JPS625008B2 - - Google Patents

Info

Publication number
JPS625008B2
JPS625008B2 JP55018165A JP1816580A JPS625008B2 JP S625008 B2 JPS625008 B2 JP S625008B2 JP 55018165 A JP55018165 A JP 55018165A JP 1816580 A JP1816580 A JP 1816580A JP S625008 B2 JPS625008 B2 JP S625008B2
Authority
JP
Japan
Prior art keywords
activated carbon
liquid
gas
cleaning
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55018165A
Other languages
Japanese (ja)
Other versions
JPS56115618A (en
Inventor
Nobuyoshi Umiga
Kyotaro Iyasu
Toshiaki Seki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP1816580A priority Critical patent/JPS56115618A/en
Publication of JPS56115618A publication Critical patent/JPS56115618A/en
Publication of JPS625008B2 publication Critical patent/JPS625008B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 本発明は悪臭ガスの除去方法に関するもので、
更に詳しくは悪臭主成分として硫化水素、メチル
メルカプタン、硫化メチル、アンモニア、トリメ
チルアミンなどを含有する悪臭ガスから、これら
を極めて高い除去率で除去する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing malodorous gas,
More specifically, the present invention relates to a method for removing hydrogen sulfide, methyl mercaptan, methyl sulfide, ammonia, trimethylamine, etc. as main malodorous components at an extremely high removal rate from a malodorous gas.

一般に、し尿処理場、下水処理場、蓄産、水産
加工工場、その他製造工場などにおいては、硫化
水素、メルカプタン類、チオエーテル類、アンモ
ニア、アミン類、低級脂肪酸などの不快な悪臭を
持つ物質が排出されるため、これらの悪臭物質を
除去するために、従来より水洗浄、薬液洗浄、活
性炭吸着、触媒酸化法、オゾン酸化法など種々の
方法が単独もしくは、組み合わせで採用されてい
る。
In general, human waste treatment plants, sewage treatment plants, stock farms, seafood processing plants, and other manufacturing plants discharge substances with unpleasant odors such as hydrogen sulfide, mercaptans, thioethers, ammonia, amines, and lower fatty acids. Therefore, in order to remove these malodorous substances, various methods such as water washing, chemical washing, activated carbon adsorption, catalytic oxidation method, and ozone oxidation method have been used singly or in combination.

しかしながら、悪臭は、微量多成分系のため従
来の方法は必ずしも満足すべきものではない。例
えば水洗浄ではアンモニアが多少除去できる程度
である。一方、硫化水素、メルカプタン類の硫黄
化合物に対する吸収除去率が高いアルカリ洗浄法
も、例えばし尿処理場のし尿投入槽など硫化水素
が投入時に数百ppm発生するような瞬間的高濃
度臭気の対策には広く利用されているが、チオエ
ーテル類の除去率は低く、また大気中あるいは、
し尿から発生する炭酸ガスを吸収するため、アル
カリの消費が著しく、更に洗浄廃液には硫化物が
含まれているため酸化処理、中和処理などの後処
理が必要であつた。
However, conventional methods are not always satisfactory because bad odors are caused by trace amounts and multiple components. For example, washing with water can only remove some ammonia. On the other hand, the alkaline cleaning method, which has a high absorption and removal rate for hydrogen sulfide and sulfur compounds such as mercaptans, can also be used as a countermeasure against instantaneous high-concentration odors, such as those generated in the human waste disposal tank of a human waste treatment plant, where several hundred ppm of hydrogen sulfide is generated when it is introduced. are widely used, but the removal rate of thioethers is low, and
Since the carbon dioxide gas generated from human waste is absorbed, alkali is consumed significantly, and furthermore, since the cleaning waste liquid contains sulfides, post-treatments such as oxidation treatment and neutralization treatment are required.

酸化剤を用いた薬液洗浄法については、例えば
次亜塩素酸ナトリウム溶液による洗浄法は硫化水
素をはじめ他の方法で除去困難なチオエーテル類
の除去率が高く、またアンモニアもクロラミンを
経由して窒素にまで分解させてしまう効果を持つ
ているが、悪臭物質に対する薬品の消費量が多
く、また洗浄後のガスに塩素、塩素化合物が残
り、塩素臭だけでなく、周辺植物に被害を与え、
周辺機器の腐食を促進させてしまう問題があつ
た。気相酸化を利用したオゾン酸化法も悪臭物質
との反応は比較的遅く、触媒共存で利用されなけ
れば、マスキング効果としての悪臭対策でしかな
かつた。また処理ガス中に未反応オゾンが高濃度
で残つていれば、次亜塩素酸ナトリウムを用いた
場合の塩素臭と同じく酸化性ガスが他の問題を引
き起こすことになる。
Regarding chemical cleaning methods using oxidizing agents, for example, cleaning methods using sodium hypochlorite solution have a high removal rate of thioethers that are difficult to remove with other methods, including hydrogen sulfide, and ammonia is also removed by nitrogen via chloramine. However, the amount of chemicals used to treat malodorous substances is large, and chlorine and chlorine compounds remain in the gas after cleaning, which not only produces a chlorine odor but also damages surrounding plants.
There was a problem that accelerated corrosion of peripheral equipment. The ozone oxidation method, which uses gas-phase oxidation, also reacts with malodorous substances relatively slowly, and unless used in the presence of a catalyst, it can only be used as a masking effect to counter malodors. Furthermore, if unreacted ozone remains in the treated gas at a high concentration, the oxidizing gas will cause other problems similar to the chlorine odor when sodium hypochlorite is used.

活性炭吸着による悪臭ガスの除去法は初期効果
はよいが、湿度、水分による影響を受け、活性炭
へ水分の吸着が起るとチオエーテル類はほとんど
除去できなくなり、また吸着破過時間の違いによ
り、処理ガスの臭気変化が起る。また圧力損失の
大きな吸着層へ多量のガスを通すため、強力なフ
アンが必要となり、更に吸着後の活性炭の交換再
生が繁雑であるという欠点があつた。
The method of removing malodorous gases by adsorption on activated carbon has a good initial effect, but it is affected by humidity and moisture, and once moisture adsorption occurs on activated carbon, thioethers can hardly be removed, and due to differences in adsorption breakthrough time, treatment Gas odor changes occur. In addition, a powerful fan is required to pass a large amount of gas through the adsorption layer, which has a large pressure loss, and further disadvantages include the complicated replacement and regeneration of activated carbon after adsorption.

触媒酸化法では大型の装置が必要となり、高濃
度の悪臭成分を含むガスには都合がよいが、薄い
悪臭ガスに対しては加熱のための燃料代が高くな
つてしまう。
The catalytic oxidation method requires large-scale equipment, which is convenient for gases containing high concentrations of malodorous components, but increases fuel costs for heating thin malodorous gases.

本発明者らは、上述した次亜塩素酸塩などの薬
液の強い酸化力を利用しつつ、その使用量を減少
し且つ環境に対する悪影響を除くことの可能な悪
臭ガスの浄化方法を既に提案している(昭和54年
特許願第77673号(特開昭56―2824号公報参
照))。すなわち、その方法は、硫化水素を含む悪
臭ガスを、酸素の存在下にアルカリ性活性炭懸濁
液により洗浄する第1洗浄工程、酸化剤含有液に
より洗浄する第2洗浄工程、アルカリ液により洗
浄する第3洗浄工程で順次、洗浄処理することを
特徴とするものである。しかしてこの方法によれ
ば、第1工程において悪臭ガス中の硫化水素が洗
浄液中に吸収され、分子状酸素により効率的に酸
化されてチオ硫酸イオンとなり、第2工程では比
較的難酸化性のチオエーテル類、メルカプタン類
などが酸化され、酸化剤の分解により生ずる塩素
等の酸化性ガスは第3工程において効率的に吸収
される。したがつて、この方法によれば、少い薬
液の使用量で効果的な悪臭ガスの浄化が期待でき
る。
The present inventors have already proposed a method for purifying malodorous gas that makes use of the strong oxidizing power of chemical solutions such as hypochlorite as described above, reduces the amount used, and eliminates the negative impact on the environment. (Patent Application No. 77673 of 1982 (see Japanese Patent Application Laid-Open No. 1983-2824)). That is, the method includes a first cleaning step of cleaning a malodorous gas containing hydrogen sulfide with an alkaline activated carbon suspension in the presence of oxygen, a second cleaning step of cleaning with an oxidizing agent-containing liquid, and a second cleaning step of cleaning with an alkaline solution. This method is characterized by sequentially performing cleaning treatment in three cleaning steps. However, according to this method, hydrogen sulfide in the malodorous gas is absorbed into the cleaning solution in the first step, is efficiently oxidized by molecular oxygen and becomes thiosulfate ions, and in the second step, hydrogen sulfide, which is relatively oxidizable, is absorbed into the cleaning solution. Thioethers, mercaptans, etc. are oxidized, and oxidizing gases such as chlorine generated by decomposition of the oxidizing agent are efficiently absorbed in the third step. Therefore, according to this method, effective purification of malodorous gas can be expected with a small amount of chemical solution used.

本発明は上記した悪臭ガスの三段浄化方法にお
いて、主として第3工程の改良に向けられている
ものである。すなわち、上記方法では、第1工程
で使用したアルカリ性活性炭懸濁液をそのまま第
3工程のアルカリ液として使用することが推奨さ
れている。これは、第1工程で硫化水素の酸化に
より生じたチオ硫酸イオンの存在が酸化性ガスの
吸収に有効であることが見出されているからであ
る。しかし、本発明者らが更に検討を進めたとこ
ろ、第1工程で使用されたアルカリ性活性炭懸濁
液を直接第3工程の洗浄液として使用すると、排
出ガス中に悪臭が残存するため、必ずしも好まし
くないことが見出された。この原因は、その後の
研究によれば、第1工程での洗浄処理において未
反応のまま活性炭に吸着した悪臭成分が、本来被
処理気体中に悪臭成分濃度の低い第3洗浄工程に
おいて逆に被処理気体中に放出されるためであ
り、チオ硫酸イオン等を含有する洗浄液自体にあ
るのではないことがわかつた。たとえば、この事
実は、第1工程からの使用済アルカリ性活性炭懸
濁液から活性炭を分離すると、活性炭にはメルカ
プタン様の臭気が強いが、残液にはほとんど臭気
がないことからもわかる。また第2工程からの処
理済ガス中の酸化性ガスの除去効果について云え
ば、液がアルカリ性であれば活性炭の存在は必ず
しも必要ではない。したがつて、第1工程からの
洗浄液から活性炭を一旦分離し、これは第1工程
に再度循環し硫化水素の酸化触媒として再使用す
るとともにチオ硫酸イオンを含む残液を第3工程
の洗浄液として使用すればその酸化性ガス吸収効
果を有効に生かしつつ活性炭の存在に伴う弊害は
除くことができる。本発明は、このような知見に
基いて完成されたものである。すなわち本発明の
悪臭ガスの浄化方法は、硫化水素とアンモニア、
アミン等の塩基性ガスを含む還元性悪臭ガスを、
酸素の存在下にアルカリ性活性炭懸濁液により洗
浄する第1洗浄工程、酸化剤含有液により洗浄す
る第2洗浄工程、アルカリ液により洗浄する第3
洗浄工程で順次洗浄処理するに際して、第1洗浄
工程から抜き出したアルカリ性活性炭懸濁液から
活性炭を分離して第1洗浄工程へ戻すとともに残
液を第3洗浄工程の洗浄液として用いることを特
徴とするものである。
The present invention is mainly aimed at improving the third step in the above-mentioned three-stage purification method for malodorous gas. That is, in the above method, it is recommended to use the alkaline activated carbon suspension used in the first step as it is as the alkaline solution in the third step. This is because it has been found that the presence of thiosulfate ions generated by the oxidation of hydrogen sulfide in the first step is effective in absorbing oxidizing gases. However, upon further study by the present inventors, we found that using the alkaline activated carbon suspension used in the first step directly as a cleaning liquid in the third step is not necessarily desirable because a bad odor remains in the exhaust gas. It was discovered that The reason for this is that, according to subsequent research, malodorous components adsorbed unreacted on activated carbon in the cleaning process in the first step are reversely absorbed in the third cleaning step, where the concentration of malodorous components in the gas to be treated is originally low. It was found that this was due to being released into the processing gas, and not in the cleaning solution itself containing thiosulfate ions. For example, this fact can be seen from the fact that when activated carbon is separated from the spent alkaline activated carbon suspension from the first step, the activated carbon has a strong mercaptan-like odor, but the residual liquid has almost no odor. Regarding the effect of removing oxidizing gas from the treated gas from the second step, the presence of activated carbon is not necessarily required if the liquid is alkaline. Therefore, activated carbon is once separated from the cleaning solution from the first step, and this is recycled to the first step and reused as a hydrogen sulfide oxidation catalyst, and the residual solution containing thiosulfate ions is used as the cleaning solution in the third step. If used, the harmful effects associated with the presence of activated carbon can be eliminated while effectively utilizing its oxidizing gas absorption effect. The present invention was completed based on such knowledge. That is, the method for purifying malodorous gas of the present invention uses hydrogen sulfide and ammonia,
Reducing foul-smelling gases containing basic gases such as amines,
A first cleaning step of cleaning with an alkaline activated carbon suspension in the presence of oxygen, a second cleaning step of cleaning with an oxidizing agent-containing liquid, and a third cleaning with an alkaline solution.
When the washing process is performed sequentially in the washing process, activated carbon is separated from the alkaline activated carbon suspension extracted from the first washing process and returned to the first washing process, and the remaining liquid is used as a washing liquid in the third washing process. It is something.

以下、本発明を実施するための装置系の例を示
す図面を参照しつつ本発明を更に詳細に説明す
る。
Hereinafter, the present invention will be described in more detail with reference to the drawings showing examples of an apparatus system for carrying out the present invention.

第1図は、本発明を実施するための代表的な装
置系の一列の配置図であり、ここでは、活性炭は
沈降分離によりアルカリ性活性炭懸濁液から分離
する。
FIG. 1 is a schematic diagram of a typical system for carrying out the invention, in which activated carbon is separated from an alkaline activated carbon suspension by sedimentation.

第1図において、し尿処理場、下水処理場等か
ら送られ、硫化水素、メチルメルカプタン、硫化
メチル、アンモニア、メチルアミンなどの成分を
含有する悪臭ガス1は、ブロワー2を経て、第1
洗浄塔3の下部へ装入され、塔内に充填されたラ
シヒリング等の充填材4中を上昇する間にスプレ
ーノズル5から散布されるPHが10程度のアルカリ
性活性炭懸濁液と気液接触させられる。ここで硫
化水素は酸素の存在下に活性炭を触媒として次の
諸反応によつて吸収、酸化される。
In FIG. 1, a foul-smelling gas 1 containing components such as hydrogen sulfide, methyl mercaptan, methyl sulfide, ammonia, and methylamine is sent from a human waste treatment plant, a sewage treatment plant, etc., and passes through a blower 2.
It is charged into the lower part of the washing tower 3, and is brought into gas-liquid contact with an alkaline activated carbon suspension having a pH of about 10, which is sprayed from a spray nozzle 5 while rising through a packing material 4 such as a Raschig ring filled in the tower. It will be done. Here, hydrogen sulfide is absorbed and oxidized by the following reactions in the presence of oxygen using activated carbon as a catalyst.

H2S+NaOH→NaHS+H2O H2S+2NaOH→Na2S+2H2O 2Na2S+H2O+2O2→Na2S2O3+2NaOH 2NaHS+2O2→Na2S2O3+H2O NaHS+NaHCO3+3/2O2→Na2SO3+H2O+CO2 Na2S2O3+2NaHCO3+2O2→2Na2SO4+H2O+
2CO2 Na2SO3+1/2O2→Na2SO4 気液接触後のガスは、ミストがデミスター6で
除去されて、第1洗浄塔3を出る。洗浄塔内での
ガス流速はたとえば約1m/secであり、接触時間
は約1秒程度とる。(なお、第2塔、第3塔にお
ける洗浄のための接触条件もほぼ第1塔と同じで
よい。)一方、たとえば平均粒度が200メツシユよ
り小さい活性炭を約1重量%含むアルカリ性活性
炭懸濁液7は、第1塔下部を仕切つて設けられた
その調整槽8内で水酸化ナトリウム等のアルカリ
によりPH9〜11、好ましくは約10程度に調整さ
れ、ポンプ9およびスプレーノズル5を経てたと
えば悪臭ガス1m3/mmに対して約3/min程度
の割合で塔3中に散布され、充填材4を通過する
間に悪臭ガス中の主として硫化水素を吸収して塔
底液10となり、更に調整槽8に戻される。調整
槽8には、そのPHをPHメーター11により検出
し、その値によつて槽12に貯えられた濃厚アル
カリ溶液13が薬注ポンプ14を通じて供給さ
れ、また調節弁15、配管16を通じて補給水が
供給され、更に後述するように第3洗浄塔39か
らは塔底液42の一部が配管17を通じて循環さ
れる。一方塔底液10の一部は第1塔底部の調整
槽8とは反対側に上部を仕切つて付けた、傾斜し
た底を持つ沈澱槽18に送られ、液の流れが遅く
なるとともに活性炭が沈降分離される。沈降分離
された活性炭19は傾斜した底部を重力により下
方にずり落ち塔底部に戻り、充填材4から流下す
る液と再度混合されて均一な懸濁状態になる。こ
のように活性炭は本質的に繰り返し使用される
が、活性炭の摩耗あるいは失活に伴い、必要に応
じて適宜、抜き出し、補給、入れ替えが行われ
る。一方活性炭を沈降分離した上澄液20はポン
プ21、調節弁22、配管23を通じて第3塔3
9に供給される。
H 2 S+NaOH→NaHS+H 2 O H 2 S+2NaOH→Na 2 S+2H 2 O 2Na 2 S+H 2 O+2O 2 →Na 2 S 2 O 3 +2NaOH 2NaHS+2O 2 →Na 2 S 2 O 3 +H 2 O NaHS+NaHCO 3 +3/2O 2 →Na 2 SO 3 +H 2 O + CO 2 Na 2 S 2 O 3 +2NaHCO 3 +2O 2 →2Na 2 SO 4 +H 2 O+
2CO 2 Na 2 SO 3 +1/2O 2 →Na 2 SO 4 After the gas-liquid contact, the mist is removed by the demister 6, and the gas exits the first cleaning tower 3. The gas flow rate in the cleaning tower is, for example, about 1 m/sec, and the contact time is about 1 second. (Note that the contact conditions for cleaning in the second and third columns may be approximately the same as in the first column.) On the other hand, for example, an alkaline activated carbon suspension containing about 1% by weight of activated carbon with an average particle size of less than 200 mesh 7 is adjusted to pH 9 to 11, preferably about 10, with an alkali such as sodium hydroxide in an adjustment tank 8 provided by partitioning the lower part of the first column, and then passed through a pump 9 and a spray nozzle 5 to remove, for example, a foul-smelling gas. It is sprayed into the tower 3 at a rate of approximately 3/min to 1 m 3 /mm, and while passing through the packing material 4, it mainly absorbs hydrogen sulfide in the foul-smelling gas and becomes the tower bottom liquid 10, which is then sent to the adjustment tank. Returned to 8. The pH of the adjustment tank 8 is detected by a PH meter 11, and depending on the value, a concentrated alkaline solution 13 stored in the tank 12 is supplied through a chemical dosing pump 14, and makeup water is supplied through a control valve 15 and piping 16. A portion of the bottom liquid 42 is further circulated from the third washing tower 39 through the pipe 17 as will be described later. On the other hand, a part of the bottom liquid 10 is sent to a sedimentation tank 18 with an inclined bottom, which is partitioned off at the top and installed on the opposite side of the adjustment tank 8 at the bottom of the first tower, where the flow of the liquid is slowed down and the activated carbon is It is separated by sedimentation. The activated carbon 19 that has been sedimented and separated falls down the inclined bottom by gravity and returns to the bottom of the column, where it is mixed again with the liquid flowing down from the filler 4 to form a uniform suspended state. Activated carbon is essentially used repeatedly in this way, but as the activated carbon wears out or becomes deactivated, it is removed, replenished, and replaced as necessary. On the other hand, the supernatant liquid 20 obtained by sedimentation and separation of activated carbon is passed through a pump 21, a control valve 22, and a pipe 23 to a third column 3.
9.

次いで第1塔3を出、硫化水素を除去された悪
臭ガス24は配管25を経て第2塔26の底部へ
供給され、充填材27中を上昇する間にスプレー
ノズル5から散布されるたとえば次亜塩素酸ナト
リウムなどの酸化剤含有液と気液接触し、メルカ
プタン類、チオエーテル類、アンモニア、アミン
類などの悪臭成分が次のような反応式で酸化ある
いは洗浄除去される。
Next, the foul-smelling gas 24 leaving the first column 3 and from which hydrogen sulfide has been removed is supplied to the bottom of the second column 26 via a pipe 25, and while rising through the packing material 27 is sprayed from the spray nozzle 5, for example, as follows. It comes into gas-liquid contact with a liquid containing an oxidizing agent such as sodium chlorite, and malodorous components such as mercaptans, thioethers, ammonia, and amines are oxidized or washed away using the following reaction formula.

2CH3SH+NaClO→(CH32S2+H2O+NaCl (CH32S2+5NaClO+H2O→2CH3SO3H+
5NaCl (CH32S+nNaClO→(CH32SOn+nNaCl n=1,2,あるいは3。
2CH 3 SH+NaClO→(CH 3 ) 2 S 2 +H 2 O+NaCl (CH 3 ) 2 S 2 +5NaClO+H 2 O→2CH 3 SO 3 H+
5NaCl (CH 3 ) 2 S+nNaClO→(CH 3 ) 2 SOn+nNaCl n=1, 2, or 3.

2NH3+3NaClO→N2+3NaCl (CH33N+9NaClO→CH3NO2+9NaCl+2CO2
+3H2O 第2塔の洗浄処理を終えたガスは、デミスター
6を経て第2塔の排出ガス28として配管29を
通して排出される。一方有効塩素濃度が約300
mg/の次亜塩素酸ナトリウム溶液で好ましくは
PHをほぼ中性に保つた酸化剤含有液30は第2塔
下部を仕切つて設けられた調整槽31で調整され
る。すなわち槽31には、槽32中に貯えられた
濃厚酸化剤溶液33が薬注ポンプ14を経て供給
され、またPHメーター11の測定値により槽34
に貯えられた酸もしくはアルカリのPH調整溶液3
5が薬注ポンプ14を通して供給され、酸化剤含
有液30のPHはほぼ中性に維持される。また調節
弁15および配管16を通して補給水が加えら
れ、酸化剤濃度を調整された後、酸化剤含有液3
0はポンプ36からスプレーノズル5へ送られ
る、充填材27中を流下した酸化剤含有液は第2
塔の底部に塔底液37として貯えられ、一部は配
管38を経て排出され、ほとんどは調整槽31へ
戻される。
2NH 3 +3NaClO→N 2 +3NaCl (CH 3 ) 3 N+9NaClO→CH 3 NO 2 +9NaCl+2CO 2
+3H 2 O The gas that has completed the cleaning process in the second column passes through the demister 6 and is discharged through a pipe 29 as exhaust gas 28 from the second column. On the other hand, the effective chlorine concentration is about 300
mg/sodium hypochlorite solution preferably
The oxidizing agent-containing liquid 30 whose pH is kept approximately neutral is adjusted in an adjustment tank 31 provided by partitioning off the lower part of the second column. That is, the concentrated oxidizing agent solution 33 stored in the tank 32 is supplied to the tank 31 via the chemical dosing pump 14, and the tank 34 is supplied with the measured value of the PH meter 11.
Acid or alkaline PH adjustment solution stored in 3
5 is supplied through the chemical injection pump 14, and the pH of the oxidizing agent-containing liquid 30 is maintained at approximately neutral. Also, makeup water is added through the control valve 15 and piping 16 to adjust the oxidizer concentration, and then the oxidizer-containing liquid 3
0 is sent from the pump 36 to the spray nozzle 5, and the oxidizing agent-containing liquid that has flowed down in the filler 27 is
It is stored as a bottom liquid 37 at the bottom of the tower, a part of it is discharged through a pipe 38, and most of it is returned to the adjustment tank 31.

第2塔の排出ガス28は悪臭成分を除去されて
いるが酸化剤の分解による酸化性ガスが混入して
いるので、配管29を通じて第3塔39の塔底に
導入され充填材40中を上昇する間に、スプレー
ノズル5から散布された洗浄液と気液接触して、
酸化性ガスが吸収除去され、デミスター6を経
て、ほぼ清浄な排出ガス41として大気中に放出
される。一方この洗浄液は第1塔3の塔底液から
活性炭が分離されたチオ硫酸イオン等の還元性物
質を含む上澄液20がポンプ21、配管23を通
じて第3塔に移送されたものであり、第2塔の排
出ガス28と気液接触後、塔底液42として貯え
られる。この塔底液42は、その後、配管17を
通して自然流下により再び第1塔3の調整槽8に
戻され、一部は配管43から排出される。
The exhaust gas 28 from the second tower has had its malodorous components removed, but it is contaminated with oxidizing gas caused by the decomposition of the oxidizing agent, so it is introduced into the bottom of the third tower 39 through the pipe 29 and rises through the packing material 40. During this time, the cleaning liquid sprayed from the spray nozzle 5 comes into contact with the gas-liquid,
The oxidizing gas is absorbed and removed, passes through the demister 6, and is released into the atmosphere as substantially clean exhaust gas 41. On the other hand, this cleaning liquid is a supernatant liquid 20 containing reducing substances such as thiosulfate ions from which activated carbon has been separated from the bottom liquid of the first column 3, and is transferred to the third column through a pump 21 and piping 23. After gas-liquid contact with the exhaust gas 28 of the second column, it is stored as a column bottom liquid 42. This column bottom liquid 42 is then returned to the adjustment tank 8 of the first column 3 by gravity through the piping 17, and a portion is discharged from the piping 43.

前述したように第3塔の洗浄液としては第1塔
のアルカリ性活性炭懸濁液でも、第2塔から生じ
る酸化性ガスを除去することができるが、硫化水
素の負荷が高い場合、あるいは活性炭による触媒
酸化の遅いメルカプタン類、チオエーテル類など
が多く含まれた悪臭ガスを浄化する場合、アルカ
リ性活性炭懸濁液に含まれたまま、第3塔で気液
接触が行なわれ、第2塔の排出ガス28に再び臭
気をつけてしまうことになる。しかし、上記例の
ように、活性炭を沈澱槽で沈降分離し上澄を第3
塔の洗浄液として用いるならば、沈澱槽での滞留
時間が未反応物質の反応時間ともなり、更に反応
の遅いメルカプタン類、チオエーテル類などを吸
着した活性炭をほとんど分離しているため、第3
塔の洗浄液が排出ガス41に臭気をつけることも
なく、前述した硫化水素の酸化生成物であるチオ
硫酸イオン、あるいは亜硫酸イオンなどがアルカ
リ性水溶液として第2塔排出ガス28に含まれる
酸化性ガスの除去剤として有効に作用する。な
お、悪臭物質を吸着した活性炭を懸濁液から分離
する方法は、沈澱槽を用いる以外に、過分離装
置、液体サイクロン、あるいは遠心分離機などを
利用できることは言うまでもない。
As mentioned above, the alkaline activated carbon suspension from the first tower can be used as the cleaning liquid for the third tower to remove the oxidizing gas generated from the second tower, but if the hydrogen sulfide load is high or the activated carbon catalyst When purifying a foul-smelling gas containing a large amount of slow-oxidizing mercaptans, thioethers, etc., gas-liquid contact is carried out in the third tower while they are still contained in the alkaline activated carbon suspension, and the exhaust gas 28 of the second tower is This will cause the odor to be added again. However, as in the above example, activated carbon is sedimented and separated in a settling tank, and the supernatant is transferred to a third tank.
If used as a washing solution for the column, the residence time in the precipitation tank will also be the reaction time for unreacted substances, and most of the activated carbon that has adsorbed slow-reacting mercaptans, thioethers, etc. will be separated.
The cleaning liquid from the tower does not add any odor to the exhaust gas 41, and the thiosulfate ion or sulfite ion, which is the oxidation product of hydrogen sulfide, is used as an alkaline aqueous solution to remove the oxidizing gas contained in the second tower exhaust gas 28. Acts effectively as a remover. It goes without saying that as a method for separating the activated carbon that has adsorbed malodorous substances from the suspension, in addition to using a sedimentation tank, a superseparator, a liquid cyclone, a centrifuge, etc. can be used.

第2図により、アルカリ性活性炭懸濁液から酸
化性ガスの吸収除去に必要なチオ硫酸イオン、亜
硫酸イオンなどを含む溶液として分離するため多
孔質板、布、膜等の過手段ないし装置を介し
て、活性炭を含まない洗浄液を得る態様の一例を
説明する。
As shown in Figure 2, in order to separate the alkaline activated carbon suspension into a solution containing thiosulfate ions, sulfite ions, etc. necessary for absorption and removal of oxidizing gases, the alkaline activated carbon suspension is separated by means or devices such as porous plates, cloth, membranes, etc. An example of an embodiment of obtaining a cleaning liquid that does not contain activated carbon will be described.

すなわち同一部分に第1図と同一符号をつけた
第2図では第1塔3の底部の調整槽8と反対側、
つまり塔底部の一側面を多孔質板45で仕切り、
活性炭を含まない洗浄液を得るものである。悪臭
ガス、排出ガスなどのガス系統と第2塔26の洗
浄方式は第1図と同じであるため説明を省く。第
1塔3aでは第1図の実施例と同じく、アルカリ
性活性炭懸濁液が硫化水素を含む悪臭ガスと気液
接触されており、スプレーノズル5から充填材4
を流下した塔底液10は調整槽8へ入り循環され
る一方、第1塔底部の調整槽8とは反対側に設け
られた槽46中の活性炭を含まない洗浄液44と
多孔質板45を介して接している。このため塔底
液10に含まれる固体の活性炭は多孔板45を通
過できないが、酸化性ガスの吸収除去に必要なチ
オ硫酸イオン、亜硫酸イオンなどのイオンを含む
溶液は自由に多孔質板を通過拡散することができ
る。かくして槽46中に得られた活性炭を含まな
い洗浄液44は、ポンプ21、調節弁22、配管
23を通して、第3塔39のスプレーノズル5に
供給され、第2塔排出ガス28と気液接触した
後、塔底液42として貯えられ一部は配管43か
ら排出され、ほとんどは配管17aを通り自然流
下により第1塔3aの底部に隣接する槽46に戻
る。酸化性ガスの吸収除去でチオ硫酸イオン、亜
硫酸イオンなどを消費した第3塔からの洗浄液
は、多孔質板45を介して再び塔底液10と接す
る。このとき、多孔質板45の両側には、各イオ
ンの濃度差が生じており、接触時間とともに同一
濃度になるようイオンの拡散が行なわれる。
In other words, in FIG. 2, in which the same parts are given the same symbols as in FIG.
In other words, one side of the bottom of the tower is partitioned with a porous plate 45,
A cleaning solution containing no activated carbon is obtained. The gas system for foul-smelling gas, exhaust gas, etc. and the cleaning method for the second column 26 are the same as in FIG. 1, so their explanation will be omitted. In the first column 3a, as in the embodiment shown in FIG.
The bottom liquid 10 that has flowed down enters the adjustment tank 8 and is circulated, while cleaning liquid 44 that does not contain activated carbon in a tank 46 provided at the opposite side of the adjustment tank 8 at the bottom of the first tower and the porous plate 45. I am in touch with you through. Therefore, solid activated carbon contained in the bottom liquid 10 cannot pass through the porous plate 45, but a solution containing ions such as thiosulfate ions and sulfite ions necessary for absorbing and removing oxidizing gases freely passes through the porous plate. Can be spread. The cleaning liquid 44 containing no activated carbon thus obtained in the tank 46 was supplied to the spray nozzle 5 of the third column 39 through the pump 21, the control valve 22, and the pipe 23, and was brought into gas-liquid contact with the second column exhaust gas 28. Thereafter, a part of the liquid is stored as the bottom liquid 42 and discharged from the pipe 43, and most of it passes through the pipe 17a and returns to the tank 46 adjacent to the bottom of the first column 3a by gravity. The cleaning liquid from the third column, which has consumed thiosulfate ions, sulfite ions, etc. by absorbing and removing oxidizing gases, comes into contact with the column bottom liquid 10 again through the porous plate 45. At this time, there is a difference in the concentration of each ion on both sides of the porous plate 45, and the ions are diffused so that the concentration becomes the same as the contact time increases.

なお第2図の例において多孔質板の面積の増加
により、同一イオン濃度になるまでの時間が早く
なることは言うまでもない。更に活性炭を分離し
てイオンを拡散させるためには、多孔質板以外
に、布あるいは浸透膜を用いることも出来る。
また、配管17aを通して第3塔39の塔底液4
2を多孔質板45の内側、つまり第1塔3aの塔
底液10中に加えれば、多孔質板45を通しての
チオ硫酸イオンの移動が活発になり、洗浄液44
中のチオ硫酸イオン濃度を増大することができ
る。
In the example shown in FIG. 2, it goes without saying that as the area of the porous plate increases, the time required to reach the same ion concentration becomes faster. Furthermore, in order to separate the activated carbon and diffuse the ions, a cloth or a permeable membrane can be used in addition to the porous plate.
In addition, the bottom liquid 4 of the third column 39 is passed through the pipe 17a.
2 is added to the inside of the porous plate 45, that is, to the bottom liquid 10 of the first column 3a, the movement of thiosulfate ions through the porous plate 45 becomes active, and the cleaning liquid 44
The concentration of thiosulfate ions in the solution can be increased.

以上のように本発明は、アルカリ性活性炭懸濁
液による第1の洗浄工程、酸化剤含有液により洗
浄する第2の洗浄工程、酸化性ガスを第1の洗浄
液で除去する第3の洗浄工程において、第1洗浄
液から未反応硫化水素、メルカプタン酸、チオエ
ーテル類などを第3の洗浄工程に放出させないよ
うにした悪臭ガスの浄化方法であり、最適な脱臭
効果を上げることができるだけでなく、他に、1
触媒となる懸濁する活性炭の濃度の変動が少な
い、2活性炭摩耗が少なく、高い沈降分離性が長
時間維持でき、放流排水を汚さない、3第3塔デ
ミスターを通過するミストに活性炭が含まれな
い、などの効果も現われ、本発明の採用によつ
て、安定した脱臭効果が得られる。
As described above, the present invention provides a first cleaning process using an alkaline activated carbon suspension, a second cleaning process using an oxidizing agent-containing liquid, and a third cleaning process using the first cleaning liquid to remove oxidizing gas. , is a method of purifying foul-smelling gas that prevents unreacted hydrogen sulfide, mercaptanic acid, thioethers, etc. from being released from the first cleaning liquid into the third cleaning process, and not only can it improve the optimal deodorizing effect, but also ,1
There is little variation in the concentration of suspended activated carbon, which serves as a catalyst. 2. Activated carbon wear is low, high sedimentation separation properties can be maintained for a long time, and the discharged wastewater is not polluted. 3. Activated carbon is contained in the mist that passes through the third column demister. By employing the present invention, a stable deodorizing effect can be obtained.

又本発明方法は加熱することなく常温乃至低温
で行なわれるため洗浄液中にチオ硫酸塩が多量に
蓄積され、これが第3工程の洗浄に有効に供しえ
ることも見出された。
It has also been found that since the method of the present invention is carried out at room temperature to low temperature without heating, a large amount of thiosulfate is accumulated in the cleaning solution, which can be effectively used in the third step of cleaning.

而して本発明方法において対象とする悪臭ガス
はし尿、下水処理場、水産、畜産加工工場等の各
種公共設備で生ずるガスであり硫化水素やメルカ
プタン等の硫黄化合物の外にアンモニアやアミン
等の窒素化合物をも含むものであり、しかもその
性質上時期的、季節的にその濃度が大きく変動す
る場合もあるが、本発明によればかかる成分のい
ずれをもその濃度の変動に関係なく良好に除去し
えて有効である。
The foul-smelling gases targeted in the method of the present invention are gases generated in various public facilities such as human waste, sewage treatment plants, fisheries, and livestock processing plants, and include sulfur compounds such as hydrogen sulfide and mercaptans, as well as ammonia and amines. It also contains nitrogen compounds, and due to its nature, its concentration may fluctuate greatly depending on the season. However, according to the present invention, all of these components can be effectively absorbed regardless of fluctuations in their concentration. It is effective to remove it.

しかも活性炭を分離した洗浄液を用いることに
より、活性炭に同伴する悪臭ガスの再発生を防止
し、スラリー循環による装置の劣化を少なくし、
また活性炭粒子の形状を保つことができるなど極
めて有効である。
Furthermore, by using a cleaning solution that separates the activated carbon, it is possible to prevent the re-generation of malodorous gas accompanying the activated carbon, and to reduce the deterioration of the equipment due to slurry circulation.
It is also extremely effective in maintaining the shape of activated carbon particles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は沈澱槽を用いた本発明方法を実施する
ため装置系の代表例における各機器の配置図であ
る。第2図は多孔質板を用いた本発明方法を実施
するための装置系の代表例における各機器の配置
図である。 1……原悪臭ガス、3,3a,26,39……
洗浄塔、4,27,40……充填材、8……アル
カリ性活性炭懸濁液調整槽、30……酸化剤を含
む洗浄液、18……沈澱槽、45……多孔質板。
FIG. 1 is a layout diagram of each device in a typical example of an apparatus system for carrying out the method of the present invention using a settling tank. FIG. 2 is a layout diagram of each device in a typical example of an apparatus system for carrying out the method of the present invention using a porous plate. 1... Original malodorous gas, 3, 3a, 26, 39...
Washing tower, 4, 27, 40... Filling material, 8... Alkaline activated carbon suspension adjustment tank, 30... Cleaning liquid containing oxidizing agent, 18... Sedimentation tank, 45... Porous plate.

Claims (1)

【特許請求の範囲】 1 硫化水素と塩基性ガスを含む還元性悪臭ガス
を、酸素の存在下にアルカリ性活性炭懸濁液によ
り洗浄する第1洗浄工程、酸化剤含有液により洗
浄する第2洗浄工程、アルカリ液で洗浄する第3
洗浄工程で順次洗浄処理するに際して、第1洗浄
工程から抜き出したアルカリ性活性炭懸濁液から
活性炭を分離して第1洗浄工程へ戻すとともに残
液を第3洗浄工程の洗浄液として用いることを特
徴とする、悪臭ガスの浄化方法。 2 活性炭を沈降分離により分離する特許請求の
範囲第1項の方法。 3 活性炭を過により分離する特許請求の範囲
第1項の方法。 4 過材が多孔質の板、布または膜である特許
請求の範囲第3項の方法。
[Claims] 1. A first cleaning step in which reducing malodorous gases containing hydrogen sulfide and basic gas are cleaned with an alkaline activated carbon suspension in the presence of oxygen, and a second cleaning step in which the oxidizing agent-containing liquid is cleaned. , the third to wash with alkaline solution
When the washing process is performed sequentially in the washing process, activated carbon is separated from the alkaline activated carbon suspension extracted from the first washing process and returned to the first washing process, and the remaining liquid is used as a washing liquid in the third washing process. , a method for purifying foul-smelling gas. 2. The method according to claim 1, in which activated carbon is separated by sedimentation separation. 3. The method according to claim 1, in which activated carbon is separated by filtration. 4. The method according to claim 3, wherein the filter material is a porous plate, cloth or membrane.
JP1816580A 1980-02-16 1980-02-16 Malodorous gas cleaning method Granted JPS56115618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1816580A JPS56115618A (en) 1980-02-16 1980-02-16 Malodorous gas cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1816580A JPS56115618A (en) 1980-02-16 1980-02-16 Malodorous gas cleaning method

Publications (2)

Publication Number Publication Date
JPS56115618A JPS56115618A (en) 1981-09-10
JPS625008B2 true JPS625008B2 (en) 1987-02-03

Family

ID=11963989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1816580A Granted JPS56115618A (en) 1980-02-16 1980-02-16 Malodorous gas cleaning method

Country Status (1)

Country Link
JP (1) JPS56115618A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141612U (en) * 1988-03-16 1989-09-28
JPH07109U (en) * 1992-09-08 1995-01-06 帝介 黒須 Slide fastener slider

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251919A (en) * 1984-05-25 1985-12-12 Kubota Ltd Gas scrubbing appratus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271381A (en) * 1975-12-11 1977-06-14 Mitsubishi Electric Corp Method of deodorizing exhaust gas containing malodorous components
JPS5291777A (en) * 1976-01-26 1977-08-02 Teller Environmental Systems Method and apparatus for treating compounds containing smelling sulfur

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271381A (en) * 1975-12-11 1977-06-14 Mitsubishi Electric Corp Method of deodorizing exhaust gas containing malodorous components
JPS5291777A (en) * 1976-01-26 1977-08-02 Teller Environmental Systems Method and apparatus for treating compounds containing smelling sulfur

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141612U (en) * 1988-03-16 1989-09-28
JPH07109U (en) * 1992-09-08 1995-01-06 帝介 黒須 Slide fastener slider

Also Published As

Publication number Publication date
JPS56115618A (en) 1981-09-10

Similar Documents

Publication Publication Date Title
RU2573677C2 (en) Device and method for gas flow cleaning
BG97844A (en) Method for the separation of suphur compounds from gases
KR101768007B1 (en) Treatment apparatus and method for offensive gas
KR102202651B1 (en) Deodorizing system using medicine fluid and single tower for acidic and alkaline gas
KR100930987B1 (en) Unification deodorizing apparatus using high efficiency deodorization combined scrubber system have in ozone generator
JPH07509658A (en) contact method
KR20100118643A (en) Gas furifying system
CN106215666A (en) A kind of catalytic laundry processes the method for foul gas
JPS625008B2 (en)
CN110711484A (en) A clarification plant that is used for weaving printing factory sewage treatment back to discharge waste gas
CA1104795A (en) Odorous gas purification
JP2007038044A (en) Bio-desulfurization method and bio-desulfurization apparatus
JPS625646B2 (en)
JP2002361044A (en) Method for treating waste gas and liquid chemicals
KR20200030238A (en) Method and system for ordor treatment using adsorption tower and electrolytic oxidation apparatus
JP3384464B2 (en) Method for treating volatile organic chlorine compounds
JPH0356123A (en) Removal of mercury and nox in gas
JP2731125B2 (en) Ozone removal method
JPS6034891B2 (en) Dry deodorization equipment
JP2007136252A (en) Deodorization method and apparatus for odor gas
KR20110101700A (en) A deodorization apparatus for garbage extinction device
JP2731124B2 (en) Deodorization method
JPS6035165B2 (en) Ozone decolorization and deodorization method
JP4222607B2 (en) Deodorizing method and deodorizing liquid
JP2006239598A (en) Method and apparatus for treating toxic gas using activated carbon