を行った場合について説明したが、本発明はそれに限定されるものではない。例えば上記反応室151〜154のいずれか1室を、図3に示すような専用の脱水素処理室18に替え、搬送室10に接続してもよい。
【0047】
この図3に示した脱水素処理室18では、そのチャンバー30内にランプヒータ31が配置されており、搬入されたガラス基板4'を静止させた状態で加熱するようになっている。また、ランプヒータ31ではなく、チャンバー30内にホットプレート32を配置しておき、搬入されたガラス基板4'をホットプレート30上に載置して加熱してもよい。
【0048】
ランプヒータ31を用いて脱水素処理を行った場合と、ホットプレート30を用いて脱水素処理を行った場合のa-Si薄膜内の残留水素濃度をそれぞれ図5、図6のグラフに示す。
【0049】
ランプヒータ31を用いた図5のグラフの測定条件は、雰囲気圧力5Paであり、ランプへの投入電力は200Wと500Wの場合である。200Wでは、処理時間を長くしても十分な脱水素処理を行えないことが分かる。
【0050】
ホットプレート30を用いた図6のグラフの測定条件は、雰囲気圧力133Pa(窒素ガス雰囲気)であり、ガラス基板温度420℃(ホットプレート温度450℃)と450℃(ホットプレート温度480℃)の場合である。
【0051】
ホットプレートで加熱する場合、熱伝導率を大きくするために窒素ガスやアルゴンガス等の不活性ガスを導入することが好ましいが、上記の赤外線加熱装置161〜164やランプヒータ31を用いる場合は、必ずしも不活性ガス雰囲気にする必要はない。
【0052】
【発明の効果】
本発明によれば、ガラス基板の処理時間を大幅に短縮することができる。
ガラス基板を移動させながら脱水素処理を行うことができるので、装置全体が小型化する。
【図面の簡単な説明】
【図1】本発明を適用できるa-Si薄膜製造装置の一例
【図2】その赤外線加熱装置部分の拡大図
【図3】専用の脱水素処理室の一例
【図4】基板の移動速度と残留水素濃度の関係を示すグラフ
【図5】ランプ加熱の場合の処理時間と残留水素濃度の関係を示すグラフ
【図6】ホットプレート加熱の場合の基板温度と残留水素濃度の関係を示すグラフ
【図7】従来技術のa-Si薄膜製造装置の一例
【符号の説明】
1……a-Si薄膜製造装置 4……基板 161〜164……加熱装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the technical field of forming an amorphous silicon thin film.
[0002]
[Prior art]
In the technical field of liquid crystal display panels, in order to improve display speed and display quality, an active matrix driving method using thin film transistors has recently become the mainstream in place of the simple matrix driving method.
[0003]
The thin film transistor can be formed on any of an a-Si (amorphous silicon) thin film, a poly-Si (polysilicon) thin film, or a single crystal Si thin film. From the viewpoint of cost and productivity, the a-Si thin film is first formed on the substrate. After a dehydrogenation process is performed in a subsequent process, a technique is employed in which the a-Si thin film is changed to a poly-Si thin film by laser annealing.
[0004]
Reference numeral 101 in FIG. 7 is a prior art a-Si thin film forming apparatus, which has a transfer chamber 110 as a center, a charging / unloading chamber 111 and a preheating chamber 112 around it, and a reaction chamber 115 1. Four to 1154 are arranged.
[0005]
In this a-Si thin film forming apparatus 101, the transfer chamber 110, the preheating chamber 112, and the reaction chambers 115 1 to 115 4 are evacuated in advance, and a predetermined number of substrates are mounted in the charging / unloading chamber 111. evacuated, and the substrate is carried into the preheating chamber 112 by the substrate transfer robot 119 disposed in the transport chamber 110, after being heated to a predetermined temperature, it is carried into the desired reaction chamber 115 1-115 4 After the a-Si thin film is formed by the plasma CVD method, it is returned to the charging / unloading chamber 111.
[0006]
Then, after an a-Si thin film is formed on all the substrates mounted in the charging / unloading chamber 111 and returned to the charging / unloading chamber 111, the substrate is taken out from the charging / unloading chamber 111 into the atmosphere, and a heat treatment (not shown) is performed. After performing dehydrogenation in the apparatus, the a-Si thin film was laser annealed to form a poly-Si thin film.
[0007]
When a poly-Si thin film is manufactured by laser annealing the a-Si thin film as described above, if a-Si thin film contains a large amount of hydrogen, the a-Si is converted into poly-Si. Furthermore, there is a disadvantage that hydrogen blows out and the surface of the poly-Si thin film becomes a crater. Therefore, in general, the hydrogen concentration in the a-Si thin film is reduced to about 1.0 atomic% (Si: 5 × 10 22 pieces / cm 3 , H: about 5 × 10 20 pieces / cm 3 ). It is said that it is necessary to let them.
[0008]
When dehydrogenating an a-Si thin film, the residual hydrogen concentration can be lowered as the a-Si thin film is heated to a higher temperature. However, if the temperature is too high, the a-Si thin film partially becomes poly-Si during the dehydrogenation process. However, there is a problem that a high-quality poly-Si thin film cannot be obtained even if laser annealing is performed thereafter. Accordingly, the temperature of the dehydrogenation process must be lowered, but there is a problem that the dehydrogenation process for that purpose takes a long time.
[0009]
[Problems to be solved by the invention]
The present invention was created to solve the above-mentioned disadvantages of the prior art, and an object thereof is to provide an a-Si thin film forming method with a short dehydrogenation processing time.
[0010]
[Means for Solving the Problems]
In general, when an a-Si thin film is formed, a substrate is placed in a vacuum atmosphere, a source gas such as SiH 4 gas, Ar gas, H 2 gas or a dilution gas is introduced, and plasma is generated to form a silicon layer on the substrate surface. It is formed by growing.
[0011]
The a-Si thin film formed by using such a plasma CVD method contains a large amount of hydrogen. For example, the a-Si thin film formed at 300 ° C. contains 10 to 20 atomic%. In that case, if the substrate on which the a-Si thin film is formed is heated, the hydrogen in the a-Si thin film is reduced, but the substrate on which the a-Si thin film is formed is taken out into the atmosphere, and the substrate whose temperature has once decreased is increased again. When releasing hydrogen by heating, it is necessary to heat for a long time.
[0012]
The inventors of the present invention have found that dehydrogenation treatment can be performed in a short time if the substrate on which the a-Si thin film is formed is immediately heated without being exposed to the atmosphere.
[0013]
The present invention was created based on the above knowledge, and the invention according to claim 1 includes a reaction chamber for forming an amorphous silicon thin film on a substrate surface by a plasma CVD method, and an infrared heating apparatus for irradiating infrared rays. An amorphous silicon manufacturing apparatus having a substrate transfer robot, having a transfer chamber capable of being evacuated, the reaction chamber being connected to the transfer chamber, and the infrared heating device being provided in the transfer chamber, the infrared heating device is for dehydrogenation of the amorphous silicon thin film, when the substrate is unloaded from the reaction chamber, the infrared heating device on the amorphous silicon thin film formed on the substrate surface in said reaction chamber The amorphous silicon manufacturing apparatus is configured to be irradiated with the infrared rays.
[0014]
The invention according to claim 2 is an amorphous silicon manufacturing apparatus having a reaction chamber for forming an amorphous silicon thin film on a substrate surface by plasma CVD and an infrared heating apparatus for irradiating infrared rays, wherein a substrate transfer robot is disposed. A transfer chamber that can be evacuated, the reaction chamber is connected to the transfer chamber, the infrared heating device is for dehydrogenation treatment of the amorphous silicon thin film, and the infrared heating device is provided in the transfer chamber is, the amorphous silicon thin film, amorphous silicon the infrared from the infrared heating apparatus when said substrate is transported to the transfer chamber from the reaction chamber by the substrate transfer robot configured so that it is heated is irradiated It is a manufacturing device .
[0015]
The invention according to claim 3 is an amorphous silicon manufacturing apparatus having a reaction chamber for forming an amorphous silicon thin film on a substrate surface by a plasma CVD method, and an infrared heating device for irradiating infrared rays, wherein the substrate is the reaction chamber. The amorphous silicon manufacturing apparatus is configured to irradiate the infrared light to the amorphous silicon thin film formed on the surface of the substrate in the reaction chamber when being unloaded from the reaction chamber.
[0016]
Invention of Claim 4 is an amorphous silicon manufacturing apparatus of Claim 3, Comprising: A substrate transfer robot is arrange | positioned, It has the transfer chamber which can be evacuated, The said reaction chamber is connected to the said transfer chamber, An infrared heating apparatus is provided in the transfer chamber, and the amorphous silicon thin film is configured to be heated when the substrate is transferred from the reaction chamber to the transfer chamber by the substrate transfer robot. Device.
[0017]
The method for producing an amorphous silicon thin film of the present invention is configured as described above, and after the amorphous silicon thin film is formed on the surface of the substrate by a CVD method in a vacuum atmosphere, the amorphous silicon thin film is left in the vacuum atmosphere. Dehydrogenation is performed by raising the temperature above the temperature at which the thin film was formed. Therefore, the substrate is not exposed to the atmosphere and the temperature does not decrease, so that the dehydrogenation treatment can be performed in a short time.
[0018]
In this case, the dehydrogenation process needs to heat the a-Si thin film to a temperature higher than the formation temperature. However, the higher the dehydrogenation temperature of the a-Si thin film, the lower the hydrogen concentration in the a-Si thin film. be able to.
[0019]
On the other hand, the plasma CVD apparatus is generally for cleaning using NF 3 gas, for use at high temperatures, it is necessary to configure the reaction chamber fluorine-resistant corrosion-resistant material. However, there is actually no material that can completely withstand the film forming process and the cleaning process at 450 ° C.
[0020]
Therefore, it is desirable to perform PECVD film formation at as low a temperature as possible and to perform dehydrogenation treatment at as high a temperature as possible. However, due to the film quality, the CVD method has a lower temperature of 350 ° C., and the dehydrogenation temperature is 420 ° C. C is the lower limit.
[0021]
In addition, when the a-Si thin film is heated at 550 ° C. or higher, partial poly-Si conversion occurs, and thus the temperature of the dehydrogenation treatment is the upper limit. Therefore, the dehydrogenation temperature is 420 ° C. or higher and lower than 550 ° C. (actually 530 ° C. or lower).
[0022]
When the dehydrogenation treatment is performed, a heating device capable of infrared irradiation is used, and the a-Si thin film can be irradiated with infrared rays in a vacuum atmosphere while relatively moving the heating device and the substrate. In this case, the entire a-Si thin film forming apparatus can be reduced in size, and the overall processing speed can be improved.
[0023]
On the other hand, the dehydrogenation treatment can be performed in a reaction chamber different from the reaction chamber in which the amorphous silicon thin film is formed. In this case, the dehydrogenation treatment can be performed with the substrate stationary.
[0024]
In the present invention, the vacuum atmosphere for dehydrogenating the substrate may be low pressure, and an inert gas that does not affect the a-Si thin film such as argon gas or nitrogen gas is introduced into the vacuum atmosphere. Is also included. When a substrate is placed on a hot plate and heated, it is preferable to introduce an inert gas because the temperature controllability of the substrate is improved.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
Referring to FIG. 1, reference numeral 1 denotes an a-Si thin film forming apparatus to which the present invention can be applied.
[0026]
This a-Si thin film forming apparatus 1 has a transfer chamber 10, and around the transfer chamber 10, one charging / unloading chamber 11 and a preheating chamber 12 are provided around the transfer chamber 10. Chambers 15 1 to 15 4 are arranged.
[0027]
The charging / unloading chamber 11, the transfer chamber 10, and the reaction chambers 15 1 to 15 4 can be evacuated independently, and the a-Si thin film forming apparatus 1 having the above-described configuration is used to form an a-Si thin film. when forming, advance the advance chambers 10~12,15 1-15 4 evacuated. Next, only the inside of the preparation take-out chamber 11 is exposed to the atmosphere, a predetermined number of large-diameter glass substrates having a plate thickness of about 0.5 to 3 mm are arranged, and the door between the atmosphere is closed.
[0028]
After the inside of the preparation / extraction chamber 11 is evacuated to a predetermined pressure, the partition with the transfer chamber 10 is opened. A substrate transfer robot 19 is disposed in the transfer chamber 10, and one glass substrate in the preparation take-out chamber 11 is taken out and transferred into the preheating chamber 12.
[0029]
The glass substrate was heated in the preliminary heating chamber 12, the temperature was raised to forming temperature of the a-Si film, was transported into desired reaction chamber (here, the reaction chamber indicated at 15 1), the reaction chamber 15 Close the partition between 1 and the transfer chamber 10.
[0030]
A gas introduction system (not shown) is connected to each of the reaction chambers 15 1 to 15 4 so that a desired type of gas can be introduced. In addition, a heater is provided in the placement portion on which the glass substrate that has been loaded is placed, so that the glass substrate can be maintained at a desired temperature.
[0031]
After the glass substrate is carried in, the silane gas and the argon gas are introduced at a flow rate ratio of 5:95 from the gas introduction system in a state where the glass substrate is placed on the placement unit and heated to 420 ° C. Then, a voltage to the electrodes of the reaction chamber 15 1 is applied to generate plasma of the introduced gas, growing a-Si film on the glass substrate surface by the plasma CVD method.
[0032]
After growing the a-Si thin film to a predetermined thickness (3 00~1000Å), by the substrate transfer robot 19, it is unloaded into the transfer chamber 10 the glass substrate from the reaction chamber 15 1.
Reference numeral 4 in FIG. 2 denotes the glass substrate, which is in a state of being placed on the tip of the arm 25 of the transfer robot 19.
[0033]
Infrared heating devices 16 1 to 16 4 are arranged at positions near the carry-in / out entrances of the reaction chambers 15 1 to 15 4 on the ceiling of the transfer chamber 10, and are carried out from the reaction chambers 15 1 to 15 4. substrate is configured to pass through respectively the position directly below the infrared heating device 161-164.
[0034]
Each of the infrared heating devices 16 1 to 16 4 includes a linear infrared lamp 27 and a reflecting mirror 29, and the reflecting mirror 29 is disposed behind the infrared lamp 27 and is radiated by the infrared lamp 27. It is configured to collect light while reflecting infrared rays.
[0035]
A quartz window 21 is airtightly provided immediately below the infrared lamp 27 on the ceiling of the transfer chamber 10, and the infrared light 22 emitted from the infrared lamp 27 is reflected directly or after being reflected by a reflecting mirror 28, and then the quartz window 21. And is irradiated into the transfer chamber 10 so as to be focused linearly.
[0036]
The glass substrate 4 a-Si thin film is formed at the time of unloading from the reaction chamber 15 within 1 and keep energizing the infrared heating device 16 1 on unloading port of the reaction chamber 15 1, crow substrate 4 infrared The a-Si thin film at the focal portion is concentrated and heated after passing through the focal position 22.
[0037]
In each of the infrared irradiation devices 16 1 to 16 2 , the longitudinal direction of the infrared lamp 27 is arranged in a direction perpendicular to the carry-out direction of the glass substrate 4, and the linear focus is substantially the same as the carry-out direction of the glass substrate 4. It extends vertically. As a result, when the glass substrate 4 is carried out at a constant speed, the infrared rays 22 are uniformly irradiated from the head to the tail of the glass substrate 4, and the entire glass substrate 4 is heated uniformly.
[0038]
In this case, the glass substrate 4 can be heated to a desired temperature by adjusting the input power to the infrared lamp 27 or adjusting the carry-out speed (moving speed) of the glass substrate 4.
[0039]
The infrared heating device 16 1, the glass substrate 4 is heated above the substrate temperature (and 550 below ℃ a crystallization temperature of a-Si) when it is formed a-Si film, the a-Si thin film Hydrogen is released. The hydrogen is exhausted out of the a-Si thin film forming apparatus 1 by vacuum exhaust.
[0040]
In this manner, the a-Si thin film on one glass substrate 4 is dehydrogenated, and the glass substrate 4 is returned to the carry-in / out chamber 11. Then, carries the glass substrate preheating is completed in the pre-heating chamber 12 to an empty reaction chamber 15 1, it starts the growth of a-Si films.
[0041]
At this time, the growth process of the a-Si thin film is also performed in parallel in the other reaction chambers 15 2 to 15 4. When the formation of the a-Si thin film is completed, the infrared heating devices 16 2 to 16 4 are energized, The glass substrate is unloaded at a predetermined speed while being irradiated with infrared rays, dehydrogenated, and returned to the loading / unloading chamber 11.
[0042]
As described above, the glass substrate after the dehydrogenation process is returned to the carry-in / out chamber 11. When all the glass substrates mounted in the carry-in / out chamber 11 have returned, the partition between the carry-in / out chamber 11 and the transfer chamber 10 is closed, the carry-in / out chamber 11 is opened to the atmosphere, and the glass substrate is taken out.
[0043]
As described above, according to the present invention, the dehydrogenation treatment can be performed before the glass substrate on which the a-Si thin film is formed is taken out into the atmosphere. It is only necessary to slightly heat the glass substrate in a heated state immediately after the formation of. Therefore, the heating time of the glass substrate can be very short, and since it is processed in a vacuum atmosphere, hydrogen is easily released, and the processing time is shortened.
[0044]
FIG. 4 is a graph showing the relationship between the moving speed of the glass substrate when the power of the infrared heating devices 16 1 to 16 4 is 150 W and 450 W and the residual hydrogen concentration in the a-Si thin film after the dehydrogenation treatment. As the electric power increases, the residual hydrogen concentration decreases. However, in any case, as the moving speed increases, the glass substrate temperature decreases. As a result, the dehydrogenation treatment becomes insufficient and the residual hydrogen concentration increases. The measurement conditions at this time were an atmospheric pressure around the glass substrate of 5 Pa, a focal width of 5 mm, and a focal length of 400 mm.
[0045]
In the a-Si thin film forming apparatus 1 described above, the infrared heating devices 16 1 to 16 4 are arranged on the inlets of the reaction chambers 15 1 to 15 4. However, when an infrared heating device capable of emitting strong infrared rays is used. Since the moving speed of the glass substrate during the dehydrogenation process can be increased, an infrared irradiation device can be provided only at the upper part of the entrance of the carry-in / out chamber 11 rather than on the entrance of the reaction chambers 15 1 to 15 4 .
[0046]
Although the above has described the case where the dehydrogenation treatment is performed while moving the glass substrate, the present invention is not limited thereto. For example, any one of the reaction chambers 15 1 to 15 4 may be connected to the transfer chamber 10 instead of the dedicated dehydrogenation chamber 18 as shown in FIG.
[0047]
In the dehydrogenation treatment chamber 18 shown in FIG. 3, a lamp heater 31 is disposed in the chamber 30 and the glass substrate 4 ′ carried in is heated in a stationary state. Further, instead of the lamp heater 31, the hot plate 32 may be disposed in the chamber 30, and the glass substrate 4 ′ carried in may be placed on the hot plate 30 and heated.
[0048]
The residual hydrogen concentrations in the a-Si thin film when the dehydrogenation process is performed using the lamp heater 31 and when the dehydrogenation process is performed using the hot plate 30 are shown in the graphs of FIGS. 5 and 6, respectively.
[0049]
The measurement condition of the graph of FIG. 5 using the lamp heater 31 is the case where the atmospheric pressure is 5 Pa, and the input power to the lamp is 200 W and 500 W. It can be seen that at 200 W, sufficient dehydrogenation treatment cannot be performed even if the treatment time is increased.
[0050]
The measurement conditions of the graph of FIG. 6 using the hot plate 30 are an atmospheric pressure of 133 Pa (nitrogen gas atmosphere), and a glass substrate temperature of 420 ° C. (hot plate temperature 450 ° C.) and 450 ° C. (hot plate temperature 480 ° C.). It is.
[0051]
When heating with a hot plate, it is preferable to introduce an inert gas such as nitrogen gas or argon gas in order to increase the thermal conductivity, when using an infrared heating device 161-164 and the lamp heater 31 of the Is not necessarily an inert gas atmosphere.
[0052]
【The invention's effect】
According to the present invention, the processing time of the glass substrate can be greatly shortened.
Since the dehydrogenation process can be performed while moving the glass substrate, the entire apparatus is downsized.
[Brief description of the drawings]
1 is an example of an a-Si thin film manufacturing apparatus to which the present invention can be applied. FIG. 2 is an enlarged view of the infrared heating apparatus. FIG. 3 is an example of a dedicated dehydrogenation chamber. Graph showing the relationship between the residual hydrogen concentration [Fig. 5] Graph showing the relationship between the processing time in the case of lamp heating and the residual hydrogen concentration [Fig. 6] Graph showing the relationship between the substrate temperature and the residual hydrogen concentration in the case of hot plate heating [ FIG. 7 shows an example of a prior art a-Si thin film manufacturing apparatus.
1 …… a-Si thin film manufacturing equipment 4 …… Substrate 16 1 -16 4 ...... Heating equipment

Claims (2)

プラズマCVD法によって基板表面にアモルファスシリコン薄膜を成膜する反応室と、
赤外線を照射する赤外線加熱装置とを有するアモルファスシリコン製造装置であって、
基板搬送ロボットが配置され、真空排気可能な搬送室を有し、
前記反応室は前記搬送室に接続され、
前記赤外線加熱装置は、前記搬送室に設けられ、
前記赤外線加熱装置は前記アモルファスシリコン薄膜の脱水素処理用であり、
前記基板が前記反応室から搬出される際に、前記反応室内で前記基板表面に形成された前記アモルファスシリコン薄膜に前記赤外線加熱装置から前記赤外線が照射されるように構成されたアモルファスシリコン製造装置。
A reaction chamber for depositing an amorphous silicon thin film on the substrate surface by plasma CVD,
An amorphous silicon manufacturing apparatus having an infrared heating apparatus for irradiating infrared rays,
A substrate transfer robot is installed, and it has a transfer chamber that can be evacuated.
The reaction chamber is connected to the transfer chamber;
The infrared heating device is provided in the transfer chamber,
The infrared heating device is for dehydrogenation of the amorphous silicon thin film;
An amorphous silicon manufacturing apparatus configured to irradiate the infrared radiation from the infrared heating device to the amorphous silicon thin film formed on the surface of the substrate in the reaction chamber when the substrate is unloaded from the reaction chamber.
プラズマCVD法によって基板表面にアモルファスシリコン薄膜を成膜する反応室と、
赤外線を照射する赤外線加熱装置とを有するアモルファスシリコン製造装置であって、
基板搬送ロボットが配置され、真空排気可能な搬送室を有し、
前記反応室は前記搬送室に接続され、
前記赤外線加熱装置は前記アモルファスシリコン薄膜の脱水素処理用であり、
前記赤外線加熱装置は、前記搬送室に設けられ、前記アモルファスシリコン薄膜は、前記基板が前記基板搬送ロボットで前記反応室から前記搬送室に搬送される際に前記赤外線加熱装置から前記赤外線が照射されて加熱されるように構成されたアモルファスシリコン製造装置。
A reaction chamber for depositing an amorphous silicon thin film on the substrate surface by plasma CVD,
An amorphous silicon manufacturing apparatus having an infrared heating apparatus for irradiating infrared rays,
A substrate transfer robot is installed, and it has a transfer chamber that can be evacuated.
The reaction chamber is connected to the transfer chamber;
The infrared heating device is for dehydrogenation of the amorphous silicon thin film;
The infrared heating device is provided in the transfer chamber, and the amorphous silicon thin film is irradiated with the infrared rays from the infrared heating device when the substrate is transferred from the reaction chamber to the transfer chamber by the substrate transfer robot. configured so that the heated Te amorphous silicon manufacturing apparatus.
JP20202798A 1998-07-16 1998-07-16 Amorphous silicon production equipment Expired - Fee Related JP4094127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20202798A JP4094127B2 (en) 1998-07-16 1998-07-16 Amorphous silicon production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20202798A JP4094127B2 (en) 1998-07-16 1998-07-16 Amorphous silicon production equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007335430A Division JP5026248B2 (en) 2007-12-27 2007-12-27 Method for producing amorphous silicon thin film

Publications (2)

Publication Number Publication Date
JP2000031058A JP2000031058A (en) 2000-01-28
JP4094127B2 true JP4094127B2 (en) 2008-06-04

Family

ID=16450717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20202798A Expired - Fee Related JP4094127B2 (en) 1998-07-16 1998-07-16 Amorphous silicon production equipment

Country Status (1)

Country Link
JP (1) JP4094127B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5026248B2 (en) * 2007-12-27 2012-09-12 株式会社アルバック Method for producing amorphous silicon thin film
US10276379B2 (en) * 2017-04-07 2019-04-30 Applied Materials, Inc. Treatment approach to improve film roughness by improving nucleation/adhesion of silicon oxide
KR102509390B1 (en) * 2017-07-24 2023-03-14 어플라이드 머티어리얼스, 인코포레이티드 Pretreatment Approach to Improve Continuity of Ultrathin Amorphous Silicon Films on Silicon Oxide

Also Published As

Publication number Publication date
JP2000031058A (en) 2000-01-28

Similar Documents

Publication Publication Date Title
US5578520A (en) Method for annealing a semiconductor
US5352291A (en) Method of annealing a semiconductor
JPH06260436A (en) Manufacture of semiconductor device and semiconductor treatment device
JP3573811B2 (en) Irradiation method of linear laser light
JP3027968B2 (en) Film forming equipment
JP2001523038A (en) Annealing method of amorphous film using microwave energy
JP3927634B2 (en) Laser annealing method and thin film transistor manufacturing method
JP4094127B2 (en) Amorphous silicon production equipment
JP5026248B2 (en) Method for producing amorphous silicon thin film
JPS6223450B2 (en)
JP3926862B2 (en) Semiconductor processing method and thin film transistor manufacturing method
JP4001647B2 (en) Method for manufacturing crystalline semiconductor film
JPH07221035A (en) Substrate treating device and its operation
JP2002110551A (en) Method and apparatus for forming semiconductor thin film
JPH05251342A (en) Laser annealing apparatus
JP3605326B2 (en) Multi-chamber equipment
KR100221352B1 (en) Method of forming poly-crystal silicon and apparatus for forming thereof
JP3797257B2 (en) Semiconductor device manufacturing method and semiconductor manufacturing apparatus
JPH06342757A (en) Laser processing device
JP4076591B2 (en) Semiconductor device manufacturing method and substrate processing method
JP3605330B2 (en) Method for manufacturing thin film device and semiconductor film
JP4377008B2 (en) Chemical vapor deposition method and chemical vapor deposition apparatus
TW512461B (en) Single-substrate-heat-processing apparatus and method for performing reformation and crystallization
JPH10116795A (en) Equipment for manufacturing semiconductor material
JPH097911A (en) Fabricating apparatus for semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080124

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees