JP2016198728A - Method and apparatus for volume reduction of sludge by swirl flow type electrolytic treatment - Google Patents

Method and apparatus for volume reduction of sludge by swirl flow type electrolytic treatment Download PDF

Info

Publication number
JP2016198728A
JP2016198728A JP2015081024A JP2015081024A JP2016198728A JP 2016198728 A JP2016198728 A JP 2016198728A JP 2015081024 A JP2015081024 A JP 2015081024A JP 2015081024 A JP2015081024 A JP 2015081024A JP 2016198728 A JP2016198728 A JP 2016198728A
Authority
JP
Japan
Prior art keywords
sludge
electrolysis
electrodes
treatment
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015081024A
Other languages
Japanese (ja)
Other versions
JP6220809B2 (en
Inventor
大谷 裕一
Yuichi Otani
裕一 大谷
安彦 角田
Yasuhiko Tsunoda
安彦 角田
正樹 神保
Masaki Jinbo
正樹 神保
明央 吉井
Akio Yoshii
明央 吉井
千真 梅木
Senshin Umeki
千真 梅木
Original Assignee
株式会社テクノラボ
Techno Lab:Kk
株式会社第一テクノ
Daiichi Techno:Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テクノラボ, Techno Lab:Kk, 株式会社第一テクノ, Daiichi Techno:Kk filed Critical 株式会社テクノラボ
Priority to JP2015081024A priority Critical patent/JP6220809B2/en
Publication of JP2016198728A publication Critical patent/JP2016198728A/en
Application granted granted Critical
Publication of JP6220809B2 publication Critical patent/JP6220809B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for volume reduction of sludge volume by using electrolytic treatment that can promote the decomposition of organic matter by utilizing electrolysis without using any strong oxidizing agent for excess sludge and without heating the sludge and can recover hydrogen generated in the electrolysis.SOLUTION: The volume reduction of sludge is performed using an apparatus for volume reduction of sludge by a swirl flow type electrolytic treatment which comprises: a pair or more of electrodes 4 disposed in an electrolytic device 3 for sludge reserving sludge produced by subjecting sewage to biological treatment with NaCl or KCl and washing water; and a stirrer 5 for stirring a liquid in the electrolytic device 3 for sludge in a horizontal direction and flowing the liquid as a swirl flow between a pair or more of electrodes 4. The sludge disposal can be performed at a low cost because a chemical comprises a salt only used as an electrolytic auxiliary agent. No heating energy cost is required because no heating treatment is needed by virtue of utilizing the exothermic heat generated during electrolytic reaction. Good working environment can be maintained without generating any odor because the odor generated during decomposition (liquefaction) of sludge is simultaneously decomposed.SELECTED DRAWING: Figure 2

Description

本発明は、生物処理設備より発生する余剰汚泥処分コストの削減を図る技術に関するものである。   The present invention relates to a technique for reducing the disposal cost of surplus sludge generated from a biological treatment facility.

例えば、下水を活性汚泥と呼ばれる細菌や微生物を用いて浄化する際、増殖した細菌・微生物はタンパク質を含む有機物で構成されている。汚泥中の約80%を占める前記有機物を生物処理設備より分解・除去を行い、固形物量を減少させる処理を汚泥減容という。   For example, when purifying sewage using bacteria or microorganisms called activated sludge, the grown bacteria / microorganisms are composed of organic substances including proteins. The process of reducing the amount of solids by decomposing and removing the organic matter that accounts for about 80% of the sludge from the biological treatment equipment is called sludge volume reduction.

生物処理設備を有する施設としては下水、し尿、食品排水等有機性排水に対する多くの処理方法として活性汚泥と呼ばれる細菌・微生物を用いて水を浄化する施設が挙げられる。   As a facility having a biological treatment facility, there are facilities for purifying water using bacteria / microorganisms called activated sludge as many treatment methods for organic wastewater such as sewage, human waste and food wastewater.

また、汚泥をアルカリ条件下において連続加温処理する方法が知られているが、汚泥減容率が30〜50%以上となるようにするためには、加温コストが大きく、また加温時に臭気が生じる問題がある。また、この方法で、バッチ処理を行うために汚泥の分解に長時間を要し、設備が大きくなるだけでなく、過剰のアルカリ処理は微生物増殖を阻害し、生物処理能力を阻害するトラブルを生じる場合がある。   In addition, a method of continuously heating sludge under alkaline conditions is known, but in order to reduce the sludge volume reduction rate to 30 to 50% or more, the heating cost is high, There is a problem that odor is generated. In addition, in this method, it takes a long time to decompose sludge for batch processing, and not only the equipment becomes large, but excessive alkali treatment inhibits microbial growth and causes troubles that impair biological treatment capacity. There is a case.

また、汚泥の液化を進めた後に過酸化水素等の酸化剤などにより汚泥の酸化、分解処理を行うと汚泥減容率30〜50%以上になるが、酸化剤の薬品コストまたはオゾン装置等のコストが大きい。   In addition, if sludge is oxidized and decomposed with an oxidizing agent such as hydrogen peroxide after liquefaction of sludge, the sludge volume reduction rate is 30-50% or more. Cost is high.

さらに微生物製剤(有機物分解酵素剤)を用いることで生物処理における負荷を低減させることができるが、この方法によると、微生物は低栄養状態となり、生物増殖速は低減するので、微生物製剤コストが大きい欠点がある。   In addition, the use of microbial preparations (organic degrading enzyme agents) can reduce the burden on biological treatment. However, according to this method, microorganisms are under-nutrition and the rate of biological growth is reduced, resulting in high microbial preparation costs. There are drawbacks.

本出願人は先に、特開2013−103156号公報記載の「生物汚泥減容化方法と装置」なる特許出願をしており、当該特許出願発明は、有機性排水を生物処理して得られる汚泥からなる被処理液にアルカリ剤を添加して加温処理して汚泥の液化を進めた後に強酸化剤(過酸化水素等薬剤)を用いて汚泥中の有機物の分解・除去を行い、汚泥減容化する方法とその装置に係わるものである。   The present applicant has previously filed a patent application “Biological sludge volume reduction method and apparatus” described in JP2013-103156A, and the patented invention is obtained by biologically treating organic wastewater. After sludge is liquefied by adding an alkali agent to the liquid to be treated consisting of sludge and liquefying the sludge, organic substances in the sludge are decomposed and removed using a strong oxidizing agent (chemicals such as hydrogen peroxide). The present invention relates to a volume reduction method and an apparatus therefor.

上記汚泥減容化処理の間に生物汚泥が抱えていた有害な重金属及びセシウム等の放射能物質は液中に溶解されるので既知の各吸着材によって液中から選択的に除去することが出来る。前記有害物質の除去作業に用いられる既知の吸着材としてはゼオライト、イオン交換樹脂、キレート樹脂及び活性炭等が挙げられる。   Hazardous heavy metals and radioactive materials such as cesium that biological sludge had during the sludge volume reduction treatment are dissolved in the liquid and can be selectively removed from the liquid by each known adsorbent. . Known adsorbents used for removing harmful substances include zeolites, ion exchange resins, chelate resins and activated carbon.

特許4667909号公報には、有機性廃棄物の処理方法及び処理設備が開示されており、メタン発酵により発生する消化汚泥を脱水した際の脱水ケーキの水分を電気分解して発生する水素は燃料電池等に活用し、酸素・塩素ガスは脱水ろ液等の有機性廃液の酸化・分解に用いることが開示されている。   Japanese Patent No. 4667909 discloses a processing method and processing equipment for organic waste, and hydrogen generated by electrolyzing water in a dehydrated cake when dewatering digested sludge generated by methane fermentation is a fuel cell. It is disclosed that oxygen / chlorine gas is used for oxidation / decomposition of organic waste liquid such as dehydrated filtrate.

また、特許第4599955号公報には、返送汚泥を塩素酸ソーダに硫酸と過酸化水素を反応させて生成する二酸化水素ガスを用いて酸化、分解する方法が開示されている。
また、特許3828429号公報には、余剰汚泥に過酸化水素と酢酸又は過酢酸等を加えて、酸性条件下で分解をした後、中性にして残存過酸化水素を分解、除去する余剰汚泥の減容方法に関する技術が開示されている。
Japanese Patent No. 4599955 discloses a method in which return sludge is oxidized and decomposed using hydrogen dioxide gas produced by reacting sulfuric acid and hydrogen peroxide with sodium chlorate.
In addition, in Japanese Patent No. 3828429, surplus sludge is obtained by adding hydrogen peroxide and acetic acid or peracetic acid to excess sludge, decomposing under acidic conditions, and then neutralizing and removing residual hydrogen peroxide. Techniques relating to volume reduction methods are disclosed.

特許3796416号公報には、返送汚泥に塩化物を添加し、電解処理することで有機性汚水を浄化する方法が開示されている。
また、特許3389902号公報には、余剰汚泥に交流の電気分解と過酸化水素を作用させて汚泥減容化する方法が開示されている。
Japanese Patent No. 3796416 discloses a method of purifying organic sewage by adding chloride to the returned sludge and electrolytically treating it.
Japanese Patent No. 3389902 discloses a method of reducing sludge volume by applying AC electrolysis and hydrogen peroxide to surplus sludge.

特許3273189号公報には、水の電気分解により生成する水素ガス・下水汚泥メタン発酵によるメタンガスを利用するエネルギー供給に対する技術が開示されている。
特許3776091号公報には、有機性汚泥の分解・減容化を目的に電解とオゾンガスを併用する方法が開示されており、「電解−汚泥減容」に関わる技術である。
Japanese Patent No. 3273189 discloses a technology for energy supply using hydrogen gas generated by electrolysis of water and methane gas by sewage sludge methane fermentation.
Japanese Patent No. 3776091 discloses a method in which electrolysis and ozone gas are used in combination for the purpose of decomposing and reducing the volume of organic sludge, and is a technique related to “electrolysis-sludge volume reduction”.

特許4063688号公報には、遠心分離機並びに圧力タンクを用いて電気分解を行い、圧力の高い箇所での酸化分解を促進、圧力の低い箇所には陰極の水素ガス回収ゾーンとした構造を有する水素回収型汚水汚泥処理装置が開示されている。   In Japanese Patent No. 4063688, electrolysis is performed using a centrifugal separator and a pressure tank to promote oxidative decomposition at a high pressure location, and hydrogen having a structure that serves as a cathode hydrogen gas recovery zone at a low pressure location. A recovery-type sewage sludge treatment apparatus is disclosed.

特開2013−103156号公報JP2013-103156A 特許4667909号公報Japanese Patent No. 4667909 特許4599955号公報Japanese Patent No. 4599955 特許3828429号公報Japanese Patent No. 3828429 特許3796416号公報Japanese Patent No. 3796416 特許3389902号公報Japanese Patent No. 3389902 特許3273189号公報Japanese Patent No. 3273189 特許3776091号公報Japanese Patent No. 3776091 特許4063688号公報Japanese Patent No. 4063688

特開2013−103156号公報(特許文献1)記載の方法における余剰汚泥をアルカリ条件下において連続加温処理する方法では、苛性ソーダ、過酸化水素等の危険な薬品を用いる操作性の問題があり、蒸気ボイラ等による加温処理に係るコストが嵩むこと、及びアルカリ加温条件下における前処理時に臭気が発生する問題がある。さらに、汚泥減容化処理時間が過酸化水素添加量に依存し、酸化分解反応に時間を要することと発泡が著しく、煩雑な消泡管理が必要であることも問題点として挙げられる。   In the method of continuously heating the excess sludge in the method described in JP2013-103156A (Patent Document 1) under alkaline conditions, there is a problem of operability using dangerous chemicals such as caustic soda and hydrogen peroxide, There is a problem that the cost related to the heating treatment by a steam boiler or the like is increased, and odor is generated during the pretreatment under the alkali heating condition. Furthermore, the sludge volume reduction treatment time depends on the amount of hydrogen peroxide added, and it takes time for the oxidative decomposition reaction and the foaming is remarkably necessary, and complicated defoaming management is required.

特許文献1記載の方法で汚泥減容率が30〜50%以上となるようにするためには、加温コストが大きく、また加温時に臭気が生じる問題があるだけでなく、この方法で、バッチ処理を行うために汚泥の分解に長時間を要し、設備が大きくなるだけでなく、過剰のアルカリ処理は微生物増殖を阻害し、生物処理能力を阻害するトラブルを生じる場合がある。   In order for the sludge volume reduction rate to be 30 to 50% or more by the method described in Patent Document 1, not only is the heating cost large and there is a problem that odor is generated during heating, but in this method, Not only does sludge decomposition take a long time to perform batch processing and the equipment becomes large, but excessive alkali treatment may inhibit microbial growth and cause troubles that impair biological treatment capacity.

特許4667909号公報(特許文献2)には、有機性廃棄物の処理方法及び処理設備が開示されているが、汚泥減容化については触れられていない。)
また、特許第4599955号公報(特許文献3)には、返送汚泥を塩素酸ソーダに硫酸と過酸化水素を反応させて生成する二酸化水素ガスを用いて酸化、分解する方法が開示されているが、汚泥減容化については触れられていない。
Japanese Patent No. 4667909 (Patent Document 2) discloses an organic waste processing method and processing equipment, but does not mention sludge volume reduction. )
Japanese Patent No. 4599955 (Patent Document 3) discloses a method of oxidizing and decomposing returned sludge using hydrogen dioxide gas produced by reacting sulfuric acid and hydrogen peroxide with sodium chlorate. There is no mention of sludge volume reduction.

特許3828429号公報(特許文献4)には、余剰汚泥を過酸化水素と酢酸、又は過酢酸等で分解することは開示されているが、「電解−汚泥減容」に関する技術の記載がない。   Japanese Patent No. 3828429 (Patent Document 4) discloses that excess sludge is decomposed with hydrogen peroxide and acetic acid, peracetic acid or the like, but there is no description of a technique relating to "electrolytic-sludge volume reduction".

特許3796416号公報(特許文献5)には、電解処理を含む汚泥減容化方法が開示されているが、電解条件は以下に述べる本発明とは大きく異なる。又、汚泥減容率は示されていない。さらに、臭気・発泡問題等の解決策は示されていない。また、特許文献5記載の発明の電解条件は、MLSS4,000mg/l、余剰汚泥2Lに対して殺傷率100%(生物の酸素消費量が無くなる条件としている)としているが、生物の殺傷率100%で生物の酸素消費量が無くなるが、生物量(重さ、体積)が減少する汚泥減容とは異なる。   Japanese Patent No. 3796416 (Patent Document 5) discloses a sludge volume reduction method including electrolytic treatment, but the electrolysis conditions are significantly different from those of the present invention described below. The sludge volume reduction rate is not shown. Furthermore, no solution for odor / foaming problems is shown. Moreover, although the electrolysis conditions of the invention described in Patent Document 5 are MLSS 4,000 mg / l and the surplus sludge 2L, the kill rate is 100% (the condition that the oxygen consumption of the organism is eliminated), but the kill rate 100 of the organism. %, The oxygen consumption of living organisms is lost, but this is different from sludge volume reduction where the biomass (weight, volume) is reduced.

また、電解で発生した次亜塩素イオンで生物を殺傷しても汚泥減容とはならない。さらに、特許文献5では攪拌機を有する循環タンクとは別に電解槽を設け、循環ポンプを用いて電極間の液に一定流速の上向流を与えるようにしているが、電解槽内の液の流速が遅いと電極間で発生するガスの気泡は電極表面に留まり、電解電流移動の妨げとなる。電解で発生するガス気泡は非常に小さく、液の浮上速度だけでは電極表面に気泡が残り易くなるので、電極間の液流速が重要であり、上昇流速だけで強制的にガス気泡を電極より離すことは難しい。   Moreover, even if organisms are killed by hypochlorite ions generated by electrolysis, the volume of sludge is not reduced. Further, in Patent Document 5, an electrolytic cell is provided separately from a circulation tank having a stirrer, and an upward flow of a constant flow rate is given to the liquid between the electrodes using a circulation pump. If it is slow, gas bubbles generated between the electrodes stay on the electrode surface, which hinders the electrolysis current transfer. Gas bubbles generated by electrolysis are very small, and bubbles tend to remain on the electrode surface only with the liquid floating speed. Therefore, the liquid flow rate between the electrodes is important, and the gas bubbles are forcibly separated from the electrode only by the rising flow rate. It ’s difficult.

特許3389902号公報(特許文献6)には、余剰汚泥に交流の電気分解と過酸化水素を作用させて汚泥減容化する方法が開示されている。
但し、この発明の「交流の電気分解」については不明であり、その実用化が可能であるのかどうかわからない。具体的には、下水汚泥50mlの処理に3%過酸化水素水10mlを添加することは、非常にコストが高く、又、発泡問題は示されていない。また、処理後の有機炭素量の増加が示されているが、生物処理への負荷増大を伴い、逆に生物処理への不安定化、生物増殖率の増加、生物処理必要空気量の増加を伴う点で当技術の実用性が疑わしい。
Japanese Patent No. 3389902 (Patent Document 6) discloses a method of reducing sludge volume by causing AC electrolysis and hydrogen peroxide to act on excess sludge.
However, “alternative electrolysis” of the present invention is unknown, and it is not known whether it can be put to practical use. Specifically, the addition of 10 ml of 3% hydrogen peroxide solution to the treatment of 50 ml of sewage sludge is very expensive and no foaming problem has been shown. In addition, the increase in the amount of organic carbon after treatment has been shown, but with the increase in the burden on biological treatment, conversely, destabilization to biological treatment, increase in the growth rate of biological organisms, and increase in the amount of air required for biological treatment. At the same time, the practicality of this technology is doubtful.

特許3273189号公報(特許文献7)には、水の電気分解により生成する水素ガス・下水汚泥メタン発酵によるメタンガスを利用するエネルギー供給に対する技術が開示されているが、本発明と比較して「電解−汚泥減容」に関する類似性が無い。   Japanese Patent No. 3273189 (Patent Document 7) discloses a technology for supplying energy using hydrogen gas generated by electrolysis of water and methane gas by sewage sludge methane fermentation. -There is no similarity regarding sludge volume reduction.

特許3776091号公報(特許文献8)の有機性汚泥を電解とオゾンガスを併用して汚泥減容を図る技術であるが、電解条件・汚泥減容率は示されていないだけでなく、臭気・発泡問題等の解決も示されていない。   Patent 3776091 (Patent Document 8) is a technology to reduce sludge volume by using electrolysis and ozone gas in combination with organic sludge, but not only the electrolysis conditions and sludge volume reduction rate are shown, but also odor and foaming. There is no indication of solutions to problems.

特許4063688号公報(特許文献9)には、遠心分離機並びに圧力タンクを用いて電気分解を行い、圧力の高い箇所での酸化分解を促進、圧力の低い箇所には陰極の水素ガスの回収を行う水素回収型汚水汚泥処理装置が開示されているが、電解条件・汚泥減容率は示されていないだけでなく、臭気・発泡問題等の解決も示されていない。   In Japanese Patent No. 4063688 (Patent Document 9), electrolysis is performed using a centrifuge and a pressure tank to promote oxidative decomposition at high pressure locations, and recovery of cathode hydrogen gas at low pressure locations. Although the hydrogen recovery type sludge treatment apparatus to be performed is disclosed, not only the electrolysis conditions and sludge volume reduction rate are not shown, but also the solution of the odor and foaming problems is not shown.

本発明の課題は、上記従来技術の余剰汚泥に対して強酸化剤を用いることなく、また加温しないで電気分解を利用して有機物の分解を促進させ、さらに電気分解で発生する水素を回収することができる電解処理を用いた汚泥減容化方法と装置を提供することである。   The object of the present invention is to promote the decomposition of organic substances by utilizing electrolysis without using a strong oxidizer and heating without using the excessive sludge of the above prior art, and further recover the hydrogen generated by electrolysis. An object of the present invention is to provide a sludge volume reduction method and apparatus using electrolytic treatment.

本発明の上記課題は次の解決手段により解決される。
請求項1記載の発明は、下水を生物処理して得られる汚泥を塩化ナトリウム又は塩化カリウム及び洗浄水と共に水平方向に攪拌して一対以上の電極の間に旋廻流として流しながら電気分解することを特徴とする旋廻流式の電解処理による汚泥減容化方法である。
The above-described problems of the present invention are solved by the following solution means.
The invention according to claim 1 is to electrolyze sludge obtained by biological treatment of sewage while stirring horizontally with sodium chloride or potassium chloride and washing water and flowing as a swirl between a pair of electrodes. This is a sludge volume reduction method using a rotating flow type electrolytic treatment.

請求項2記載の発明は、一対以上の電極の間の旋廻流を、流速1〜3m/sとすることを特徴とする請求項1記載の旋廻流式の電解処理による汚泥減容化方法である。
請求項3記載の発明は、一対以上の電極の電流密度が0.1〜0.3A/cmであることを特徴とする請求項1又は2記載の旋廻流式の電解処理による汚泥減容化方法である。
The invention according to claim 2 is a method for reducing sludge volume by electrolytic treatment of a swirling flow type according to claim 1, wherein the swirling flow between the pair of electrodes is set to a flow velocity of 1 to 3 m / s. is there.
The invention according to claim 3 is characterized in that the current density of one or more pairs of electrodes is 0.1 to 0.3 A / cm 2 , and the sludge volume reduction by swirling flow type electrolytic treatment according to claim 1 or 2 It is a conversion method.

請求項4記載の発明は、下水を生物処理して得られる汚泥を塩化ナトリウム又は塩化カリウム及び洗浄水と共に溜めた汚泥電解装置と、該汚泥電解装置内に配置した一対以上の電極と、前記汚泥電解装置内の液を水平方向に攪拌して前記一対以上の電極の間に旋廻流として流すための攪拌機を備えたことを特徴とする旋廻流式の電解処理による汚泥減容化装置である。   The invention according to claim 4 is a sludge electrolysis apparatus in which sludge obtained by biological treatment of sewage is stored together with sodium chloride or potassium chloride and washing water, a pair of electrodes disposed in the sludge electrolysis apparatus, and the sludge A sludge volume reducing device using a rotating flow type electrolytic treatment, comprising a stirrer for stirring the liquid in the electrolytic device in a horizontal direction and flowing it as a rotating flow between the pair of electrodes.

請求項5記載の発明は、一対以上の電極を攪拌機により生じる汚泥電解装置内の液の旋廻流に沿って攪拌機の回転中心位置からずらして配置したことを特徴とする請求項4記載の旋廻流式の電解処理による汚泥減容化装置である。   The invention according to claim 5 is characterized in that the pair of electrodes are arranged so as to be shifted from the rotation center position of the stirrer along the swirl of the liquid in the sludge electrolysis apparatus generated by the stirrer. It is a sludge volume reduction device by electrolytic treatment of the type.

請求項6記載の発明は、電流密度が0.1〜0.3A/cmである一対以上の電極を配置したことを特徴とする請求項4又は5記載の旋廻流式の電解処理による汚泥減容化装置。 The invention according to claim 6 is characterized in that a pair of electrodes having a current density of 0.1 to 0.3 A / cm 2 are disposed, and the sludge by the swirling flow type electrolytic treatment according to claim 4 or 5 Volume reduction device.

請求項1、4記載の発明によれば、薬品は電解補助剤として使用する「塩」のみであり、その他の薬剤を用いないので低コストで汚泥処理ができ、また電解反応時の発熱を利用することで、加温処理が不要となるので、加熱エネルギーコストがかからない。また、汚泥の分解(液化)の際に発生する臭気も同時に分解されるために、臭気が発生しないので作業環境を良好に保てる利点は、非常に大きい。また、有機物の分解過程で生ずる発泡が少ないので、連続した汚泥の電解処理中の消泡管理は薬品処理と比較して制御し易い。   According to the first and fourth aspects of the invention, the chemical is only “salt” used as an electrolysis auxiliary, and since no other chemicals are used, sludge treatment can be performed at low cost, and heat generated during the electrolytic reaction is utilized. By doing so, the heating process becomes unnecessary, so that the heating energy cost is not incurred. Further, since the odor generated during the decomposition (liquefaction) of the sludge is also decomposed at the same time, the odor is not generated, so that the advantage of maintaining a good working environment is very great. In addition, since foaming that occurs during the decomposition of organic matter is small, defoaming management during electrolytic treatment of continuous sludge is easier to control than chemical treatment.

請求項2記載の発明によれば、請求項1記載の発明の効果に加えて、一対以上の電極の間の旋廻流が流速1m/s以上であることで、電極で発生する気泡が上昇するよりも水平方向に移動するような液の流速を確保することができ、また、発生するガスを電極板から引き離すことができて発泡が少なくなり、汚泥減容率も高くなる。ただし、前記流速が3m/s以上であると、液が飛散するおそれがある。   According to the second aspect of the present invention, in addition to the effect of the first aspect of the invention, bubbles generated at the electrodes rise when the rotational flow between the pair of electrodes is a flow velocity of 1 m / s or more. In addition, it is possible to secure a flow velocity of the liquid that moves in the horizontal direction, and it is possible to separate the generated gas from the electrode plate, thereby reducing foaming and increasing the sludge volume reduction rate. However, when the flow rate is 3 m / s or more, the liquid may be scattered.

すなわち、電極間流速を1〜3m/sとすることで次のような利点がある。
(1)電解電流低下が防止(電極間ガス気泡溜まりの防止)できる。
(2)喫水面からのガス放出を抑制する。
(3)汚泥電解装置内の液の水平流速を作ることでガス気泡の上昇速度を抑制することができ、酸化性ガスが液中へ溶解するための時間を長く確保することができる。
That is, there are the following advantages by setting the flow velocity between electrodes to 1 to 3 m / s.
(1) Reduction of electrolytic current can be prevented (prevention of gas bubble accumulation between electrodes).
(2) Suppressing gas emission from the draft surface.
(3) By making the horizontal flow rate of the liquid in the sludge electrolysis apparatus, the rising speed of the gas bubbles can be suppressed, and it is possible to ensure a long time for the oxidizing gas to dissolve in the liquid.

請求項3、6記載の発明によれば、請求項1、2記載の発明又は請求項4、5記載の発明の効果に加えて、一対以上の電極の電流密度が0.1〜0.3A/cmであることで、発熱により液温を上昇させることができ、液中の有機物の分解性がより増大する。また、一般に電流密度を高くする程、電極面積は小さくて良いので、その点でも上記電流密度には利点がある。 According to the inventions of claims 3 and 6, in addition to the effects of the inventions of claims 1 and 2 or inventions of claims 4 and 5, the current density of the pair of electrodes is 0.1 to 0.3 A. By being / cm 2 , the liquid temperature can be raised by heat generation, and the decomposability of organic substances in the liquid is further increased. In general, the higher the current density is, the smaller the electrode area is.

請求項5記載の発明によれば、請求項4記載の発明の効果に加えて、攪拌機により生じる汚泥電解装置内の液の旋廻流に沿って攪拌機の回転中心位置からずらして電極を配置したことにより、一対以上の電極間で汚泥電解装置内の液の旋廻流の流速をより高めることが容易となる。   According to the invention described in claim 5, in addition to the effect of the invention described in claim 4, the electrodes are arranged shifted from the rotation center position of the stirrer along the swirling flow of the liquid in the sludge electrolysis apparatus generated by the stirrer. Thereby, it becomes easy to further increase the flow velocity of the swirl of the liquid in the sludge electrolysis apparatus between the pair of electrodes.

本発明の一実施例の装置の構成図である。It is a block diagram of the apparatus of one Example of this invention. 図1の汚泥電解装置を丸型タンクとしたときの平面図(図2(A))と側面図(図2(B))である。FIG. 2 is a plan view (FIG. 2A) and a side view (FIG. 2B) when the sludge electrolysis apparatus of FIG. 1 is a round tank. 本発明の一実施例の汚泥原液と種々の電解条件を変化させた後の電解処理汚泥の様子を示す図である。It is a figure which shows the mode of the electrolytic treatment sludge after changing the sludge stock solution of one Example of this invention, and various electrolysis conditions. 本発明の一実施例の汚泥の減容化に必要な電解電流値と必要分解時間の関係を示すグラフである。It is a graph which shows the relationship between the electrolytic-current value required for volume reduction of the sludge of one Example of this invention, and required decomposition | disassembly time. 本発明の一実施例の電解装置内での攪拌機の攪拌速度と汚泥減容率の関係を示すグラフである。It is a graph which shows the relationship between the stirring speed of the stirrer in the electrolytic device of one Example of this invention, and a sludge volume reduction rate.

図1に本発明の一実施例の装置の構成図を示す。
円筒状の汚泥電解装置3に汚泥貯槽2から余剰汚泥をポンプ3で供給する。余剰汚泥が供給された汚泥電解装置3の一つの内璧側に電極4を片寄って配置する。該電極4は一対の陽極と陰極の組を複数個並列に配置する。陽極材料にはチタン+白金(メッキを表面に施す)を使用し、陰極材料にはチタンを使用した。
FIG. 1 shows a configuration diagram of an apparatus according to an embodiment of the present invention.
Excess sludge is supplied from the sludge storage tank 2 to the cylindrical sludge electrolysis apparatus 3 by the pump 3. The electrode 4 is arranged so as to be offset toward one inner wall side of the sludge electrolysis apparatus 3 to which excess sludge is supplied. The electrode 4 has a plurality of pairs of anode and cathode arranged in parallel. Titanium + platinum (plated on the surface) was used as the anode material, and titanium was used as the cathode material.

電極4の電解電流値を高くするために電解補助剤として塩化ナトリウム又は塩化カリウムを添加する。該塩化ナトリウム又は塩化カリウムは、産業廃棄物処理時又はごみ浸出処理時に製造される工業用塩を使用することができる。また電極4の電解電流密度を0.1〜0.3(A /cm)にすることで汚泥電解装置3内の液の発熱により、最終水温を50℃以上にすることができる。 In order to increase the electrolysis current value of the electrode 4, sodium chloride or potassium chloride is added as an electrolysis auxiliary. As the sodium chloride or potassium chloride, an industrial salt produced during industrial waste treatment or waste leaching treatment can be used. Moreover, the final water temperature can be made 50 degreeC or more by the heat_generation | fever of the liquid in the sludge electrolysis apparatus 3 by making the electrolysis current density of the electrode 4 into 0.1-0.3 (A / cm < 2 >).

円筒状の汚泥電解装置3の中央には汚泥電解装置3内の液を攪拌するための攪拌機5を配置した。攪拌機5の液中の攪拌羽根は「3枚プロペラ型」、喫水面の上部で気泡層厚さを保つ第二の攪拌羽根は「ピッチドパドル型」を使用することが望ましい。液中の3枚プロペラ型攪拌羽根は液水位の1/2付近、喫水面の上部のピッチドパドル型の攪拌羽根は、羽根替えの下部と喫水面間に気泡層を形成するための間隙を設ける。円筒形の分解タンクの断面積により、気泡層厚さを決定する。例えば、直径1,000mmのタンクに対しては約10〜50mm程度の初期気泡層を形成させる間隙を設ける。   In the center of the cylindrical sludge electrolysis apparatus 3, a stirrer 5 for agitating the liquid in the sludge electrolysis apparatus 3 is disposed. The stirring blade in the liquid of the stirrer 5 is preferably a “three-propeller type”, and the second stirring blade that maintains the thickness of the bubble layer above the draft surface is a “pitched paddle type”. The three propeller type stirring blades in the liquid have a gap for forming a bubble layer between the lower part of the blade replacement and the draft surface. The bubble layer thickness is determined by the cross-sectional area of the cylindrical decomposition tank. For example, a gap for forming an initial bubble layer of about 10 to 50 mm is provided for a tank having a diameter of 1,000 mm.

また、一対の陽極と陰極間の電解電流密度が高いほど、発生するガスの電極板からの引き離しを目的として汚泥電解装置中の液の電極間流速は1m/s〜3m/sとすることが望ましい。汚泥電解装置中の液の流速が1m/s以上であることで、電極で発生する気泡が上昇するよりも水平方向に移動するような液の流速を確保することができ、また、発生するガスを電極板から引き離すことができて発泡が少なくなり、汚泥減容率も高くなる。ただし、前記流速を3m/s以上にすると、液が飛散し易くなる。すなわち、電極間流速を1〜3m/sとすることで次のような利点がある。
(1)電解電流低下が防止(電極間ガス気泡溜まりの防止)できる。
(2)喫水面からのガス放出を抑制する。
(3)汚泥電解装置内の液の水平流速を作ることでガス気泡の上昇速度を抑制することができ、酸化性ガスが液中へ溶解するための時間を長く確保することができる。
In addition, the higher the electrolytic current density between the pair of anode and cathode, the higher the flow rate between electrodes of the liquid in the sludge electrolysis apparatus should be 1 m / s to 3 m / s for the purpose of separating the generated gas from the electrode plate. desirable. Since the flow rate of the liquid in the sludge electrolysis apparatus is 1 m / s or more, it is possible to secure the flow rate of the liquid that moves in the horizontal direction rather than the bubbles generated at the electrodes rising, and the generated gas Can be separated from the electrode plate, foaming is reduced, and the sludge volume reduction rate is increased. However, when the flow rate is 3 m / s or more, the liquid is likely to scatter. That is, there are the following advantages by setting the flow velocity between electrodes to 1 to 3 m / s.
(1) Reduction of electrolytic current can be prevented (prevention of gas bubble accumulation between electrodes).
(2) Suppressing gas emission from the draft surface.
(3) By making the horizontal flow rate of the liquid in the sludge electrolysis apparatus, the rising speed of the gas bubbles can be suppressed, and it is possible to ensure a long time for the oxidizing gas to dissolve in the liquid.

図1に本発明の汚泥の電解処理システムの全体図を示すように下水又は工場排水は生物処理槽1内で処理された後、沈殿槽2に送られ上澄み液と沈殿物に分離される。前記上澄み液は処理水として利用され、前記沈殿物は生物処理槽1へ返送される返送汚泥と旋廻式電解装置3に送られる余剰汚泥に分けられる。   As shown in the overall view of the sludge electrolytic treatment system of the present invention in FIG. 1, sewage or industrial wastewater is treated in a biological treatment tank 1 and then sent to a precipitation tank 2 to be separated into a supernatant and a precipitate. The supernatant liquid is used as treated water, and the precipitate is divided into return sludge to be returned to the biological treatment tank 1 and excess sludge to be sent to the rotating electrolyzer 3.

図2には前記旋廻式電解装置3の一例を示す。図2(A)の平面図と図2(B)の側面図に示すように旋廻式電解装置3は丸型タンクとし、その中央に攪拌機5を設け、汚泥の旋廻式電解装置3の壁際に並行して複数の一対の電極4の組を設けることで旋廻流を利用して電極4間に高流速を与えるのが重要である。   FIG. 2 shows an example of the rotating electrolyzer 3. As shown in the plan view of FIG. 2 (A) and the side view of FIG. 2 (B), the rotating electrolyzer 3 is a round tank, and is provided with a stirrer 5 in the center thereof. It is important to provide a high flow rate between the electrodes 4 by using a swirl flow by providing a pair of a plurality of pairs of electrodes 4 in parallel.

円筒状の電解装置3の中央に配置した攪拌機5を回転させて、旋廻式電解装置に高速旋廻流を発生させる。汚泥を高速旋廻流とすることで電極4間における気泡溜まりを防止して電流移動を促進させて有機物の分解が効果的に行われる。   A stirrer 5 disposed in the center of the cylindrical electrolyzer 3 is rotated to generate a high-speed swirling flow in the swirling electrolyzer. By making the sludge into a high-speed swirl flow, bubbles are prevented from accumulating between the electrodes 4 and current transfer is promoted, so that organic substances are effectively decomposed.

電解補助する「塩」の使用量低減のために電極間隙を小さくしている。また、電極間に溜まる気泡は電解電流を妨げるために、発生したガス気泡を高速旋廻流で電極より引き離すことで電解電流移動を促進させている。そのために図2(A)に示すように電解装置3は円筒状とし、また攪拌機5は図2(B)に示すように液中攪拌羽根5aと液面上の攪拌羽根5bを有する攪拌機5が望ましい。   The electrode gap is reduced to reduce the amount of “salt” used to assist electrolysis. In addition, since the bubbles accumulated between the electrodes hinder the electrolysis current, the generated gas bubbles are separated from the electrodes by a high-speed rotating flow to promote the electrolysis current movement. For this purpose, the electrolyzer 3 is cylindrical as shown in FIG. 2 (A), and the stirrer 5 is a stirrer 5 having a submerged stirring blade 5a and a stirring blade 5b on the liquid surface as shown in FIG. 2 (B). desirable.

汚泥から発生する酸化性ガスの放出抑制のためには液中での滞留時間を長くすることが重要であり、旋廻式電解装置3中の汚泥を含む液の旋廻流の作用により発生した気泡は上昇速度が抑制された分だけ長く、液中に滞留する。液中への酸化性ガス溶解量が増加するために汚泥の分解が促進される効果もある。   In order to suppress the release of oxidizing gas generated from sludge, it is important to lengthen the residence time in the liquid, and bubbles generated by the swirling action of the liquid containing sludge in the rotating electrolyzer 3 are It stays in the liquid for as long as the rising speed is suppressed. Since the amount of oxidizing gas dissolved in the liquid increases, there is also an effect of promoting the decomposition of sludge.

また、旋廻式電解装置3の液面上に形成される気泡層(図示せず)の厚さの制御(発生ガスの放出抑制)のために、前記液面より上方に10〜50mm程度気泡層を形成させる。こうして形成された気泡層により発生ガスの放出を抑制し、液中での発生ガスの滞留時間を長くする。   Further, in order to control the thickness of a bubble layer (not shown) formed on the liquid surface of the rotating electrolyzer 3 (suppress the release of generated gas), the bubble layer is about 10 to 50 mm above the liquid surface. To form. The bubble layer formed in this way suppresses the release of the generated gas and extends the residence time of the generated gas in the liquid.

また、気泡層厚さの制御は重要であり、気泡層の制御方法として、旋廻式電解装置3の液攪拌(高速旋廻流)のための液中の攪拌羽根5aの他に、液面と液面上の攪拌羽根5bの間隔を10〜50mmにすることで発生した気泡の層を形成させる。この層は発生ガスの放出を抑制することが出来るが、泡と共に有機性固形物も一緒に付着するので汚泥減容時間の最終5〜15分間は完全消泡を行うことで有機性固形物の大部分を分解させることが出来る。   The control of the bubble layer thickness is important. As a method for controlling the bubble layer, in addition to the stirring blade 5a in the liquid for liquid stirring (high-speed swirling flow) of the rotating electrolyzer 3, the liquid surface and liquid A layer of generated bubbles is formed by setting the interval between the stirring blades 5b on the surface to 10 to 50 mm. Although this layer can suppress the release of the generated gas, organic solids adhere together with the foam, so the final solidification of the sludge volume reduction time is 5-15 minutes, so that the organic solids Most can be decomposed.

某食肉加工センタの余剰汚泥0.5L(固形物量(SS)11,800ppm含有)を図1に示す装置で電解処理した。電解処理条件は、次の通りである。
DC10V 定電圧処理;
塩化ナトリウム 20,000ppm添加;
初期電解電流4.7A〜1h処理; 最終電解電流8.1A;
初期電解電流4.7Aで電解処理を開始し、汚泥分解に伴い、液中に溶出する成分の
増加と共に導電率も上昇する。1h処理後の最終電解電流値は8.1Aまで上昇して
いた。
The surplus sludge 0.5L (solid content (SS) 11,800 ppm containing) of a shark meat processing center was electrolytically processed with the apparatus shown in FIG. The electrolytic treatment conditions are as follows.
DC10V constant voltage processing;
Addition of 20,000 ppm sodium chloride;
Initial electrolysis current 4.7 A to 1 h treatment; final electrolysis current 8.1 A;
Electrolytic treatment is started at an initial electrolysis current of 4.7 A, and the conductivity increases as the amount of components eluted in the liquid increases with sludge decomposition. The final electrolysis current value after 1 h treatment was increased to 8.1A.

初期水温35℃〜最終水温72℃(水温上昇)
初期pH6.5〜最終pH7.2(アルカリ上昇)
図3には汚泥原液と種々の電解条件を変化させた後の電解処理汚泥の様子とそれぞれの汚泥減容率を示す。
Initial water temperature 35 ° C to final water temperature 72 ° C (water temperature rise)
Initial pH 6.5 to final pH 7.2 (alkaline rise)
FIG. 3 shows the state of the electrolytically treated sludge after changing the sludge stock solution and various electrolysis conditions, and the respective sludge volume reduction rates.

図3は左より、それぞれ原液、電解(1.7A/30分)、電解(4.7A/30分)、電解(4.7A/60分)後の汚泥の様子を示す写真であり、表1には図3に対応する原液、各種電解後の汚泥の固形物(SS)濃度及び汚泥減容率を示す。   FIG. 3 are photographs showing sludge after undiluted solution, electrolysis (1.7 A / 30 minutes), electrolysis (4.7 A / 30 minutes), and electrolysis (4.7 A / 60 minutes) from the left. 1 shows the stock solution corresponding to FIG. 3, the solids (SS) concentration of sludge after various electrolysis, and the sludge volume reduction rate.

上記結果から図4に示す汚泥の減容化に必要な電解電流値と必要分解時間の関係が得られる。
図4の横軸は電解入力(A・h/gDS)であり、乾燥汚泥(DS)1.0gに対する電解電流値(A)を1時間作用させた。また、縦軸は電解で分解・除去した乾燥固形物(gDS)量である。
From the above results, the relationship between the electrolytic current value necessary for sludge volume reduction and the required decomposition time shown in FIG. 4 is obtained.
The horizontal axis in FIG. 4 represents electrolytic input (A · h / gDS), and the electrolytic current value (A) against 1.0 g of dried sludge (DS) was applied for 1 hour. The vertical axis represents the amount of dry solid (gDS) decomposed and removed by electrolysis.

図4のグラフより、目的とする除去SS(gDS)に対する必要な電解電流値と分解時間を決定することが可能である。
但し、初期MLSS(生物槽混合液中に浮遊する固形物=生物量)が12,000ppmを大きく超えている場合は除去SS量は上記計画値より低くなる。これは、分解した微生物細胞膜の可溶化から溶解する有機物の分解に消費される分は過剰の電解電流値又は分解時間を必要とすることを意味する。逆に、初期MLSS値が低い程、電解入力は少ない条件で良い。これは可溶化した有機物の分解まで連続して同時に分解が可能なことから臭気成分も分解されている物と考えられる。
From the graph of FIG. 4, it is possible to determine the required electrolytic current value and decomposition time for the target removal SS (gDS).
However, when the initial MLSS (solid matter floating in the biological tank mixture = biomass) greatly exceeds 12,000 ppm, the removed SS amount becomes lower than the planned value. This means that the amount consumed for the decomposition of the dissolved organic matter from the solubilization of the decomposed microbial cell membrane requires an excessive electrolytic current value or decomposition time. Conversely, the lower the initial MLSS value, the less the electrolytic input may be. This is considered to be a product in which the odor component is also decomposed since it can be decomposed simultaneously until the decomposition of the solubilized organic matter.

次に、発生する「発泡」に対しては酸化性ガスも含まれ、可能な限り液中で有機物分解に寄与させる目的と共に一対の陽極と陰極の電極間距離6〜10mmの狭い中で発生するガスは電極間に溜まると電解電流移動の妨げとなるので高流速を与えて電極からガス気泡の剥離を行うのが良い。   Next, the generated “foaming” includes an oxidizing gas, and is generated in a narrow distance of 6 to 10 mm between the pair of anode and cathode with the purpose of contributing to decomposition of organic substances in the liquid as much as possible. When gas accumulates between the electrodes, it hinders the movement of the electrolysis current, so it is preferable to peel off gas bubbles from the electrodes by applying a high flow rate.

図1に示す電解装置3内に設置する電極は丸型電解装置3の中央に設けた攪拌力を最も受け易い周速に沿った電解装置3内壁と並行した形で設置し、電極間の液の流速を約1〜3m/sとする。   The electrode installed in the electrolysis apparatus 3 shown in FIG. 1 is installed in parallel with the inner wall of the electrolysis apparatus 3 along the peripheral speed at which the stirring force provided at the center of the round electrolysis apparatus 3 is most easily received. The flow rate is about 1 to 3 m / s.

電解装置3中の液の流速が1m/s以上であることで、電極で発生する気泡が上昇するよりも水平方向に移動するような液の流速を確保することができ、また、発生するガスを電極板から引き離すことができて発泡が少なくなり、汚泥減容率も高くなる。ただし、前記流速を3m/s以上にすると、液が飛散し易くなる。すなわち、電極間流速を1〜3m/sとすることで次のような利点がある。
(1)電解電流低下が防止(電極間ガス気泡溜まりの防止)できる。
(2)喫水面からのガス放出を抑制する。
(3)汚泥電解装置内の液の水平流速を作ることでガス気泡の上昇速度を抑制することができ、酸化性ガスが液中へ溶解するための時間を長く確保することができる。
Since the flow rate of the liquid in the electrolysis apparatus 3 is 1 m / s or more, the flow rate of the liquid that moves in the horizontal direction can be secured rather than the bubbles generated at the electrodes rising, and the generated gas Can be separated from the electrode plate, foaming is reduced, and the sludge volume reduction rate is increased. However, when the flow rate is 3 m / s or more, the liquid is likely to scatter. That is, there are the following advantages by setting the flow velocity between electrodes to 1 to 3 m / s.
(1) Reduction of electrolytic current can be prevented (prevention of gas bubble accumulation between electrodes).
(2) Suppressing gas emission from the draft surface.
(3) By making the horizontal flow rate of the liquid in the sludge electrolysis apparatus, the rising speed of the gas bubbles can be suppressed, and it is possible to ensure a long time for the oxidizing gas to dissolve in the liquid.

次に汚泥電解装置内での攪拌機の攪拌速度と汚泥減容率の関係を示すグラフを図5に示す。
円筒形の汚泥電解装置寸法に対して攪拌機の攪拌速度は高いほど周速も高く(電極間流速1.0m/s以上)、汚泥減容率も高くなり、同時に、発泡も少ない。電極4より発生する気泡が、上昇するよりも液の流速に同伴されて真横に移動する程度に液を攪拌して液の流速を維持することが必要である。
Next, a graph showing the relationship between the stirring speed of the stirrer in the sludge electrolysis apparatus and the sludge volume reduction rate is shown in FIG.
The higher the stirring speed of the stirrer relative to the size of the cylindrical sludge electrolysis apparatus, the higher the peripheral speed (the inter-electrode flow rate is 1.0 m / s or more), the sludge volume reduction rate is increased, and at the same time, the foaming is less. It is necessary to maintain the liquid flow rate by stirring the liquid to such an extent that bubbles generated from the electrode 4 move alongside the liquid flow rate rather than rising.

本実施例を実施する際の処理コストを電解処理をしない場合のコストと比較した結果は次の通りであった。なお、某食肉加工センタの排水処理設備における排水量が1,000m/日であり、余剰汚泥(SS1%濃度)が50m/日である場合を考える。
A.電解処理無し
発生する汚泥量: 脱水汚泥(含水率85%) 3.3t/日
汚泥処分費: 脱水処理費 51,000円/日
脱水汚泥処分費 50,000円/日
合計 101,000円/日
B.電解処理有り
発生する汚泥量 : 脱水汚泥(含水率85%)0.3t/日
汚泥処分費 : 電解処理費 14,750円/日
汚泥処分費 : 脱水処理費 5,000円/日
脱水汚泥処分費 5,000円/日
合計 24,750円/日

コストメリット(A−B)は76,250円/日(2,783万円/年)である。
The result of comparing the processing cost when carrying out the present embodiment with the cost in the case of not performing electrolytic treatment was as follows. It is assumed that the amount of wastewater in the wastewater treatment facility of the beef meat processing center is 1,000 m 3 / day, and the excess sludge (SS1% concentration) is 50 m 3 / day.
A. Without electrolytic treatment Generated sludge amount: Dehydrated sludge (water content 85%) 3.3t / day Sludge disposal cost: Dehydration treatment cost 51,000 yen / day
Dewatered sludge disposal cost 50,000 yen / day
Total 101,000 yen / day With electrolytic treatment Generated sludge amount: Dehydrated sludge (water content 85%) 0.3t / day Sludge disposal fee: Electrolytic treatment fee 14,750 yen / day Sludge disposal fee: Dehydration treatment fee 5,000 yen / day
Dewatered sludge disposal fee 5,000 yen / day
Total 24,750 yen / day

The cost merit (AB) is 76,250 yen / day (27.83 million yen / year).

このように、電解処理による汚泥減容化で得られるコストメリットは非常に大きい。
また、水素ガス発生量を計算すると次の通りである。
排水量 1,000m/日
余剰汚泥(SS1%濃度) 50m/日
電解電圧 DC10V/電解電流値 4,600A
電解時間 18h/日
2HO→O+ 2Hなる反応で水素が発生するが、上記の反応式から水素発生量は
4,600×60/96500×2=1.43モル/分=1.43×22.4NL
=32NL/分
となり、一日当たりの水素発生量は
32NL/分×60分×18h/日=34,560NL
となり、水素価格が80円/Nmとして年間約100万円となる。
Thus, the cost merit obtained by sludge volume reduction by electrolytic treatment is very large.
The hydrogen gas generation amount is calculated as follows.
Wastewater volume 1,000m 3 / day Surplus sludge (SS1% concentration) 50m 3 / day Electrolytic voltage DC10V / Electrolytic current value 4,600A
Electrolysis time 18h / day
Hydrogen is generated by the reaction 2H 2 O → O 2 + 2H 2 , but the hydrogen generation amount is 4,600 × 60/96500 × 2 = 1.43 mol / min = 1.43 × 22. 4NL
= 32 NL / min, the amount of hydrogen generated per day is 32 NL / min x 60 min x 18 h / day = 34,560 NL
As a result, the hydrogen price will be about 1 million yen per year, assuming 80 yen / Nm 3

水素エンジン自動車の水素ガス消費量を750Nm/年とした場合に前記汚泥処理場の余剰汚泥を電解処理すると、12,614/750=16.8(台)分の水素ガスが得られる。 When surplus sludge in the sludge treatment plant is electrolytically treated when the hydrogen gas consumption of the hydrogen engine automobile is 750 Nm 3 / year, 12,614 / 750 = 16.8 (units) of hydrogen gas is obtained.

次に電解装置3の液面上に形成される気泡層の制御による効果を調べた。
(1)気泡層管理を行わない場合には泡と共に有機性固形物が浮いてしまう。
(2)気泡層を消泡剤で無くした場合には、発生したガスは液中から放出し易くなる。
(3)気泡層制御を行った場合には、気泡層を数mm厚ほど残してガスの放出を抑制させ、最終分解時間10分間は気泡層を無くして電解を行う。
Next, the effect of controlling the bubble layer formed on the liquid surface of the electrolysis apparatus 3 was examined.
(1) When the bubble layer management is not performed, the organic solid matter floats together with the bubbles.
(2) When the bubble layer is eliminated with an antifoaming agent, the generated gas is easily released from the liquid.
(3) In the case where the bubble layer control is performed, the release of gas is suppressed by leaving the bubble layer about several mm thick, and electrolysis is performed without the bubble layer for a final decomposition time of 10 minutes.

某食肉加工センタの余剰汚泥0.5L(固形物量(SS)10,600mg/L含有)を図1に示す装置にガス気泡層を設けながら、適時消泡剤を用いて調整し、電解処理した。   The surplus sludge 0.5L (containing solid matter (SS) 10,600 mg / L) of the crab meat processing center was adjusted using an antifoaming agent in a timely manner and electrolytically treated while providing a gas bubble layer in the apparatus shown in FIG. .

電解処理条件は、次の通りである。
DC10V 定電圧処理;
塩化ナトリウム 20,000ppm添加;
電解時間 1時間
初期電解電流4.5〜4.6A; 最終電解電流5.2〜8.4A;
初期電解電流4.5〜4.6Aで電解処理を開始し、汚泥分解に伴い、液中に溶出する成分の増加と共に導電率も上昇する。1h処理後の最終電解電流値は5.2〜8.4Aまで上昇していた。
The electrolytic treatment conditions are as follows.
DC10V constant voltage processing;
Addition of 20,000 ppm sodium chloride;
Electrolysis time 1 hour Initial electrolysis current 4.5-4.6A; Final electrolysis current 5.2-8.4A;
Electrolytic treatment is started at an initial electrolysis current of 4.5 to 4.6 A, and the conductivity increases with an increase in components eluted in the liquid as sludge decomposes. The final electrolysis current value after the treatment for 1 h increased to 5.2 to 8.4 A.

初期水温32℃〜最終水温75℃(水温上昇)
初期pH6.7〜最終pH7.7(アルカリ上昇)
試験結果を表2に示す。
Initial water temperature 32 ° C to final water temperature 75 ° C (water temperature rise)
Initial pH 6.7 to final pH 7.7 (alkaline rise)
The test results are shown in Table 2.

1 生物処理槽
2 沈殿槽
3 旋廻流式電解装置
4 電極
5 攪拌機
DESCRIPTION OF SYMBOLS 1 Biological treatment tank 2 Sedimentation tank 3 Rotating flow type electrolysis apparatus 4 Electrode 5 Stirrer

Claims (6)

下水を生物処理して得られる汚泥を塩化ナトリウム又は塩化カリウム及び洗浄水と共に水平方向に攪拌して一対以上の電極の間に旋廻流として流しながら電気分解することを特徴とする旋廻流式の電解処理による汚泥減容化方法。   Rotating flow electrolysis characterized by electrolyzing sludge obtained by biological treatment of sewage with sodium chloride or potassium chloride and washing water in the horizontal direction and flowing as a rotating flow between a pair of electrodes. Sludge volume reduction method by treatment. 一対以上の電極の間の旋廻流を、流速1〜3m/sとすることを特徴とする請求項1記載の旋廻流式の電解処理による汚泥減容化方法。   2. The method for reducing sludge volume by electrolysis of a swirl flow type according to claim 1, wherein the swirl flow between the pair of electrodes is set to a flow velocity of 1 to 3 m / s. 一対以上の電極の電流密度が0.1〜0.3A/cmであることを特徴とする請求項1又は2記載の旋廻流式の電解処理による汚泥減容化方法。 Sludge reduction process according to the electrolytic treatment of rotational flow type according to claim 1 or 2, wherein the current density of a pair or more electrodes are 0.1~0.3A / cm 2. 下水を生物処理して得られる汚泥を塩化ナトリウム又は塩化カリウム及び洗浄水と共に溜めた汚泥電解装置と、該汚泥電解装置内に配置した一対以上の電極と、前記汚泥電解装置内の液を水平方向に攪拌して前記一対以上の電極の間に旋廻流として流すための攪拌機を備えたことを特徴とする旋廻流式の電解処理による汚泥減容化装置。   A sludge electrolyzer in which sludge obtained by biological treatment of sewage is stored together with sodium chloride or potassium chloride and washing water, a pair of electrodes disposed in the sludge electrolyzer, and a liquid in the sludge electrolyzer horizontally A sludge volume reducing device by a rotating flow type electrolytic treatment, comprising a stirrer for stirring and flowing as a rotating flow between the pair of electrodes. 一対以上の電極を攪拌機により生じる汚泥電解装置内の液の旋廻流に沿って攪拌機の回転中心位置からずらして配置したことを特徴とする請求項4記載の旋廻流式の電解処理による汚泥減容化装置。   5. Sludge volume reduction by revolving electrolysis according to claim 4, wherein at least one pair of electrodes are arranged shifted from the rotational center position of the agitator along the revolving flow of the liquid in the sludge electrolysis apparatus generated by the agitator. Device. 電流密度が0.1〜0.3A/cmである一対以上の電極を配置したことを特徴とする請求項4又は5記載の旋廻流式の電解処理による汚泥減容化装置。 6. A sludge volume reducing device by a rotating flow type electrolytic treatment according to claim 4 or 5, wherein a pair of electrodes having a current density of 0.1 to 0.3 A / cm < 2 > are arranged.
JP2015081024A 2015-04-10 2015-04-10 Sludge volume reduction method and equipment by swirling electrolytic treatment Active JP6220809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015081024A JP6220809B2 (en) 2015-04-10 2015-04-10 Sludge volume reduction method and equipment by swirling electrolytic treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015081024A JP6220809B2 (en) 2015-04-10 2015-04-10 Sludge volume reduction method and equipment by swirling electrolytic treatment

Publications (2)

Publication Number Publication Date
JP2016198728A true JP2016198728A (en) 2016-12-01
JP6220809B2 JP6220809B2 (en) 2017-10-25

Family

ID=57422215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015081024A Active JP6220809B2 (en) 2015-04-10 2015-04-10 Sludge volume reduction method and equipment by swirling electrolytic treatment

Country Status (1)

Country Link
JP (1) JP6220809B2 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4193854A (en) * 1977-12-23 1980-03-18 Union Carbide Corporation Heavy metal removal from wastewater sludge
JP2002126782A (en) * 2000-08-17 2002-05-08 Sadaaki Murakami Method for cleaning organic sewage using electrolytic method
JP2002361282A (en) * 2001-06-08 2002-12-17 Permelec Electrode Ltd Method and apparatus for treating organic waste water
JP3423386B2 (en) * 1993-12-28 2003-07-07 神鋼パンテツク株式会社 Sludge dewatering method by direct electrolytic treatment and dewatering device therefor
JP2005074269A (en) * 2003-08-29 2005-03-24 Suido Kiko Kaisha Ltd Apparatus and method for reducing amount of surplus sludge
JP2005125251A (en) * 2003-10-24 2005-05-19 Kurita Water Ind Ltd Water treatment method and water treatment apparatus
JP2005169253A (en) * 2003-12-11 2005-06-30 Hitachi Maxell Ltd Method for decreasing excess sludge
JP2005224753A (en) * 2004-02-16 2005-08-25 Hitachi Kiden Kogyo Ltd Sludge treatment apparatus
JP2005254061A (en) * 2004-03-09 2005-09-22 Hitachi Kiden Kogyo Ltd Sludge treatment method
JP2006314942A (en) * 2005-05-13 2006-11-24 Hitachi Plant Technologies Ltd Apparatus for electrolyzing sludge
JP2006326373A (en) * 2005-05-23 2006-12-07 Suido Kiko Kaisha Ltd Operation method of surplus sludge treatment apparatus, and surplus sludge treatment apparatus
JP2007313419A (en) * 2006-05-25 2007-12-06 Hitachi Plant Technologies Ltd Electrolytic treatment device for sludge
JP2007313418A (en) * 2006-05-25 2007-12-06 Hitachi Plant Technologies Ltd Treatment method of sludge
JP2008114209A (en) * 2006-11-08 2008-05-22 Hitachi Plant Technologies Ltd Method for treating sludge
JP2008194631A (en) * 2007-02-14 2008-08-28 Hitachi Plant Technologies Ltd Method for treating sludge

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4193854A (en) * 1977-12-23 1980-03-18 Union Carbide Corporation Heavy metal removal from wastewater sludge
JP3423386B2 (en) * 1993-12-28 2003-07-07 神鋼パンテツク株式会社 Sludge dewatering method by direct electrolytic treatment and dewatering device therefor
JP3796416B2 (en) * 2000-08-17 2006-07-12 定瞭 村上 Purification method of organic sewage using electrolytic method
JP2002126782A (en) * 2000-08-17 2002-05-08 Sadaaki Murakami Method for cleaning organic sewage using electrolytic method
JP2002361282A (en) * 2001-06-08 2002-12-17 Permelec Electrode Ltd Method and apparatus for treating organic waste water
JP2005074269A (en) * 2003-08-29 2005-03-24 Suido Kiko Kaisha Ltd Apparatus and method for reducing amount of surplus sludge
JP2005125251A (en) * 2003-10-24 2005-05-19 Kurita Water Ind Ltd Water treatment method and water treatment apparatus
JP2005169253A (en) * 2003-12-11 2005-06-30 Hitachi Maxell Ltd Method for decreasing excess sludge
JP2005224753A (en) * 2004-02-16 2005-08-25 Hitachi Kiden Kogyo Ltd Sludge treatment apparatus
JP2005254061A (en) * 2004-03-09 2005-09-22 Hitachi Kiden Kogyo Ltd Sludge treatment method
JP2006314942A (en) * 2005-05-13 2006-11-24 Hitachi Plant Technologies Ltd Apparatus for electrolyzing sludge
JP2006326373A (en) * 2005-05-23 2006-12-07 Suido Kiko Kaisha Ltd Operation method of surplus sludge treatment apparatus, and surplus sludge treatment apparatus
JP2007313419A (en) * 2006-05-25 2007-12-06 Hitachi Plant Technologies Ltd Electrolytic treatment device for sludge
JP2007313418A (en) * 2006-05-25 2007-12-06 Hitachi Plant Technologies Ltd Treatment method of sludge
JP2008114209A (en) * 2006-11-08 2008-05-22 Hitachi Plant Technologies Ltd Method for treating sludge
JP2008194631A (en) * 2007-02-14 2008-08-28 Hitachi Plant Technologies Ltd Method for treating sludge

Also Published As

Publication number Publication date
JP6220809B2 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
El-Ashtoukhy et al. Treatment of paper mill effluents in a batch-stirred electrochemical tank reactor
AU2007257247B2 (en) Electrolytic activation of water
US3943044A (en) Method for treating sewage water
US8287702B2 (en) Electrolytic activation of water
Liu et al. Continuous electrochemical oxidation of methyl orange waste water using a three-dimensional electrode reactor
CN103086550B (en) Method for treating desulfurization wastewater by electrolysis
JP3982500B2 (en) Method and apparatus for treating wastewater containing organic compounds
Sandoval et al. Electrochemical treatment of slaughterhouse and dairy wastewater: Toward making a sustainable process
JP5122074B2 (en) Water treatment method and system
JP2005074269A (en) Apparatus and method for reducing amount of surplus sludge
JP2005246328A (en) Treatment apparatus for reduction of sludge
JP6220809B2 (en) Sludge volume reduction method and equipment by swirling electrolytic treatment
JP2006312124A (en) Sludge treatment method
JP2002126782A (en) Method for cleaning organic sewage using electrolytic method
Espinoza-Cisternas et al. Application of electrochemical processes for treating effluents from landfill leachate as well as the agro and food industries
CN101450824B (en) Water electrolysis and activation
Miller et al. Electrochemical treatment of municipal waste water
JP2008114209A (en) Method for treating sludge
JP2005138035A (en) Method and apparatus for electrolytic treatment of sewage
KR970007314B1 (en) Electrolysis method for waste water
JP2008200667A (en) Method and apparatus for deodorizing, decolorizing and sterilizing water
CN212198853U (en) Desulfurization wastewater full electric drive processing system of coal-fired power plant
JP2006175399A (en) Sludge treatment method
JP4545579B2 (en) Sludge treatment method
JP2000263049A (en) Method and apparatus for cleaning barn effluent

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171002

R150 Certificate of patent or registration of utility model

Ref document number: 6220809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250