JPH01198033A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPH01198033A
JPH01198033A JP2300788A JP2300788A JPH01198033A JP H01198033 A JPH01198033 A JP H01198033A JP 2300788 A JP2300788 A JP 2300788A JP 2300788 A JP2300788 A JP 2300788A JP H01198033 A JPH01198033 A JP H01198033A
Authority
JP
Japan
Prior art keywords
substrate
gas
thin film
container
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2300788A
Other languages
Japanese (ja)
Other versions
JP2763100B2 (en
Inventor
Sadahisa Noguchi
野口 禎久
Nobuo Hayasaka
伸夫 早坂
Haruo Okano
晴雄 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63023007A priority Critical patent/JP2763100B2/en
Publication of JPH01198033A publication Critical patent/JPH01198033A/en
Application granted granted Critical
Publication of JP2763100B2 publication Critical patent/JP2763100B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve film quality by supplying reaction product produced by raw gas or raw gas/excited reaction gas to a substrate surface, whereon the reaction product is liquefied, by irradiating the excited reaction gas, ion or light to make an oxide film and thereafter rising a substrate temperature, by irradiating the excited reaction gas, ion or light and by repeating these processes. CONSTITUTION:After the inside of a container 11 is exhausted and a substrate 12 is cooled to -40 deg.C, valves 21, 22 are opened, tetramethylsilane and oxygen are supplied, the pressure in the inside of the container 11 is set at 2Torr, microwave discharge is performed, and reaction product is liquefied on the substrate 12. Microwave discharge is stopped, valves 12, 22 are closed to stop gas supply and exhaust is conducted. A valve 23 is opened, oxygen gas is supplied into the container 11, discharge is started at a pressure of 2Torr and reaction product supplied onto the substrate 12 is oxidated. Then the valve 23 is closed, a heater 61 is made conductive and heated, the temperature of the substrate 12 is increased to 300 deg.C, a valve 62 is opened to introduce oxygen, and annealing is made under oxygen atmosphere. The above mentioned operations are repeated to deposit an oxide film which scarcely contains methyl group.

Description

【発明の詳細な説明】 [発明の■的] (産業上の利用分野) 本発明は、超LSIデバイス等の半導体製造に用いられ
る薄膜堆積方法に係わり、特に溝部内に薄膜を埋め込み
形成する薄膜形成方法に関する。
[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a thin film deposition method used in the manufacture of semiconductors such as VLSI devices, and particularly relates to a thin film deposition method for forming a thin film embedded in a groove. Regarding the forming method.

(従来の技術) 薄膜形成方法を大別すると、化学的気相成長法(Che
mical Vapor Deposition ; 
CV D )と物理的気相成長法(Physleal 
Vapor Depositlon ;PVD)とに分
類される。CVD法は基板表面や気相中での化学反応を
利用して基板上に薄膜を堆積する方法であり、主にシリ
コン酸化膜やシリコン窒化膜等の絶縁膜の形成に用いら
れている。した、PVD法は気相中で生成した堆積粒子
を基板へ衝突させて薄膜を形成する山ので、主に金属膜
の形成に用いられている。
(Conventional technology) Thin film forming methods can be roughly divided into chemical vapor deposition (Chemistry)
Mical Vapor Deposition;
CVD) and physical vapor deposition (Physreal
It is classified as Vapor Depositon (PVD). The CVD method is a method of depositing a thin film on a substrate using chemical reactions on the substrate surface or in a gas phase, and is mainly used for forming insulating films such as silicon oxide films and silicon nitride films. The PVD method forms a thin film by colliding deposited particles generated in a gas phase with a substrate, and is mainly used for forming metal films.

一方、最近の超LSIデバイスではアスペクト比(深さ
7幅)の高い溝内への薄膜堆積技術か必須となりつつあ
る。しかし、CVD法の一つであるブラズvCVD法(
例えば、J、L、Vossen’&LKern; Th
ln口1m Process; Academic P
ress 1978)等を用いて、第8図(a)に示す
ようにSi基板81に形成された深い溝82内に絶縁物
83を堆積すると、気相中で生じた堆積種の角部への堆
積が大きく、堆積種が次第に溝底部に入り難くなり空洞
84を生じ、段差被覆特性が劣化する。
On the other hand, in recent VLSI devices, thin film deposition technology in trenches with a high aspect ratio (depth 7 width) is becoming essential. However, the Braz vCVD method, which is one of the CVD methods (
For example, J. L. Vossen'& L. Kern;
Inlet 1m Process; Academic P
When an insulator 83 is deposited in a deep groove 82 formed in a Si substrate 81 as shown in FIG. As the deposition is large, it becomes increasingly difficult for the deposited species to enter the bottom of the groove, creating a cavity 84 and deteriorating the step coverage characteristics.

この段差)71 ffl形状を改善する方法として、P
VD法の一つであるバイアススパッタ法と称される技術
が用いられている(例えば、T、Mogal。
This step) 71 As a method to improve the ffl shape, P
A technique called bias sputtering method, which is one of the VD methods, is used (for example, T, Mogal.

Morlmoto & 0kabayashl: Ex
pended abstracts18L1+ con
l’、 5olid 5tate Devices &
 Materials。
Morlmoto & 0kabayashl: Ex
pending abstracts18L1+ con
l', 5olid 5tate Devices &
Materials.

Kobe、1984.p43 ) Oこの方法は、A「
イオンで基板表面を物理的にスパッタリングしながら、
例えばシリコン酸化膜を形成するため、角部での堆積は
起こらず平坦部でのみ堆積を生じる。従って、空洞発生
なしに溝内への埋め込みが可能になるが、気相中の堆積
種が溝内に斜めに入射してくるため、アスペクト比〉1
ではやはり埋め込み困難となる。
Kobe, 1984. p43) OThis method is
While physically sputtering the substrate surface with ions,
For example, since a silicon oxide film is formed, deposition does not occur at the corners but only at the flat areas. Therefore, it is possible to fill the groove without creating cavities, but since the deposited species in the gas phase enter the groove obliquely, the aspect ratio>1
This makes it difficult to embed.

さらに、物理的スパッタリングによる堆積膜の除去と堆
積の競合反応を用いているので、正味の堆積速度が低く
生産性が極めて悪い。した、プラズマ中での照射照射も
避けられない。最近、堆積種の溝内への斜め入射の成分
を少なくしたECRバイアススパッタ法(例えば、Il
、0jkava;SEMITECNOl、OGY SY
M、 1980 E3−1)も提案されているが、上記
の問題は軽減されるものの木質的な解決策とはならない
Furthermore, since a competitive reaction between removal of the deposited film by physical sputtering and deposition is used, the net deposition rate is low and productivity is extremely poor. However, irradiation in plasma cannot be avoided. Recently, the ECR bias sputtering method (for example, Il
,0jkava;SEMITECNOl,OGY SY
M, 1980 E3-1) has also been proposed, but although it alleviates the above problem, it does not provide a wooden solution.

この他、例えばTE01の熱分解法(例えば、lt、D
、Rangt Y、Momose & Y、Nagak
ubo; IIEDM、TECII。
In addition, for example, the thermal decomposition method of TE01 (for example, lt, D
, Rangt Y, Momose & Y, Nagak
ubo; IIEDM, TECII.

DIG、 1982. p、237)を用いてシリコン
酸化膜を形成すると、堆積種の大きな表面移動によって
第8図(b)に示すように優れた段差被覆特性を示す。
DIG, 1982. When a silicon oxide film is formed using 237), it exhibits excellent step coverage characteristics as shown in FIG. 8(b) due to large movement of deposited species on the surface.

しかし、この方法により溝内に埋め込んだ酸化膜83を
例えば希釈したHF溶液で洗浄処理すると、第8図(C
)に示すように中央部85での酸化膜83の除去速度が
異常に速くなり、結局埋め込み平坦化が実現できないの
が現状である。この原因は、溝の壁の両側から成長して
きた酸化膜同士の歪みが中央部付近で残存するためと考
えられる。
However, if the oxide film 83 buried in the trench is cleaned using a diluted HF solution using this method,
), the removal rate of the oxide film 83 in the central portion 85 becomes abnormally fast, and the current situation is that buried planarization cannot be achieved. The reason for this is thought to be that distortions between the oxide films that have grown from both sides of the trench wall remain near the center.

このように、コンファーマブルに薄膜を形成する方法で
も、高アスペクト比の溝内への埋め込みは極めて困難で
あると考えられていた。
As described above, even with the method of forming a thin film in a conformable manner, it was considered extremely difficult to fill the trench with a high aspect ratio.

上記の問題を解決するために、テトラメチルシラン(S
 iCHj; TM S )ガスとマイクロ波放電によ
って励起した酸素原子による反応生成物の沸点以下に基
板を冷却することによって、高アスペクト比の溝内にシ
リコン酸化膜を堆積する方法がある。しかし、この方法
によって堆積した膜は一40℃という低温で堆積してい
るため、密度が低い粗密な膜である。これは、反応生成
物の沸点以下に基板温度を冷却しているため、酸化され
固相化した原子が自由に動き回る二とができないと言う
液相酸化法の本質的な問題のためによる。した、この方
法によると基板上で液化する物質、即ち原料ガスである
テトラメトキシシランと酸素をマイクロ波放電によって
励起した酸素原子による反応生成物の供給と、この液体
のマイクロ波放電によって励起した酸素原子による酸化
が同時に進行しており、液体の供給速度と酸化速度の制
御が難しい。従って、膜の組成及び膜の緻密性の制御や
改善が困難となっている。
To solve the above problem, tetramethylsilane (S
There is a method of depositing a silicon oxide film in a high aspect ratio trench by cooling the substrate below the boiling point of a reaction product of a gas and oxygen atoms excited by a microwave discharge. However, since the film deposited by this method is deposited at a low temperature of -40° C., it is a coarse film with a low density. This is due to the inherent problem of the liquid phase oxidation method, in which the oxidized and solidified atoms cannot freely move around because the substrate temperature is cooled below the boiling point of the reaction product. According to this method, a substance that liquefies on the substrate, namely tetramethoxysilane, which is a raw material gas, and oxygen are supplied with a reaction product by oxygen atoms excited by microwave discharge, and the oxygen excited by the microwave discharge of this liquid is supplied. Atomic oxidation is proceeding simultaneously, making it difficult to control the liquid supply rate and oxidation rate. Therefore, it is difficult to control or improve the film composition and film density.

第9図(a)は液体の供給が速すぎたためにSiバ板8
1の溝の底の部分に溜まっていた液体が十分酸化されず
液体のままであったため、空洞86が生じて、しまった
例である。した、第9図(b)は十分に酸化されず液体
のままであった所が泡のように存在し、空洞87が生じ
てしまった例である。
Fig. 9(a) shows that the Si plate 8 was damaged due to the liquid being supplied too quickly.
In this example, the liquid that had accumulated at the bottom of the groove 1 was not sufficiently oxidized and remained liquid, resulting in the formation of a cavity 86. FIG. 9(b) shows an example in which a portion that was not sufficiently oxidized and remained liquid exists like a bubble, resulting in a cavity 87.

した、第10図は全流量に対する堆積速度と堆積形状の
関係を示したものであるが、全流量を少なくして堆積速
度を遅くすると気相反応が進んで前記第8図(a)のよ
うな堆積形状となってしまう。
Figure 10 shows the relationship between the deposition rate and the deposition shape with respect to the total flow rate, but when the total flow rate is reduced to slow down the deposition rate, the gas phase reaction progresses, resulting in the formation of a layer as shown in Figure 8 (a) above. This results in a piled-up shape.

逆に、全流量を多くして堆積速度を速くすると、液化反
応が進んで第9図に示すように空洞が発生するのである
Conversely, if the total flow rate is increased to increase the deposition rate, the liquefaction reaction progresses and cavities are generated as shown in FIG.

(発明が解決しようとする課題) このように従来、液相酸化法を用いて溝内を酸化膜等で
埋め混む方法にあっては、液体の供給量と酸化速度との
制御が難しく、膜の組成及び膜の緻密性の制御や改良が
困難である問題があった。
(Problem to be Solved by the Invention) In the conventional method of filling the groove with an oxide film etc. using the liquid phase oxidation method, it is difficult to control the amount of liquid supplied and the oxidation rate. There is a problem in that it is difficult to control or improve the composition of the film and the density of the film.

本発明は上記事情を考慮してなされたもので、その目的
とするところは、液相酸化法等における液体の供給量と
酸化速度の制御を独立に行うことができ、溝内に薄膜を
良好に埋め込むことができ、且つ膜質の向上をはかり得
る薄膜形成方法を提供することにある。
The present invention has been made in consideration of the above circumstances, and its purpose is to be able to independently control the amount of liquid supplied and the oxidation rate in the liquid phase oxidation method, etc., and to form a thin film in the groove. It is an object of the present invention to provide a method for forming a thin film that can be embedded in the film and improve the film quality.

[発明の構成] (課題を解決するための手段) 本発明の骨子は、液相酸化法等によって薄膜を形成する
際に、基板表面で液化させる原料ガス又は原料ガスと励
起した反応ガスによって生成される反応生成物の供給を
行う時間と、基板表面で液化した液体を反応ガス又はイ
オン、光によって薄膜化する時間を分離し、これらを繰
返して堆積膜を形成することにより、液体の供給量とそ
の液体の酸化速度を独立に自由に制御することにある。
[Structure of the Invention] (Means for Solving the Problems) The gist of the present invention is that when a thin film is formed by a liquid phase oxidation method, a raw material gas that is liquefied on the surface of a substrate or a reactive gas that is excited with the raw material gas is generated. The amount of liquid supplied can be reduced by separating the time for supplying the reaction product and the time for turning the liquid liquefied on the substrate surface into a thin film using reaction gas, ions, or light, and repeating these steps to form a deposited film. and the ability to independently and freely control the oxidation rate of the liquid.

した、基板表面で液化した液体を励起した反応ガス又は
イオン、光によって酸化膜とした後に基板温度を上昇さ
せ、励起した反応ガス又はイオン。
Reactive gas or ions are excited by the liquid liquefied on the surface of the substrate, and reactive gases or ions are excited by increasing the temperature of the substrate after forming an oxide film with light.

光によって膜質を向上させる過程を行°い、これらを繰
返して堆積膜を形成することによって膜質も向上させる
ことにある。
The purpose is to improve the film quality by performing a process of improving film quality using light and repeating this process to form a deposited film.

即ち本発明は、表面に溝が形成された被処理基体を反応
容器内に収容し、容器内に所定のガスを供給して被処理
基体の溝部に薄膜を形成する薄膜形成方法において、 第1番目の薄膜形成過程として、前記容器内に原料ガス
のみ又は前記容器とは別の領域で励起された第1の反応
ガスと原料ガスとの両方を供給し、前記被処理基体を原
料ガスの露点以下又は原料ガスと第1の反応ガスとの反
応生成物の露点以下に冷却し、前記被処理基体の表面に
原料ガス又は反応生成物を液化して付着させ、 第2番目の薄膜形成過程として、第1番目の薄膜形成過
程を終了した後、前記容器内に該容器とは別の領域で励
起した第2の反応ガスを供給する。
That is, the present invention provides a thin film forming method in which a substrate to be processed having grooves formed on its surface is accommodated in a reaction container, and a predetermined gas is supplied into the container to form a thin film in the grooves of the substrate to be processed. As the second thin film forming process, only the raw material gas or both the first reaction gas and the raw material gas excited in a region different from the container are supplied into the container, and the substrate to be processed is heated to the dew point of the raw material gas. or below or below the dew point of the reaction product of the raw material gas and the first reaction gas, and the raw material gas or the reaction product is liquefied and attached to the surface of the substrate to be treated, as a second thin film forming process. After completing the first thin film forming process, a second reaction gas excited in a region different from the container is supplied into the container.

基体表面に光を照射する及び基体表面にイオンを照射す
るうちの少なくとも1つを行い、前記被処理基体の表面
に付むした液体から薄膜を生成し、これら2つの薄膜形
成過程を時間的に分離し、且つ交互に繰返して前記被処
理基体の溝部を薄膜で埋め込むようにした方法である。
Perform at least one of irradiating the substrate surface with light and irradiating the substrate surface with ions, generate a thin film from the liquid attached to the surface of the substrate to be treated, and perform these two thin film formation processes in a temporal manner. In this method, the grooves of the substrate to be processed are filled with a thin film by separating and repeating the process alternately.

した本発明は、表面に溝が形成された被処理基体を反応
容器内に収容し、容器内に所定のガスを供給して被処理
基体の溝部に薄膜を形成する薄膜形成方法において、 第1番目」の薄膜形成過程として、前記容器内に原料ガ
スのみ又は前記容器とは別の領域で励起された第1の反
応ガスと原料ガスとの両方を供給し、前記被処理基体を
原料ガスの露点以下又は原料ガスと第1の反応ガスとの
反応生成物の露点以下に冷却し、前記被処理基体の表面
に原料ガス又は反応生成物を液化して付着させ、 第2番目の薄膜形成過程として、第1番目の薄膜形成過
程を終了した後、前記容器内に該容器とは別の領域で励
起した第2の反応ガスを供給する。
The present invention provides a thin film forming method in which a substrate to be processed having grooves formed on its surface is accommodated in a reaction container, and a predetermined gas is supplied into the container to form a thin film in the grooves of the substrate to be processed. As the thin film forming process of 10th, a raw material gas alone or both a first reaction gas excited in a region separate from the container and a raw material gas are supplied into the container, and the substrate to be treated is exposed to the raw material gas. Cooling to below the dew point or below the dew point of the reaction product of the raw material gas and the first reaction gas, and liquefying and depositing the raw material gas or the reaction product on the surface of the substrate to be treated, a second thin film forming step. After the first thin film forming process is completed, a second reaction gas excited in a region different from the container is supplied into the container.

基体表面に光を照射する及び基体表面にイオンを照射す
るうちの少なくとも1つを行い、前記被処理基体の表面
に付着した液体から薄膜を生成し、第3番目の薄膜形成
過程として、第2番目の薄膜形成過程を終了した後、前
記被処理基体を原料ガス又は反応生成物の沸点以上に加
熱し、前記容器内に該容器とは別の領域で励起した第2
の反応ガスを供給する。基体表面に光を照射する及び基
体表面にイオンを照射するうちの少なくとも1つを行い
、 これら3つの薄膜形成過程を時間的に分離し、且つ順次
繰返して前記被処理基体の溝部を薄膜で埋め込むように
した方法である。
performing at least one of irradiating the substrate surface with light and irradiating the substrate surface with ions to generate a thin film from the liquid adhering to the surface of the substrate to be processed; and as a third thin film forming process, a second After completing the second thin film forming process, the substrate to be treated is heated to a temperature higher than the boiling point of the raw material gas or reaction product, and a second thin film is excited in a region different from the container.
supply the reaction gas. performing at least one of irradiating the substrate surface with light and irradiating the substrate surface with ions, temporally separating these three thin film formation processes, and sequentially repeating them to fill the grooves of the substrate to be processed with the thin film; This is how I did it.

(作 用) 本発明によれば、液相酸化法等によって薄膜を堆積する
際に、液体の供給量と酸化の速度の制御が独立に自由に
設定できる。従って、溝内に埋め込む膜の膜質の制御が
容易となり、膜の緻密化や膜の十分な酸化が行える。即
ち、第1の薄膜形成過程により被処理基体の表面に液体
を薄く付着させた後、第2の薄膜形成過程により十分な
酸化等を行うことによって、空洞の発生を招くことなく
良質の薄膜を形成することができる。そして、この工程
を繰返すことにより、溝内部を十分に埋め込む厚さの薄
膜を形成することが可能となる。
(Function) According to the present invention, when depositing a thin film by a liquid phase oxidation method or the like, the amount of liquid supplied and the rate of oxidation can be freely and independently controlled. Therefore, the quality of the film buried in the groove can be easily controlled, and the film can be densified and sufficiently oxidized. That is, by applying a thin layer of liquid to the surface of the substrate to be processed in the first thin film forming process, and performing sufficient oxidation in the second thin film forming process, a high quality thin film can be formed without causing cavities. can be formed. By repeating this process, it is possible to form a thin film thick enough to fill the inside of the groove.

した、基板表面で液化した液体を励起した反応ガス又は
イオン、光によって酸化膜とした後に基板温度を上昇さ
せ、励起した反応ガス又はイオン。
Reactive gas or ions are excited by the liquid liquefied on the surface of the substrate, and reactive gases or ions are excited by increasing the temperature of the substrate after forming an oxide film with light.

光によって膜質を向上させる工程(第3の薄膜形成過程
)を行い、これら(第1〜第3の薄膜形成過程)を繰返
して堆積膜を形成することにより、膜の緻密化や膜質の
向上をより一層進めることができる。
By performing the process of improving the film quality with light (third thin film formation process) and repeating these (first to third thin film formation processes) to form a deposited film, the film can be made denser and the film quality can be improved. You can go even further.

(実施例) 以下、本発明の詳細を図示の実施例によって説明する。(Example) Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図は本発明の請求項1記載の方法を実施するための
手順を示す模式図である。まず、被処理基体収容した反
応容器内に原料ガスのみ又は前記容器とは別の領域で励
起された第1の反応ガスと原料ガスとの両方を供給し、
被処理基体を原料ガスの露点以下又は原料ガスと第1の
反応ガスとの反応生成物の露点以下に冷却する。これに
より、被処理基体の表面に原料ガス又は反応生成物が液
化して付着する(液体の供給)。この液体は被処理基体
の溝内に溜まるが、その量は極めて少ないものである。
FIG. 1 is a schematic diagram showing the procedure for carrying out the method according to claim 1 of the present invention. First, supplying only a raw material gas or both a first reaction gas and a raw material gas excited in a region different from the container into a reaction container containing a substrate to be processed,
The substrate to be processed is cooled to below the dew point of the source gas or below the dew point of the reaction product of the source gas and the first reaction gas. As a result, the raw material gas or the reaction product liquefies and adheres to the surface of the substrate to be processed (liquid supply). Although this liquid accumulates in the grooves of the substrate to be processed, the amount thereof is extremely small.

次いで、液体の供給を停止した後、容器内に該容器とは
別の領域で励起した第2の反応ガスを供給する。基体表
面に光を照射する及び基体表面にイオンを照射するうち
の少なくとも1つを行い、被処理基体の溝内に付芒した
液体を酸化し酸化膜を形成する(液体の酸化)。このと
き、溝内の液体の量は極めて少ないものであるから、空
洞等が発生することもなく、液体は十分に酸化されて良
質の酸化膜が形成される。
Next, after stopping the supply of the liquid, a second reaction gas excited in a region different from the container is supplied into the container. At least one of irradiating the surface of the substrate with light and irradiating the surface of the substrate with ions is performed to oxidize the liquid applied in the grooves of the substrate to be processed and form an oxide film (oxidation of the liquid). At this time, since the amount of liquid in the groove is extremely small, no cavities are generated, and the liquid is sufficiently oxidized to form a high-quality oxide film.

さらに、上記液体の供給及び液体の酸化を繰返すことに
より、被処理基体の溝内を薄い酸化膜の積層膜で確実に
埋め込むことができる。なお、薄膜形成に際しては酸化
膜に限らず、窒化膜その他各種の膜形成に適用すること
ができる。
Furthermore, by repeating the supply of the liquid and the oxidation of the liquid, the inside of the groove of the substrate to be processed can be reliably filled with a laminated film of thin oxide films. Note that when forming a thin film, the present invention is not limited to forming an oxide film, but can be applied to forming a nitride film and other various films.

第2図は第1図に示す方法を実施するための薄膜形成装
置を示す概略構成図である。図中11は反応容器で°あ
り、この容器11内には被処理基体としてのSi基板1
2を載置する試料台13が収容されている。試料台13
は図示しない冷却機構により冷却されており、この上に
載置される基板12も冷却されるものとなっている。
FIG. 2 is a schematic diagram showing a thin film forming apparatus for carrying out the method shown in FIG. 1. In the figure, 11 is a reaction vessel, and inside this vessel 11 is a Si substrate 1 as a substrate to be processed.
A sample stand 13 on which a specimen 2 is placed is accommodated. Sample stand 13
is cooled by a cooling mechanism (not shown), and the substrate 12 placed thereon is also cooled.

容器11内には、ガス導入口14から原料ガスが供給さ
れ、このガスはガス排気口15から排気される。した、
容器11内には、マイクロ波放電管16により励起され
た反応ガスがガス導入口17を介して供給され、このガ
スもガス排気口15から排気されるものとなっている。
A raw material gas is supplied into the container 11 from a gas inlet 14 , and this gas is exhausted from a gas exhaust port 15 . did,
A reaction gas excited by a microwave discharge tube 16 is supplied into the container 11 through a gas inlet 17, and this gas is also exhausted through a gas exhaust port 15.

なお、図中18はマイクロ波電源、21,22.23は
それぞれバルブを示している。
In the figure, 18 indicates a microwave power source, and 21, 22, and 23 each indicate a valve.

次に、第2図の装置を用いた薄膜形成方法について説明
する。原料ガスとしてテトラメチルシラン(TMS) 
、第1及び第2の反応ガスとして酸素をマイクロ波放電
した酸素原子を用いた。まず、容器11内を十分に排気
し、基板12を一40℃に冷却した後、バルブ21.2
2を開き、TMSを7 secm、酸素を168sec
m流し、容器11内の圧力を2 Torrとする。そし
て、マイクロ波放電を開始し30秒間放電し、反応生成
物を基板12上で液化し供給した。そして、マイクロ波
放電を止め、バルブ21.22を閉じてガスの供給を止
め、排気を行った。
Next, a method for forming a thin film using the apparatus shown in FIG. 2 will be explained. Tetramethylsilane (TMS) as raw material gas
, oxygen atoms obtained by microwave-discharging oxygen were used as the first and second reaction gases. First, after sufficiently evacuating the inside of the container 11 and cooling the substrate 12 to -40°C, the valve 21.
2, TMS for 7 sec, oxygen for 168 sec
m flow, and the pressure inside the container 11 is set to 2 Torr. Then, microwave discharge was started for 30 seconds, and the reaction product was liquefied on the substrate 12 and supplied. Then, the microwave discharge was stopped, the valves 21 and 22 were closed, the gas supply was stopped, and the gas was evacuated.

次いで、バルブ23を開き酸素ガスを容器11内に供給
し、圧力2 Torrとして放電を開始し、基板12上
に供給した反応生成物を5分間酸化した。
Next, the valve 23 was opened to supply oxygen gas into the container 11, and discharge was started at a pressure of 2 Torr to oxidize the reaction product supplied onto the substrate 12 for 5 minutes.

そして、バルブ23を閉じしたバルブ21.22を開き
、TMSと酸素を供給し、同様の操作を行った。
Then, valves 21 and 22 with valve 23 closed were opened, TMS and oxygen were supplied, and the same operation was performed.

これを16回繰返して酸化膜の堆積を行ったところ、そ
の堆積膜中にはメチル基は殆ど含まれておらず、完全な
シリコン酸化膜を堆積することができた。これは、上に
のべた手順を繰返すことにより、実質的な堆積速度を1
/11にし酸化を十分に行ったためであると考えられる
。した、このときの堆積形状も高アスペクト比の溝を完
全に埋め込んだものであった。このように、堆積形状に
変化を与えずに液体の供給速度と酸化の速度を制御し、
堆積速度をゆっくりにして酸化を十分に行い、膜質を改
善することができた。
When this process was repeated 16 times to deposit an oxide film, the deposited film contained almost no methyl groups, and a complete silicon oxide film could be deposited. This reduces the effective deposition rate by 1 by repeating the procedure described above.
This is thought to be due to sufficient oxidation at a temperature of /11. However, the shape of the deposit at this time also completely filled in the grooves with a high aspect ratio. In this way, the liquid supply rate and oxidation rate can be controlled without changing the deposition shape,
By slowing down the deposition rate and sufficiently oxidizing, we were able to improve the film quality.

第3図は第2の薄膜形成過程、即ち基板上に吸着させた
液体を酸化する工程において基板表面に光を照射し基板
上に吸着させた液体を光化学反応によって分解酸化する
ための装置である。なお、第2図と同一部分には同一符
号を付して、その詳しい説明は省略する、この装置が第
2図の装置と異なる点は、第2の反応ガスを供給する代
りに、基板表面に光を照射する機構を設けたことにある
Figure 3 shows an apparatus for irradiating the substrate surface with light to decompose and oxidize the liquid adsorbed on the substrate through a photochemical reaction in the second thin film formation process, that is, the process of oxidizing the liquid adsorbed on the substrate. . The same parts as in Fig. 2 are given the same reference numerals, and detailed explanation thereof will be omitted.The difference between this apparatus and the apparatus in Fig. 2 is that instead of supplying the second reaction gas, the second reaction gas is supplied to the substrate surface. The reason is that a mechanism for irradiating light is provided.

即ち、容器11の土壁には光透過窓31が設けられてお
り、光源32からの光33が窓31を介して容器11内
に導入され基板12の表面に照射されるものとなってい
る。 ゛ 原料ガス、第1及び第2の反応ガスとして先に示したの
と同様のものを用い、した照射する光としてArFエキ
シマレーザ(波長193rv )を用いた。堆積膜の形
成は、先に示したのと同様にし、基板を一40℃に冷却
後、TMSと第1の反応ガスとして酸素を導入し30秒
間マイクロ波放電したのち、TMSの導入を止め、Ar
Fレーザを5分間照射した。これを16回繰返して堆積
を行ったところ、その堆積膜中にはメチル基が殆ど含ま
れておらず硬質なシリコン酸化膜を堆積することができ
That is, a light transmitting window 31 is provided in the clay wall of the container 11, and light 33 from a light source 32 is introduced into the container 11 through the window 31 and is irradiated onto the surface of the substrate 12. . ``The same raw material gases and the first and second reaction gases as shown above were used, and an ArF excimer laser (wavelength: 193 rv) was used as the irradiating light. The deposited film was formed in the same manner as described above. After cooling the substrate to -40°C, TMS and oxygen as the first reaction gas were introduced, microwave discharge was performed for 30 seconds, and then the introduction of TMS was stopped. Ar
F laser was irradiated for 5 minutes. When this was repeated 16 times for deposition, the deposited film contained almost no methyl groups and a hard silicon oxide film could be deposited.

これは、TMSと酸素の反応生成物で基板上で液化した
ヘキサメチルジシロキサンが193naの付近に吸収が
あるため光による化学反応が進んだためと考えられる。
This is considered to be because hexamethyldisiloxane, which is a reaction product of TMS and oxygen and liquefied on the substrate, has absorption near 193 na, so that the chemical reaction due to light progressed.

第4図は第2の薄膜形成過程、即ち基板上に吸着させた
液体を酸化する工程において基板表面にイオンを照射し
基板上に吸着させた液体を光化学反応によって分解酸化
するための装置である。なお、第2図と同一部分には同
一符号を付して、その詳しい説明は省略する、この装置
が第2図の装置と異なる点は、第2の反応ガスを供給す
る代りに、基板表面にイオンを照射する機構を設けたこ
とにある。即ち、容器11の上部にはイオン源41が設
けられており、このイオン源41に導入されたガスがイ
オン化されて容器11内に導入されるものとなっている
。なお、図中42はイオン加速電源、43はバルブを示
している。
Figure 4 shows an apparatus for irradiating the substrate surface with ions and decomposing and oxidizing the liquid adsorbed on the substrate by photochemical reaction in the second thin film formation process, that is, the process of oxidizing the liquid adsorbed on the substrate. . The same parts as in Fig. 2 are given the same reference numerals, and detailed explanation thereof will be omitted.The difference between this apparatus and the apparatus in Fig. 2 is that instead of supplying the second reaction gas, the second reaction gas is supplied to the substrate surface. The reason is that a mechanism has been installed to irradiate the area with ions. That is, an ion source 41 is provided at the top of the container 11, and the gas introduced into the ion source 41 is ionized and introduced into the container 11. In addition, in the figure, 42 indicates an ion accelerating power source, and 43 indicates a valve.

原料ガスとしてTMS、第1の反応ガスとして酸素をマ
イクロ波放電した酸素原子を用いた。した、イオンとし
ては酸素をイオン源でイオン化し、加速電圧100Vに
より加速したものを用いた。堆積膜の形成は、先に示し
たのと同様にし、基板を一40℃に冷却後、TMSと第
1の反応ガスとして酸素を導入し30秒間マイクロ波放
電したのち、TMSの導入を止め、酸素イオンを5分間
照射した。これを16回繰返して堆積を行ったところ、
その堆積膜中にはメチル基が殆ど含まれておらず、した
緻密でBHFに対するエツチング速度もtoo。
TMS was used as the raw material gas, and oxygen atoms obtained by microwave-discharging oxygen were used as the first reaction gas. The ions used were those obtained by ionizing oxygen with an ion source and accelerating it with an acceleration voltage of 100V. The deposited film was formed in the same manner as described above. After cooling the substrate to -40°C, TMS and oxygen as the first reaction gas were introduced, microwave discharge was performed for 30 seconds, and then the introduction of TMS was stopped. Oxygen ions were irradiated for 5 minutes. After repeating this process 16 times and depositing,
The deposited film contains almost no methyl groups, is dense, and has a high etching rate with respect to BHF.

人/m1nと極めて遅いものであった。これは、基板温
度が低く基板上を動き回ることができなかった堆積種に
イオンの運動エネルギーが与えられ、基板上を動き回る
ことができるようになったためであると考えられる。
It was extremely slow (person/m1n). This is thought to be because the kinetic energy of the ions was given to the deposited species, which could not move around on the substrate due to the low substrate temperature, and became able to move around on the substrate.

かくして本実施例方法によれば、基板冷却と共にTMS
及び活性化した酸素ガスの供給という液体供給工程と、
活性化した酸素ガスの供給による液体の酸化1−程とを
交互に行うことにより、液体の供給量と液体の酸化時間
とを独立に且つ自由に設定することができ、膜の緻密化
や膜の十分な酸化が容易に行える。このため、基板に設
けた溝内に良質の酸化膜を埋め込むことができ、さらに
空洞等の発生を未然に防止することができる。した、バ
イアススパッタ法等とは異なり、溝の底部から薄い酸化
膜を積層していく方法であることから、アスペクト比の
大きな溝であっても確実に埋め込むことができ、超LS
Iの製造に極めて有効である。
Thus, according to the method of this embodiment, TMS is
and a liquid supply step of supplying activated oxygen gas;
By alternately carrying out the 1-stage oxidation of the liquid by supplying activated oxygen gas, the amount of liquid supplied and the oxidation time of the liquid can be independently and freely set. can be easily oxidized. Therefore, a high-quality oxide film can be buried in the grooves provided in the substrate, and furthermore, it is possible to prevent the formation of cavities and the like. Unlike other methods such as bias sputtering, this method stacks a thin oxide film from the bottom of the trench, so even trenches with a large aspect ratio can be reliably filled, making it possible to
It is extremely effective in producing I.

第5図は本発明の請求項2記載の方法を実施するための
手順を示す模式図である。この方法は、前記液体の供給
工程及び前記液体の酸化工程は第1図と同様であり、そ
の後、容器内に該容器とは別の領域で励起した第3の反
応ガスを供給する。
FIG. 5 is a schematic diagram showing the procedure for carrying out the method according to claim 2 of the present invention. In this method, the liquid supply step and the liquid oxidation step are similar to those shown in FIG. 1, and then a third reaction gas excited in a region different from the container is supplied into the container.

基体表面に光を照射する及び基体表面にイオンを照射す
るうちの少なくとも1つを行い、前記液体の酸化工程に
より酸化された酸化膜を膜を更に酸化、又は酸化されず
に残った液体を酸化する。これにより、液体は確実に酸
化され、且つ膜質の改善が可能となる。
Perform at least one of irradiating the substrate surface with light and irradiating the substrate surface with ions, and further oxidize the oxide film oxidized by the liquid oxidation step, or oxidize the liquid remaining without being oxidized. do. This ensures that the liquid is oxidized and the film quality can be improved.

さらに、上記液体の供給、液体の酸化及び膜質改善処理
を繰返すことにより、被処理基体の溝内を薄い酸化膜の
積層膜で確実に埋め込むことができ、且つ酸化膜の膜質
をより優れたものとすることができる。なお、薄膜形成
に際しては酸化膜に限らず、窒化膜その他各種の膜形成
に適用することができる。
Furthermore, by repeating the above-mentioned liquid supply, liquid oxidation, and film quality improvement treatment, it is possible to reliably fill the grooves of the substrate to be treated with a laminated film of thin oxide films, and to improve the film quality of the oxide film. It can be done. Note that when forming a thin film, the present invention is not limited to forming an oxide film, but can be applied to forming a nitride film and other various films.

第6図は第5図に示す方法を実施するための薄膜形成装
置を示す概略構成図である。なお、第2図と同一部分に
は同一符号を付して、その詳しい説明は省略する。この
装置が第2図に示す装置と異なる点は、試料台に冷却機
構と共に加熱のための加熱機構を設けたことにある。即
ち、試料台13の内部にはヒータ61が設けられており
、このヒータ61により基板12が加熱されるものとな
っている。した、62は第3の反応ガスを供給。
FIG. 6 is a schematic diagram showing a thin film forming apparatus for carrying out the method shown in FIG. 5. Note that the same parts as in FIG. 2 are given the same reference numerals, and detailed explanation thereof will be omitted. This apparatus differs from the apparatus shown in FIG. 2 in that the sample stage is provided with a heating mechanism for heating as well as a cooling mechanism. That is, a heater 61 is provided inside the sample stage 13, and the substrate 12 is heated by this heater 61. 62 supplies the third reaction gas.

停止するためのバルブである。This is a valve for stopping.

次に、第6図の装置を用いた薄膜形成方法について説明
する。原料ガスとしてTMS、第1乃至第3の反応ガス
として酸素をマイクロ波放電した酸素原子を用いた。ま
ず、容器11内を十分に排気し、基板12を一40℃に
冷却した後、バルブ21.22を開き、TMSを75C
CrA、酸素を168sccal流し、容器11内の圧
力を2 Torrとする。そして、マイクロ波放電を開
始し30秒間放電し、反応生成物を基板12上で液化し
供給した。そして、マイクロ波放電を止め、バルブ21
.22を閉じてガスの供給を止め、排気を行った。
Next, a thin film forming method using the apparatus shown in FIG. 6 will be explained. TMS was used as the raw material gas, and oxygen atoms obtained by microwave-discharging oxygen were used as the first to third reaction gases. First, the inside of the container 11 is sufficiently evacuated and the substrate 12 is cooled to -40°C. Then, the valves 21 and 22 are opened and TMS is heated to 75°C.
CrA and oxygen were flowed at 168 sccal, and the pressure inside the container 11 was set to 2 Torr. Then, microwave discharge was started for 30 seconds, and the reaction product was liquefied on the substrate 12 and supplied. Then, the microwave discharge is stopped, and the valve 21
.. 22 was closed, gas supply was stopped, and exhaust was performed.

次いで、バルブ23を開き酸素ガスを容器11内に供給
し、圧力2 Torrとして放電を開始し、基板12上
に供給した反応生成物を5分間酸化した。
Next, the valve 23 was opened to supply oxygen gas into the container 11, and discharge was started at a pressure of 2 Torr to oxidize the reaction product supplied onto the substrate 12 for 5 minutes.

次いで、バルブ23を閉じ、ヒータ61を通電加熱し基
板12の温度を300℃にした。さらに、バルブ62を
開き第3の反応ガスとして酸素を導入し、酸素雰囲気下
で5分間アニールした。
Next, the valve 23 was closed, and the heater 61 was heated to bring the temperature of the substrate 12 to 300°C. Further, the valve 62 was opened to introduce oxygen as a third reaction gas, and annealing was performed in an oxygen atmosphere for 5 minutes.

次いで、バルブ62を閉じ、再びバルブ21゜22を開
き、TMSと酸素を供給し、同様の操作を行った。これ
を16回繰返して酸化膜の堆積を行ったところ、その堆
積膜中にはメチル基は殆ど含まれておらず、完全なシリ
コン酸化膜を堆積することができた。した、この膜のB
HFに対するエツチング速度は1000人/sinとな
り、熱酸化による膜と略同様であった。
Next, the valve 62 was closed, the valves 21 and 22 were opened again, TMS and oxygen were supplied, and the same operation was performed. When this process was repeated 16 times to deposit an oxide film, the deposited film contained almost no methyl groups, and a complete silicon oxide film could be deposited. B of this film
The etching rate with respect to HF was 1000 people/sin, which was approximately the same as that of a film formed by thermal oxidation.

第7図は前記ヒータの代わりにレーザによって瞬時にア
ニールを行う装置を示す概略構成図である。この装置で
は、容器11の土壁に光導入窓71を設け、レーザ光源
72からの光73を容器11内に導光できるようになっ
ている。この装置を用いることにより、第3の薄膜形成
過程である膜質改谷処理を短時間で行うことができ、ス
ルーブツトの向上をはかることが可能となる。
FIG. 7 is a schematic configuration diagram showing an apparatus that instantaneously performs annealing using a laser instead of the heater. In this device, a light introduction window 71 is provided in the clay wall of the container 11 so that light 73 from a laser light source 72 can be guided into the container 11. By using this apparatus, film quality modification treatment, which is the third thin film formation process, can be performed in a short time, making it possible to improve throughput.

かくして本実施例方法によれば、先の実施例方法と同様
の効果が得られるのは勿論のこと、溝内に埋め込む酸化
膜の膜質をより改善できる利点がある。
Thus, the method of this embodiment not only provides the same effects as the method of the previous embodiment, but also has the advantage of further improving the quality of the oxide film buried in the trench.

なお、本発明は上述した各実施例方法に限定されるもの
ではない。例えば、前記原料ガスとしてテトラエトキシ
シラン、ヘキサメチルジシロキサン、トリメチルシラノ
ール、テトラメトキシシランのようなシリコン原子に酸
素原子が結合しているものを用いると、生成膜の組成は
より5i02に近いものとなる。この場合、原料ガス、
中に酸素原子が含まれることから、第1の反応ガスの供
給を不要とすることが可能である。
Note that the present invention is not limited to the methods of each embodiment described above. For example, if a gas in which an oxygen atom is bonded to a silicon atom, such as tetraethoxysilane, hexamethyldisiloxane, trimethylsilanol, or tetramethoxysilane, is used as the raw material gas, the composition of the produced film will be closer to 5i02. Become. In this case, the raw material gas,
Since oxygen atoms are contained therein, it is possible to eliminate the need for supplying the first reaction gas.

した、第2.第3の反応ガスとして塩素等のハロゲンガ
スを酸素と結合して用いると、メチル基等シリコン原子
に結合している原子が還元され、CH,やCH,CI等
が形成され除去されるため、膜中の炭素濃度が減少し、
生成膜の組成はより5iOzに近いものとなる。さら龜
、第3の反応ガスとして塩素等のハロゲンガスのみを用
いても同様の効果が得られる。した、第2.第3の反応
ガスとしてアルゴンガス等の不活性ガスを酸素と混合し
て用いると、高エネルギー状態のメタスティブルな励起
膜が生成され、反応が進むため、緻密で質の良い膜が形
成される。さらに、第3の反応ガスとしてアルゴンガス
等の不活性ガスのみを用いても同様の効果が得られる。
Yes, 2nd. When a halogen gas such as chlorine is used in combination with oxygen as the third reactive gas, atoms bonded to silicon atoms such as methyl groups are reduced, and CH, CH, CI, etc. are formed and removed. The carbon concentration in the film decreases,
The composition of the produced film becomes closer to 5iOz. Similar effects can also be obtained by using only a halogen gas such as chlorine as the third reaction gas. Yes, 2nd. When an inert gas such as argon gas is mixed with oxygen and used as the third reaction gas, a metastable excited film in a high energy state is generated and the reaction proceeds, resulting in the formation of a dense and high quality film. Furthermore, similar effects can be obtained by using only an inert gas such as argon gas as the third reaction gas.

した、本発明は酸化膜の形成に限るものではなく、窒化
膜、高分子膜、金属膜その他の薄膜形成に適用すること
ができる。例えば、高分子膜の形成の場合は、原料ガス
としてMMA (メタクリ酸メタル)を、反応ガスとし
てH2,N2或いは5iC1a等を用い、P、 M M
 A膜を形成することができる。墓らに、金属膜の形成
の場合、原料ガスとしてAll  (CH)) 3を1
、反応ガスとしてH2等を用いることにより、AfI膜
を形成することができる。つまり、前記原料ガス及び反
応ガスの種類は形成しようとする薄膜の組成により適宜
変更可能である。その他、本発明の要旨を逸脱しない範
囲で、種々変形して実施することができる。
However, the present invention is not limited to the formation of oxide films, but can be applied to the formation of nitride films, polymer films, metal films, and other thin films. For example, in the case of forming a polymer film, P, M M
A film can be formed. In addition, in the case of forming a metal film, All (CH)) 3 is used as a raw material gas.
By using H2 or the like as a reactive gas, an AfI film can be formed. That is, the types of the source gas and the reaction gas can be changed as appropriate depending on the composition of the thin film to be formed. In addition, various modifications can be made without departing from the gist of the present invention.

[発明の効果] 以上詳述したように本発明によれば、液相酸化法等にお
ける液体の供給量と酸化速度の制御を独立に行うことが
でき、高アスペクト比の溝であっても溝内に薄膜を良好
に埋め込むことができ、且つ膜質の向上をはかり得る一
薄膜形成方法を実現することができる。
[Effects of the Invention] As detailed above, according to the present invention, it is possible to independently control the liquid supply amount and oxidation rate in a liquid phase oxidation method, etc., and even if the groove has a high aspect ratio, the groove It is possible to realize a method for forming a thin film that can satisfactorily embed a thin film within the film and improve the film quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の請求項1記載の薄膜形成力法を実施す
るための手順を示す模式図、第2図反)第4図はそれぞ
れ第1図の方法を実施するために用いた薄膜製造装置を
示す概略構成図、第5図は本発明の請求項2記載の薄膜
形成方法を実施するための手順を示す模式図、第6図及
び第7図はそれぞれ第5図の方法を実施するために用い
た薄膜製造装置を示す概略構成図、第8図及び第9図は
それぞれ従来の問題点を説明するための断面図、第10
図は流量と堆積速度との関係を示す特性図□ である。 11・・・反応容器、12・・・Sl基板、13・・・
試料台、14.17・・・ガス導入口、15・・・ガス
排気口、16・・・マイクロ波放電管、18・・・マイ
クロ波電源、21.22.23.43.62・・・バル
ブ、32゜72・・・光源、41・・・イオン源、61
・・・ヒータ。 出願人代理人 弁理士 鈴江武彦
Figure 1 is a schematic diagram showing the procedure for implementing the thin film forming force method according to claim 1 of the present invention, Figure 2 is a schematic diagram showing the procedure for implementing the method of forming a thin film according to claim 1 of the present invention, and Figure 4 is a schematic diagram showing the thin film used to implement the method of Figure 1. FIG. 5 is a schematic diagram showing the procedure for carrying out the thin film forming method according to claim 2 of the present invention, and FIGS. 6 and 7 are diagrams for carrying out the method of FIG. 5, respectively. FIGS. 8 and 9 are a schematic configuration diagram showing the thin film manufacturing apparatus used for this purpose, and FIGS.
The figure is a characteristic diagram □ showing the relationship between flow rate and deposition rate. 11... Reaction container, 12... Sl substrate, 13...
Sample stage, 14.17...Gas inlet, 15...Gas exhaust port, 16...Microwave discharge tube, 18...Microwave power supply, 21.22.23.43.62... Bulb, 32° 72... Light source, 41... Ion source, 61
···heater. Applicant's agent Patent attorney Takehiko Suzue

Claims (3)

【特許請求の範囲】[Claims] (1)表面に溝が形成された被処理基体を反応容器内に
収容し、容器内に所定のガスを供給して被処理基体の溝
部に薄膜を形成する薄膜形成方法において、 第1番目の薄膜形成過程として、前記容器内に原料ガス
のみ又は前記容器とは別の領域で励起された第1の反応
ガスと原料ガスとの両方を供給し、前記被処理基体を原
料ガスの露点以下又は原料ガスと第1の反応ガスとの反
応生成物の露点以下に冷却し、前記被処理基体の表面に
原料ガス又は反応生成物を液化して付着させ、 第2番目の薄膜形成過程として、第1番目の薄膜形成過
程を終了した後、前記容器内に該容器とは別の領域で励
起した第2の反応ガスを供給する、基体表面に光を照射
する及び基体表面にイオンを照射するうちの少なくとも
1つを行い、前記被処理基体の表面に付着した液体から
薄膜を生成し、これら2つの薄膜形成過程を時間的に分
離し、且つ交互に繰返して前記被処理基体の溝部を薄膜
で埋め込むことを特徴とする薄膜形成方法。
(1) A thin film forming method in which a substrate to be processed with grooves formed on its surface is housed in a reaction vessel, and a predetermined gas is supplied into the vessel to form a thin film in the grooves of the substrate to be processed. As a thin film forming process, only the raw material gas or both the first reaction gas and the raw material gas excited in a region different from the container are supplied into the container, and the substrate to be treated is heated to a temperature below the dew point of the raw material gas or below. The raw material gas or the reaction product is cooled to a temperature below the dew point of the reaction product of the raw material gas and the first reaction gas, and the raw material gas or the reaction product is liquefied and deposited on the surface of the substrate to be treated. After completing the first thin film forming process, supplying a second reaction gas excited in a region different from the container into the container, irradiating the substrate surface with light, and irradiating the substrate surface with ions. forming a thin film from the liquid adhering to the surface of the substrate to be processed, separating these two thin film forming processes in time, and repeating them alternately to form a thin film in the grooves of the substrate to be processed. A thin film forming method characterized by embedding.
(2)表面に溝が形成された被処理基体を反応容器内に
収容し、容器内に所定のガスを供給して被処理基体の溝
部に薄膜を形成する薄膜形成方法において、 第1番目の薄膜形成過程として、前記容器内に原料ガス
のみ又は前記容器とは別の領域で励起された第1の反応
ガスと原料ガスとの両方を供給し、前記被処理基体を原
料ガスの露点以下又は原料ガスと第1の反応ガスとの反
応生成物の露点以下に冷却し、前記被処理基体の表面に
原料ガス又は反応生成物を液化して付着させ、 第2番目の薄膜形成過程として、第1番目の薄膜形成過
程を終了した後、前記容器内に該容器とは別の領域で励
起した第2の反応ガスを供給する、基体表面に光を照射
する及び基体表面にイオンを照射するうちの少なくとも
1つを行い、前記被処理基体の表面に付着した液体から
薄膜を生成し、第3番目の薄膜形成過程として、第2番
目の薄膜形成過程を終了した後、前記被処理基体を原料
ガス又は反応生成物の沸点以上に加熱し、前記容器内に
該容器とは別の領域で励起した第3の反応ガスを供給す
る、基体表面に光を照射する及び基体表面にイオンを照
射するうちの少なくとも1つを行い、 これら3つの薄膜形成過程を時間的に分離し、且つ順次
繰返して前記被処理基体の溝部を薄膜で埋め込むことを
特徴とする薄膜形成方法。
(2) A thin film forming method in which a substrate to be processed with grooves formed on its surface is housed in a reaction container, and a predetermined gas is supplied into the container to form a thin film in the grooves of the substrate to be processed. As a thin film forming process, only the raw material gas or both the first reaction gas and the raw material gas excited in a region different from the container are supplied into the container, and the substrate to be treated is heated to a temperature below the dew point of the raw material gas or below. The raw material gas or the reaction product is cooled to a temperature below the dew point of the reaction product of the raw material gas and the first reaction gas, and the raw material gas or the reaction product is liquefied and deposited on the surface of the substrate to be treated. After completing the first thin film forming process, supplying a second reaction gas excited in a region different from the container into the container, irradiating the substrate surface with light, and irradiating the substrate surface with ions. At least one of the following is performed to generate a thin film from the liquid attached to the surface of the substrate to be processed, and as a third thin film forming process, after completing the second thin film forming process, the substrate to be processed is used as a raw material. Heating the gas or reaction product above the boiling point, supplying a third reaction gas excited in a region different from the container into the container, irradiating the substrate surface with light, and irradiating the substrate surface with ions. A method for forming a thin film, comprising performing at least one of the following steps, temporally separating these three thin film forming processes, and sequentially repeating the steps to fill the groove portion of the substrate to be processed with the thin film.
(3)前記原料ガスとしてテトラメチルシラン、テトラ
エトキシシラン、ヘキサメチルジシロキサン又はトリメ
チルシラノール、テトラメトキシシランを用い、前記反
応ガスとして酸素、水素、窒素、或いは塩素や弗素等の
ハロゲンガスを含むガス、若しくはアルゴン等の不活性
ガス、の1つ又はこれらの混合ガスを用いたことを特徴
とする請求項1又は2記載の薄膜形成方法。
(3) Tetramethylsilane, tetraethoxysilane, hexamethyldisiloxane, trimethylsilanol, or tetramethoxysilane is used as the raw material gas, and the reaction gas is a gas containing oxygen, hydrogen, nitrogen, or a halogen gas such as chlorine or fluorine. The thin film forming method according to claim 1 or 2, characterized in that one or a mixture of these gases is used: or an inert gas such as argon.
JP63023007A 1988-02-03 1988-02-03 Thin film formation method Expired - Lifetime JP2763100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63023007A JP2763100B2 (en) 1988-02-03 1988-02-03 Thin film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63023007A JP2763100B2 (en) 1988-02-03 1988-02-03 Thin film formation method

Publications (2)

Publication Number Publication Date
JPH01198033A true JPH01198033A (en) 1989-08-09
JP2763100B2 JP2763100B2 (en) 1998-06-11

Family

ID=12098438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63023007A Expired - Lifetime JP2763100B2 (en) 1988-02-03 1988-02-03 Thin film formation method

Country Status (1)

Country Link
JP (1) JP2763100B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299412A (en) * 1992-04-23 1993-11-12 Kojundo Chem Lab Co Ltd Manufacture of silicon oxide film in semiconductor device
US5302555A (en) * 1991-06-10 1994-04-12 At&T Bell Laboratories Anisotropic deposition of dielectrics
JP2009539269A (en) * 2006-05-30 2009-11-12 アプライド マテリアルズ インコーポレイテッド Process chamber for dielectric gap filling
JP2010103495A (en) * 2008-09-29 2010-05-06 Adeka Corp Semiconductor device, and apparatus and method for manufacturing the same
JP2011504651A (en) * 2007-10-22 2011-02-10 アプライド マテリアルズ インコーポレイテッド Method for forming a silicon oxide layer on a substrate
JP2012069998A (en) * 2005-02-17 2012-04-05 Hitachi Kokusai Electric Inc Substrate processor and method of manufacturing semiconductor device
JP2013065885A (en) * 2007-10-22 2013-04-11 Applied Materials Inc Method for forming dielectric layer within trench
US8889566B2 (en) 2012-09-11 2014-11-18 Applied Materials, Inc. Low cost flowable dielectric films
US8980382B2 (en) 2009-12-02 2015-03-17 Applied Materials, Inc. Oxygen-doping for non-carbon radical-component CVD films
US9018108B2 (en) 2013-01-25 2015-04-28 Applied Materials, Inc. Low shrinkage dielectric films
US9285168B2 (en) 2010-10-05 2016-03-15 Applied Materials, Inc. Module for ozone cure and post-cure moisture treatment
US9404178B2 (en) 2011-07-15 2016-08-02 Applied Materials, Inc. Surface treatment and deposition for reduced outgassing
US9412581B2 (en) 2014-07-16 2016-08-09 Applied Materials, Inc. Low-K dielectric gapfill by flowable deposition
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207121A (en) * 1987-02-23 1988-08-26 Nikon Corp Method and apparatus for manufacturing thin film by photo-cvd
JPH01179410A (en) * 1988-01-07 1989-07-17 Nikon Corp Method and apparatus for forming thin film by cvd

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207121A (en) * 1987-02-23 1988-08-26 Nikon Corp Method and apparatus for manufacturing thin film by photo-cvd
JPH01179410A (en) * 1988-01-07 1989-07-17 Nikon Corp Method and apparatus for forming thin film by cvd

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302555A (en) * 1991-06-10 1994-04-12 At&T Bell Laboratories Anisotropic deposition of dielectrics
JPH05299412A (en) * 1992-04-23 1993-11-12 Kojundo Chem Lab Co Ltd Manufacture of silicon oxide film in semiconductor device
JP2012069998A (en) * 2005-02-17 2012-04-05 Hitachi Kokusai Electric Inc Substrate processor and method of manufacturing semiconductor device
JP2009539269A (en) * 2006-05-30 2009-11-12 アプライド マテリアルズ インコーポレイテッド Process chamber for dielectric gap filling
JP2014013905A (en) * 2007-10-22 2014-01-23 Applied Materials Inc Methods for forming silicon oxide layer over substrate
JP2011504651A (en) * 2007-10-22 2011-02-10 アプライド マテリアルズ インコーポレイテッド Method for forming a silicon oxide layer on a substrate
JP2013065885A (en) * 2007-10-22 2013-04-11 Applied Materials Inc Method for forming dielectric layer within trench
JP2010103495A (en) * 2008-09-29 2010-05-06 Adeka Corp Semiconductor device, and apparatus and method for manufacturing the same
US8980382B2 (en) 2009-12-02 2015-03-17 Applied Materials, Inc. Oxygen-doping for non-carbon radical-component CVD films
US9285168B2 (en) 2010-10-05 2016-03-15 Applied Materials, Inc. Module for ozone cure and post-cure moisture treatment
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US9404178B2 (en) 2011-07-15 2016-08-02 Applied Materials, Inc. Surface treatment and deposition for reduced outgassing
US8889566B2 (en) 2012-09-11 2014-11-18 Applied Materials, Inc. Low cost flowable dielectric films
US9018108B2 (en) 2013-01-25 2015-04-28 Applied Materials, Inc. Low shrinkage dielectric films
US9412581B2 (en) 2014-07-16 2016-08-09 Applied Materials, Inc. Low-K dielectric gapfill by flowable deposition

Also Published As

Publication number Publication date
JP2763100B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
US9362107B2 (en) Flowable low-k dielectric gapfill treatment
US7101815B2 (en) Method for improving thickness uniformity of deposited ozone-TEOS silicate glass layers
CN113249706A (en) Methods for depositing gap fill fluids and related systems and apparatus
US6905543B1 (en) Methods of forming tungsten nucleation layer
US7259079B2 (en) Methods for filling high aspect ratio trenches in semiconductor layers
JPH01198033A (en) Formation of thin film
JPH05275392A (en) Etching of sio2 film
JP4743229B2 (en) Method for forming semiconductor device using neutral particles
JPH0740569B2 (en) ECR plasma deposition method
TW200816310A (en) Method to improve the step coverage and pattern loading for dielectric films
JPH04120732A (en) Solid element and its manufacture
TW201017753A (en) Prevention and reduction of solvent and solution penetration into porous dielectrics using a thin barrier layer
Gusev et al. Nitrogen engineering of ultrathin oxynitrides by a thermal NO/O 2/NO process
US20180130669A1 (en) Self-limiting cyclic etch method for carbon-based films
EP1035568B1 (en) Method of plasma processing
CN116324021A (en) Multilayer deposition and processing of silicon nitride films
WO2015116350A1 (en) Low temperature cure modulus enhancement
TWI706438B (en) Uv-assisted material injection into porous films
JP2645215B2 (en) Thin film forming equipment
TW417172B (en) Method for forming film and manufacture of semiconductor device
JP2633551B2 (en) Thin film formation method
JP3723085B2 (en) Semiconductor device manufacturing method and manufacturing apparatus
KR100802381B1 (en) Method of depositing SiO2 insulator film filling nano gap using APCVD apparatus
JP2695778B2 (en) Thin film formation method
JP2637110B2 (en) Thin film formation method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term