JPS6135892B2 - - Google Patents

Info

Publication number
JPS6135892B2
JPS6135892B2 JP53032855A JP3285578A JPS6135892B2 JP S6135892 B2 JPS6135892 B2 JP S6135892B2 JP 53032855 A JP53032855 A JP 53032855A JP 3285578 A JP3285578 A JP 3285578A JP S6135892 B2 JPS6135892 B2 JP S6135892B2
Authority
JP
Japan
Prior art keywords
bromine
liquid
exhaust gas
substances
aqueous liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53032855A
Other languages
Japanese (ja)
Other versions
JPS54125171A (en
Inventor
Kimihiko Sato
Shigeyoshi Kobayashi
Susumu Yama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP3285578A priority Critical patent/JPS54125171A/en
Publication of JPS54125171A publication Critical patent/JPS54125171A/en
Publication of JPS6135892B2 publication Critical patent/JPS6135892B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 本発明は有臭物質を含む排ガス又は排液の脱臭
方法に係るものである。 近年例えば屎尿、下水処理場、食品、紙パルプ
工場、養鶏場、ごみ処理場、石油精製、石油化学
工場、鋳物工場、各種化学工場等で発生する有臭
物質を含む排ガスや排液は環境問題の見地からそ
のまゝ放出することは許されない。 従来、この種の有臭物質を処理する手段として
は、直接燃焼法、活性炭吸着法、薬剤による吸収
法が提案されている。 しかしながら、直接燃焼法は処理効率が高く、
被処理物質の種類が多い利点がある反面、設備と
運転経費が高く、特に大量の処理を行なう場合に
は経済性の面で有利でない。 又、活性炭吸着法は処理し得る有臭物質の種類
も限られており、吸収容量も比較的小さく、これ
も前記方法と同様、特に大量の処理には経済性の
面で有利でない。 薬剤を用いる吸収法としては、排ガス又は排液
中の有臭物質と反応して無臭化する薬液と接触せ
しめる反応吸収法が知られているが、未だ効率よ
く安価に処理出来る方法とは必ずしも言い難く、
又処理後の液による二次公害を引き起す虞れもあ
る。 本発明者は、これら従来法の欠点を除去し、効
率よく脱臭処理し得る方法を見出すべく種々研
究、検討した結果、被酸化性の有臭物質を含む排
ガス又は排液を、有効臭素及び水溶性塩素物質を
含む水性液と接触せしめて排ガス又は排液中の有
臭物質を分解せしめ、一方上記接触後の水性液を
電解し、かくして発生する次亜塩素酸の作用によ
り該水性液を、有効臭素含有水性液として賦活再
生し、循環使用する方法を既に特願昭52−7751号
として提案した。 しかしながら、本発明者のその後の検討による
と、被処理排ガス中に炭酸ガスが、又は被処理排
液中に炭酸根が比較的多量に含まれている場合に
は、その含有量の増大につれて有効臭素含有水性
液を賦活再生する為に該液中に含まれる塩素物質
を電解して発生せしめる次亜塩素酸の電流効率が
著しく低下することが認められた。 本発明者は、かゝる点を改善することを目的と
して種々検討の結果、前記電解に先立ち被電解液
中に塩酸を添加して、液中の炭酸根を低減せしめ
ることにより、前記目的を達成し得ることを見出
した。 かくして本発明は、被酸化性の有臭物質と、炭
酸ガス或は炭酸根を含む排ガス又は排液を、有効
臭素及び水溶性塩素物質を含む水性液と接触せし
めて排ガス又は排液中の有臭物質を分解せしめ、
得られた接触後の水性液の少なくとも一部に塩酸
を添加して溶存する炭酸根の量を制御しつつ、一
方上記接触後の水性液を電解し、かくして発生す
る次亜塩素酸の作用により該水性液を有効臭素含
有水性液として賦活再生し、循環使用する方法を
提供するにある。 本発明において処理し得る排ガス又は排液中に
含まれる有臭物質としては、一般に過マンガン酸
カリウムの酸性液中において酸化可能な被酸化性
の所謂悪臭指定の有臭物質が広く包含される。そ
の代表例として、硫化水素、メチルメルカプタ
ン、硫化メチル等の硫黄化合物、アンモニア、メ
チルアミン、トリメチルアミン等の窒素化合物、
ブチレン、ブタジエン、イソプレン、スチレン、
トルエン、フエノール等の炭化水素、ホルムアル
デヒド、アクロレイン等のアルデヒド類等が挙げ
られる。これらのうち、本発明では特に硫化水
素、メルカプタン類、硫化メチル、アンモニア、
アミン類の脱臭に効果的である。 排ガス又は排液中のこれら被酸化性の有臭物質
の含有量は特に制限されるものではないが、本発
明の処理法は著しく効率が大なので特に有害、有
臭成分の含有量が数ppmと云う通常処理設備費
が大となる為処理困難な稀薄な排ガスに対して適
用した場合有利である。 かゝる排ガスの例として屎尿処理場、下水処理
物、食品紙パルプ工場、養鶏、ごみ処理場、石油
精製、石油化学工場、シエルモールド法等鋳物工
場等の排ガスや排液が挙げられ、これらには通常
比較的多量の炭酸ガス或は炭酸根も含まれてい
る。 本発明において用いられる有効臭素とは、水性
液中で元素状の臭素を発生する物質を意味し、例
えば分子状臭素、塩化臭素の酸素酸又はその塩が
挙げられる。なかでも、次亜臭素酸のアルカリ金
属塩、特にナトリウム塩は、性能上又は取扱い上
更には後述する液の賦活再生の点で最も好まし
い。 有効臭素を含む水性媒体としては、好ましくは
水であるが、場合によつては処理すべき水性の排
液それ自体であつてもよく、又海水も使用出来、
これは更に有効臭素を含む水性液そのものとして
使用することも出来る。 水性液中の有効臭素の含有量は、被処理排ガス
又は排液中の有臭物質の量によつて厳密には規定
されるが、一般に10mg/以上、好ましくは
100mg/程度が適当である。 有効臭素含有水性液を被処理排ガス又は排液と
接触せしめる際の該液のPHは酸性よりもアルカリ
性の方が処理効率が高くなるので好ましく、特に
PH10以上が好ましい。 そして、本発明においては処理液中に有効臭素
に加えて水溶性塩素物質を共存させておく。 これは、処理液中に水溶性塩素物質を共存させ
ることにより、排ガス又は排液と接触後の処理液
を電解することにより、例えば水溶性塩素物質と
して食塩を共存させた場合には、次亜塩素酸ソー
ダが生成し、これが有効臭素の変生物である臭化
ソーダ、臭化水素酸等を有効臭素として賦活再生
し得るからである。 しかしながら、排ガス又は排液と接触後の処理
液中に炭酸根が多量に存在すると、これをそのま
ま電解した場合には、有効臭素への賦活再生作用
を有さないClO3 -が多量に生成する。 本発明においては、かゝる現象を極力防止する
為、炭酸根を含む前記処理液の少なくとも一部に
塩酸を添加することにより、溶存炭酸根の量を制
御せしめる。 加える塩酸の量は、処理液中に含まれる炭酸根
の量及び、これの溶存許容量によつて厳密には規
定されるが、一般に処理液中のPHが6〜1程度に
なるように添加するのが適当である。 PHが6より高い場合には、脱炭酸の効率が悪
く、逆にPHが1より低い場合には単に塩酸の消費
量が増大するのみで最早やそれ以上の効果は期待
出来ず、何れも好ましくない。 そして、PHが4〜1を採用する場合には、脱炭
酸効果を十分期待出来、実用的なので特に好まし
い。 本発明において電解に供される水溶性塩素物質
としては、例えば食塩の他、塩素、アルカリ金属
又はアルカリ土類金属の塩化物、塩素の酸素酸塩
等が使用出来る。 そして、水溶性塩素物質としては、前述の如き
物質を直接添加して用いることも出来るが、前述
の如く処理液は循環使用するので、炭酸根を低減
せしめる目的で塩酸を添加してPHを低くして電解
を行なつた後、被処理排ガス又は排液との接触に
際し、前述の如く吸収液を好ましいPH迄に上げる
為に苛性ソーダ等のアルカリを加えることにより
食塩等の塩素物質を生成せしめ、これを用いるの
がより現実的である。 処理液中の水溶性塩素物質の濃度は、その中に
含まれる有効臭素とほぼ等モル量であることが望
ましい。 上記処理液の電解は、既知の手段を採用出来、
通常無隔膜で行なわれる。 電解槽の陽極としては、例えば白金族金属又は
その酸化物をチタンやタンタル母材に被覆したも
の、陰極としては軟鋼又は不錆鋼が採用される。 電解条件は、被電解液の種類及び組成等によつ
て厳密には規定されるが、通常、槽電圧3〜
7V、電流密度10〜30A/dm2を採用し得る。 有臭物質と炭酸ガス又は炭酸根を含む排ガス又
は排液と、有効臭素を含む処理液との接触手段に
は特に制限はなく。例えば多孔板塔、充填塔、棚
段塔、スプレー塔、ベンチユリースクラバー、気
泡塔等を適宜採用出来、被処理物が排ガスの場合
には気液の接触は向流的でも並流的でも差し支え
ない。 実際本発明方法を実施する手段の一態様を有臭
物質及び炭酸ガスを含む排ガスを例にとつて以下
に概説する。 有臭物質及び炭酸ガスを含む排ガスは、多孔板
塔適宜な反応塔下部から導入し、一方塔上部から
は有効臭素及び水溶性塩素物質を含む水性液が導
入され、前記排ガスと向流的に接触される。塔底
部に至つた吸収液の大部分は、再び塔上部へ循環
されるが、吸収液の一部は系外に抜き出され、そ
の大部分は水溶性塩素物質を電解する電解槽へ送
られ、電解により生成した次亜塩素酸(塩)によ
り、有効臭素を含む水性液として賦活再生され
る。 他方系外に抜き出された吸収液の一部は、これ
にPH6〜1となる様に塩酸が添加され、溶存炭酸
根の除去がなされる。こゝでの炭酸根の除去割合
は、前述の電解において生成せしめる次亜塩素酸
(塩)の量をどの程度にするかによつて決められ
る。 脱炭酸された液は先の反応塔に戻され、該液或
は反応塔内に所望によりPH調節用のアルカリが添
加される。 かくして有効臭素及び水溶性塩素物質を含む水
性液中の炭酸根の溶存量は所望値に保つことが可
能となる。 尚、反応塔から系外に抜き出された吸収液は、
これの全量に塩酸を添加し、溶存炭酸根の除去
後、その一部或は全部を電解することも出来る
し、或は塔底部に至つた吸収液の全量が一旦系外
に抜き出し、前述の処理を実施することも可能で
あるが、これらの場合には被処理排ガス或は排液
と接触処理せしめる際、PHを高める必要があると
きはこの為のアルカリ添加量が増大するのでコス
ト的にはあまり有利でない。 次に本発明を実施例により具体的に説明する。 実施例 1 メチルメルカプタン0.25ppm、ジメチルサルフ
アイド0.15ppm、硫化メチル0.03ppm、硫化水素
0.6ppm、炭酸ガス300ppmを含む排ガスを塔径20
cmφ、吸収段数3段の多孔板塔に300Nm3/時の
割合で塔下底から送入した。吸収液は循環タンク
からポンプを通して0.9m3/時の割合で塔上部か
ら供給した。 吸収液は10重量%のNaClと2g/のNaBr、
10g/の炭酸根を含んでおり、該液は苛性ソー
ダによりPH11に調整した。 吸収によつて還元されたNaBrを次亜臭素酸ソ
ーダに再生する為、吸収液の部を1m3/時の割合
でポンプを経て電解槽に送入した。電解槽はチタ
ンに白金メツキした陽極と、鉄陰極を用い、電極
面積は2dm2である。そして、電圧3.6V、電流密
度12A/dm2で無隔膜電解を行なつた結果、吸収
液中の次亜臭素酸ソーダの濃度は500mg/に
保たれた。 他方、吸収液中の炭酸根濃度を一定に保つ為、
前記循環タンクから吸収液の一部を0.7/時の
割合で抜き出し、これに塩酸を添加してPH3に保
ち、脱炭酸を行なつた後、これを循環タンクに戻
した。 かくして多孔板塔で処理された定常状態での塔
出口排ガス中の有臭成分濃度は、メチルメルカプ
タン0.002ppm、ジメチルサルフアイド
0.007ppm、硫化メチル0.006ppm、硫化水素
0.01ppmであつた。 尚、比較の為本実施例中、塩酸による脱炭酸を
省いた処、吸収液中の炭酸根が次第に増加して電
解による次亜塩素酸ソーダの電流効率が低下し、
約300時間後の電流効率は初期の1/5以下となつ
た。この為電圧5V、電流密度35A/dm2で電解を
行なつても吸収液中の次亜臭素酸ソーダの濃度は
500mg/に達せず、炭酸根濃度は30g/と
なつた。 このときの塔出口排ガス中の有臭成分濃度はメ
チルメルカプタン0.01ppm、ジメチルサルフアイ
ド0.04ppm、硫化メチル0.025ppm、硫化水素
0.05ppmであつた。 実施例 2〜4 次表の如き有臭成分及び炭酸ガスを含む排ガス
を実施例1と同様な多孔板塔に同様に供給した。 又、吸収液は循環タンクからポンプを通して
0.9m3/時の割合で塔上部から供給した。 吸収液の組成は表の如くであり、該液は苛性ソ
ーダによりPH11に調整した。 吸収によつて還元されたNaBrを次亜臭素酸ソ
ーダに再生する為、吸収液の一部を1m3/時の割
合で実施例1と同様な電解槽に送り表の如き条件
で電解した結果、NaBrOの濃度は500mg/に
保たれた。 他方、吸収液中の炭酸根濃度を一定に保つ為、
前記循環タンクから吸収液の一部を夫々表の如き
割合で抜き出し、それに塩酸を添加して夫々のPH
に保ち、脱炭酸を行なつた後こを循環タンクに戻
した。 かくして多孔板塔で処理された定常状態での塔
出口排ガス中の有臭成分濃度は夫々表の如くであ
る。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for deodorizing exhaust gas or waste fluid containing odorous substances. In recent years, exhaust gases and liquids containing odorous substances generated from human waste, sewage treatment plants, food, pulp and paper factories, poultry farms, garbage treatment plants, oil refineries, petrochemical plants, foundries, various chemical plants, etc. have become an environmental problem. From this point of view, it is not permissible to release it as is. Conventionally, direct combustion methods, activated carbon adsorption methods, and chemical absorption methods have been proposed as means for treating this type of odorous substances. However, the direct combustion method has high processing efficiency;
Although it has the advantage of having a large variety of substances to be treated, it requires high equipment and operating costs, so it is not economically advantageous, especially when processing a large amount. In addition, the activated carbon adsorption method is limited in the types of odorous substances that can be treated, and its absorption capacity is relatively small, which, like the above-mentioned method, is not advantageous from an economic point of view, especially when treating large quantities. As an absorption method using chemicals, a reaction absorption method is known, in which odorous substances in exhaust gas or liquid are brought into contact with a chemical solution that reacts with them to make them odorless, but it is still not necessarily an efficient and inexpensive treatment method. difficult,
There is also the possibility that secondary pollution may be caused by the liquid after treatment. As a result of various research and examinations in order to eliminate the drawbacks of these conventional methods and find a method that can efficiently deodorize, the present inventor has determined that exhaust gas or waste fluid containing oxidizable odorous substances can be treated with effective bromine and aqueous soluble The odorous substances in the exhaust gas or waste liquid are decomposed by contacting with an aqueous liquid containing a chlorinated substance, and the aqueous liquid after the contact is electrolyzed, and the aqueous liquid is transformed by the action of the hypochlorous acid thus generated. A method of activating and regenerating an effective bromine-containing aqueous liquid and recycling it has already been proposed in Japanese Patent Application No. 7751/1983. However, according to the inventor's subsequent studies, when the waste gas to be treated contains carbon dioxide gas or the waste liquid to be treated contains a relatively large amount of carbon dioxide, the effect becomes more effective as the content increases. It was found that the current efficiency of hypochlorous acid, which is generated by electrolyzing chlorine substances contained in a bromine-containing aqueous liquid to activate and regenerate the liquid, was significantly reduced. As a result of various studies aimed at improving these points, the present inventors added hydrochloric acid to the electrolyte solution prior to the electrolysis to reduce carbonate groups in the solution, thereby achieving the above objective. I have discovered what can be achieved. Thus, the present invention is capable of removing oxidizable odorous substances and exhaust gas or waste liquid containing carbon dioxide gas or carbon dioxide radicals by contacting them with an aqueous liquid containing effective bromine and water-soluble chlorine substances. Decomposes odor substances,
While controlling the amount of dissolved carbonate radicals by adding hydrochloric acid to at least a portion of the resulting aqueous solution after contact, the aqueous solution after contact is electrolyzed, and by the action of the hypochlorous acid thus generated. It is an object of the present invention to provide a method for activating and regenerating the aqueous liquid as an effective bromine-containing aqueous liquid and recycling it. The odorous substances contained in the exhaust gas or waste liquid that can be treated in the present invention include a wide range of oxidizable odorous substances that can be oxidized in an acidic solution of potassium permanganate and are designated as malodorous substances. Typical examples include sulfur compounds such as hydrogen sulfide, methyl mercaptan, and methyl sulfide; nitrogen compounds such as ammonia, methylamine, and trimethylamine;
Butylene, butadiene, isoprene, styrene,
Examples include hydrocarbons such as toluene and phenol, and aldehydes such as formaldehyde and acrolein. Among these, in the present invention, hydrogen sulfide, mercaptans, methyl sulfide, ammonia,
Effective in deodorizing amines. Although the content of these oxidizable and odorous substances in the exhaust gas or waste liquid is not particularly limited, the treatment method of the present invention is extremely efficient, so that the content of particularly harmful and odorous components can be reduced to several ppm. This method is advantageous when applied to dilute exhaust gas that is difficult to process because the cost of normal treatment equipment is high. Examples of such exhaust gas include exhaust gas and liquid from human waste treatment plants, sewage treatment, food paper and pulp factories, poultry farms, garbage treatment plants, oil refineries, petrochemical factories, and foundries such as shell molding factories. usually also contain relatively large amounts of carbon dioxide gas or carbonate radicals. The effective bromine used in the present invention means a substance that generates elemental bromine in an aqueous liquid, and includes, for example, molecular bromine, oxygen acid of bromine chloride, or a salt thereof. Among these, alkali metal salts of hypobromous acid, particularly sodium salts, are most preferred in terms of performance and handling, as well as in terms of activation and regeneration of the liquid, which will be described later. The aqueous medium containing effective bromine is preferably water, but in some cases it may also be the aqueous waste liquid itself to be treated, and seawater can also be used.
It can also be used as an aqueous liquid containing effective bromine. The effective bromine content in the aqueous liquid is strictly determined by the amount of odorous substances in the exhaust gas or liquid to be treated, but is generally 10 mg/or more, preferably
Approximately 100 mg/approx. When the effective bromine-containing aqueous liquid is brought into contact with the exhaust gas or liquid to be treated, it is preferable that the pH of the liquid be alkaline than acidic because the treatment efficiency will be higher.
A pH of 10 or higher is preferable. In the present invention, a water-soluble chlorine substance is allowed to coexist in the treatment solution in addition to effective bromine. This can be achieved by coexisting a water-soluble chlorine substance in the treatment liquid and by electrolyzing the treatment liquid after contact with exhaust gas or wastewater. For example, if salt is coexisting as a water-soluble chlorine substance, This is because sodium chlorate is generated, and this can activate and regenerate modified products of available bromine, such as sodium bromide and hydrobromic acid, as available bromine. However, if a large amount of carbonate radicals is present in the treated liquid after contact with exhaust gas or waste liquid, if this is electrolyzed as is, a large amount of ClO 3 - , which does not have the activation and regeneration effect to effective bromine, will be generated. . In the present invention, in order to prevent such a phenomenon as much as possible, the amount of dissolved carbonate radicals is controlled by adding hydrochloric acid to at least a portion of the treatment solution containing carbonate radicals. The amount of hydrochloric acid to be added is strictly determined by the amount of carbonate radicals contained in the treatment solution and the allowable amount of carbonate radicals to be dissolved, but it is generally added so that the pH of the treatment solution is about 6 to 1. It is appropriate to do so. If the pH is higher than 6, the efficiency of decarboxylation is poor, and if the pH is lower than 1, the amount of hydrochloric acid consumed will simply increase, and no further effect can be expected, so both are preferable. do not have. When the pH is between 4 and 1, a sufficient decarboxylation effect can be expected and it is practical, so it is particularly preferable. As the water-soluble chlorine substance to be subjected to electrolysis in the present invention, for example, in addition to common salt, chlorine, chlorides of alkali metals or alkaline earth metals, oxyacidates of chlorine, etc. can be used. As the water-soluble chlorine substance, the substances mentioned above can be directly added and used, but as mentioned above, since the treatment liquid is recycled, hydrochloric acid is added for the purpose of reducing carbonate groups to lower the pH. After electrolysis, when it comes into contact with the waste gas or liquid to be treated, alkali such as caustic soda is added to raise the pH of the absorption liquid to a desired level, as described above, to generate chlorine substances such as common salt. It is more realistic to use this. It is desirable that the concentration of the water-soluble chlorine substance in the treatment solution is approximately equimolar to the available bromine contained therein. Known means can be used for electrolysis of the above treatment solution,
It is usually performed without a septum. For the anode of the electrolytic cell, for example, platinum group metal or its oxide coated on a titanium or tantalum base material is used, and for the cathode, mild steel or rust-free steel is used. Electrolysis conditions are strictly determined by the type and composition of the electrolyte, but usually the cell voltage is 3~
7V and a current density of 10-30A/ dm2 can be adopted. There is no particular restriction on the means for contacting the exhaust gas or liquid containing the odorous substance and carbon dioxide gas or carbonate radical with the treatment liquid containing effective bromine. For example, perforated plate towers, packed towers, tray towers, spray towers, ventilate scrubbers, bubble towers, etc. can be used as appropriate, and if the object to be treated is exhaust gas, the gas-liquid contact can be carried out countercurrently or cocurrently. do not have. An embodiment of the means for carrying out the method of the present invention will be outlined below, taking exhaust gas containing odorous substances and carbon dioxide as an example. Exhaust gas containing odorous substances and carbon dioxide gas is introduced from the lower part of the perforated plate column and a suitable reaction column, while an aqueous liquid containing available bromine and water-soluble chlorine substances is introduced from the upper part of the column, countercurrently with the exhaust gas. be contacted. Most of the absorption liquid that has reached the bottom of the column is circulated back to the top of the column, but a portion of the absorption liquid is extracted from the system, and the majority of it is sent to an electrolytic cell that electrolyzes water-soluble chlorine substances. It is activated and regenerated as an aqueous liquid containing effective bromine using hypochlorous acid (salt) produced by electrolysis. On the other hand, hydrochloric acid is added to a portion of the absorption liquid extracted from the system to adjust the pH to 6 to 1 to remove dissolved carbonate radicals. The rate of carbonate radical removal here is determined by the amount of hypochlorous acid (salt) produced in the above-mentioned electrolysis. The decarboxylated liquid is returned to the previous reaction tower, and an alkali for pH adjustment is added to the liquid or the reaction tower, if desired. In this way, the amount of carbonate radicals dissolved in the aqueous liquid containing available bromine and water-soluble chlorine substances can be maintained at a desired value. In addition, the absorption liquid extracted from the reaction tower to the outside of the system is
It is also possible to add hydrochloric acid to the entire amount and electrolyze some or all of it after removing dissolved carbonate radicals, or the entire amount of the absorption liquid that has reached the bottom of the column can be extracted out of the system and then It is also possible to carry out treatment, but in these cases, when it is necessary to increase the pH when bringing it into contact with the exhaust gas or liquid to be treated, the amount of alkali added for this purpose increases, so it is costly. is not very advantageous. Next, the present invention will be specifically explained using examples. Example 1 Methyl mercaptan 0.25ppm, dimethyl sulfide 0.15ppm, methyl sulfide 0.03ppm, hydrogen sulfide
Exhaust gas containing 0.6 ppm and 300 ppm of carbon dioxide is collected in a column with a diameter of 20 mm.
It was fed from the bottom of the tower at a rate of 300 Nm 3 /hour into a perforated plate tower with cmφ and three absorption stages. The absorption liquid was supplied from the upper part of the column from the circulation tank through a pump at a rate of 0.9 m 3 /hour. The absorption liquid is 10% by weight NaCl and 2g/NaBr,
It contained 10g/carbonate radical, and the pH of the solution was adjusted to 11 with caustic soda. In order to regenerate the NaBr reduced by absorption into sodium hypobromite, a portion of the absorbed liquid was fed into the electrolytic cell via a pump at a rate of 1 m 3 /hour. The electrolytic cell uses a platinum-plated titanium anode and an iron cathode, and the electrode area is 2 dm 2 . Then, membraneless electrolysis was performed at a voltage of 3.6 V and a current density of 12 A/dm 2 , and as a result, the concentration of sodium hypobromite in the absorption liquid was maintained at 500 mg/dm. On the other hand, in order to keep the concentration of carbonate groups in the absorption liquid constant,
A portion of the absorption liquid was withdrawn from the circulation tank at a rate of 0.7/hour, hydrochloric acid was added thereto to maintain the pH at 3, decarboxylation was performed, and then this was returned to the circulation tank. Thus, the concentrations of odorous components in the flue gas at the outlet of the tower in a steady state treated in the perforated plate tower are 0.002 ppm of methyl mercaptan and 0.002 ppm of dimethyl sulfide.
0.007ppm, methyl sulfide 0.006ppm, hydrogen sulfide
It was 0.01ppm. For comparison, in this example, when decarboxylation with hydrochloric acid was omitted, the carbonate radicals in the absorbent gradually increased and the current efficiency of sodium hypochlorite by electrolysis decreased.
The current efficiency after about 300 hours was less than 1/5 of the initial value. Therefore, even if electrolysis is performed at a voltage of 5V and a current density of 35A/ dm2 , the concentration of sodium hypobromite in the absorption liquid will be
It did not reach 500 mg/, and the carbonate concentration was 30 g/. At this time, the concentration of odorous components in the exhaust gas at the tower outlet was 0.01 ppm of methyl mercaptan, 0.04 ppm of dimethyl sulfide, 0.025 ppm of methyl sulfide, and 0.02 ppm of hydrogen sulfide.
It was 0.05ppm. Examples 2 to 4 Exhaust gas containing odorous components and carbon dioxide gas as shown in the following table was similarly supplied to the perforated plate column as in Example 1. In addition, the absorption liquid is passed through the pump from the circulation tank.
It was supplied from the top of the column at a rate of 0.9 m 3 /h. The composition of the absorption liquid is as shown in the table, and the pH of the liquid was adjusted to 11 with caustic soda. In order to regenerate NaBr reduced by absorption into sodium hypobromite, a portion of the absorbed liquid was sent to the same electrolytic cell as in Example 1 at a rate of 1 m 3 /hour and electrolyzed under the conditions shown in the table. , the concentration of NaBrO was kept at 500 mg/. On the other hand, in order to keep the concentration of carbonate groups in the absorption liquid constant,
A portion of the absorption liquid is extracted from the circulation tank in the proportion shown in the table, and hydrochloric acid is added to it to adjust the pH of each liquid.
After decarboxylation, the mixture was returned to the circulation tank. The concentrations of odorous components in the exhaust gas at the outlet of the tower in a steady state treated in the perforated plate tower are as shown in the table. 【table】

Claims (1)

【特許請求の範囲】 1 被酸化性有臭物質及び、炭酸根を含む排ガス
又は排液を、有効臭素及び水溶性塩素物質を含む
水性液と接触せしめて排ガス又は排液中の有臭物
質を分解せしめ、得られた接触後の水性液の少な
くとも一部に塩酸を添加して溶存する炭酸根の量
を制御しつつ、一方上記接触後の水性液を電解
し、かくして発生する次亜塩素酸の作用により該
水性液を有効臭素含有水性液として賦活再生し、
循環使用することを特徴とする排ガス又は排液の
脱臭方法。 2 接触後の水性液の少なくとも一部に、これの
PHが6〜1となるよう塩酸が添加される特許請求
の範囲1の方法。 3 被酸化性有臭物質及び、炭酸ガス或は炭酸根
を含む排ガス又は排液と、有効臭素及び水溶性塩
素物質を含む水性液との接触は、PH10以上で実施
する特許請求の範囲1の方法。 4 被酸化性有臭物質が、硫黄化合物、窒素化合
物、炭化水素、アルデヒドである特許請求の範囲
1の方法。 5 有効臭素を含有する水性液が臭素、塩化臭
素、臭素の酸素酸塩の水溶液である特許請求の範
囲1の方法。 6 水溶性塩素物質が塩素、塩化物、塩素の酸素
酸塩である特許請求の範囲1の方法。 7 電解が無隔膜電解である特許請求の範囲1の
方法。 8 電解は、槽電圧3〜7V、電流密度10〜30
Å/dm2で実施する特許請求の範囲1又は7の方
法。
[Scope of Claims] 1. Odorous substances in the exhaust gas or waste liquid are removed by contacting exhaust gas or waste liquid containing oxidizable odorous substances and carbonic acid radicals with an aqueous liquid containing effective bromine and water-soluble chlorine substances. Hydrochloric acid is added to at least a portion of the aqueous solution after contact to control the amount of dissolved carbonate radicals, while the aqueous solution after contact is electrolyzed, thus generating hypochlorous acid. The aqueous liquid is activated and regenerated as an effective bromine-containing aqueous liquid by the action of
A method for deodorizing exhaust gas or liquid, characterized by recycling. 2 At least a portion of the aqueous liquid after contact with this
The method according to claim 1, wherein hydrochloric acid is added to adjust the pH to 6-1. 3. The contact between the oxidizable odorous substance and the exhaust gas or liquid containing carbon dioxide gas or carbonic acid radicals and the aqueous liquid containing effective bromine and water-soluble chlorine substances is carried out at a pH of 10 or higher. Method. 4. The method according to claim 1, wherein the oxidizable odorous substance is a sulfur compound, a nitrogen compound, a hydrocarbon, or an aldehyde. 5. The method of claim 1, wherein the aqueous liquid containing available bromine is an aqueous solution of bromine, bromine chloride, or an oxyacid salt of bromine. 6. The method of claim 1, wherein the water-soluble chlorine substance is chlorine, chloride, or chlorine oxyacid. 7. The method according to claim 1, wherein the electrolysis is diaphragmless electrolysis. 8 Electrolysis is performed at a cell voltage of 3 to 7 V and a current density of 10 to 30
8. The method of claim 1 or 7 carried out at Å/dm 2 .
JP3285578A 1978-03-24 1978-03-24 Deodorizing method for exhaust gas or drain liquid Granted JPS54125171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3285578A JPS54125171A (en) 1978-03-24 1978-03-24 Deodorizing method for exhaust gas or drain liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3285578A JPS54125171A (en) 1978-03-24 1978-03-24 Deodorizing method for exhaust gas or drain liquid

Publications (2)

Publication Number Publication Date
JPS54125171A JPS54125171A (en) 1979-09-28
JPS6135892B2 true JPS6135892B2 (en) 1986-08-15

Family

ID=12370443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3285578A Granted JPS54125171A (en) 1978-03-24 1978-03-24 Deodorizing method for exhaust gas or drain liquid

Country Status (1)

Country Link
JP (1) JPS54125171A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2519844B2 (en) * 1990-04-12 1996-07-31 ガーバー・ガーメント・テクノロジー・インコーポレーテッド Long life pen and ink supply unit for plotters and usage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58143821A (en) * 1982-02-18 1983-08-26 Fuso:Kk Method for deodorizing malodorous gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2519844B2 (en) * 1990-04-12 1996-07-31 ガーバー・ガーメント・テクノロジー・インコーポレーテッド Long life pen and ink supply unit for plotters and usage

Also Published As

Publication number Publication date
JPS54125171A (en) 1979-09-28

Similar Documents

Publication Publication Date Title
EP0669850B1 (en) Catalytic process for the treatment of effluent gases
CN110117115A (en) A kind of processing method and equipment of industrial waste salt recycling
Gonce et al. Removal of chlorite and chlorate ions from water using granular activated carbon
CN106215666A (en) A kind of catalytic laundry processes the method for foul gas
JP2008279364A (en) Treatment method of exhaust gas
JP3984414B2 (en) NH3-containing wastewater treatment apparatus and treatment method
WO2005075355A2 (en) Process of removal of ammonium from waste water
JPS6135892B2 (en)
KR102209434B1 (en) Method and system for ordor treatment using adsorption tower and electrolytic oxidation apparatus
US3582485A (en) Water purification
KR100854071B1 (en) Apparatus for removal of odor gas from pig pen and hen house by using mediated electrochemical oxidation
JP2010022959A (en) Deodorization apparatus
JP2001179046A (en) Method for deodorizing and cleaning exhaust gas or flue gas
JP4222607B2 (en) Deodorizing method and deodorizing liquid
JPS6036835B2 (en) How to purify human waste water
JP4011197B2 (en) Method for treating ethanolamine-containing water
JPS6345878B2 (en)
JP4450146B2 (en) COD component-containing water treatment method
JP3420697B2 (en) Method for treating ethanolamine-containing water
JPS6039000B2 (en) Electrolytic oxidation wastewater treatment method
JP2003103137A (en) Deodorization method and apparatus for the same
JP2016198728A (en) Method and apparatus for volume reduction of sludge by swirl flow type electrolytic treatment
JPS625008B2 (en)
JPH11216473A (en) Treatment of ethanolamine contained water
JP2003300073A (en) Method for treating waste water