JPS6129553B2 - - Google Patents

Info

Publication number
JPS6129553B2
JPS6129553B2 JP55087336A JP8733680A JPS6129553B2 JP S6129553 B2 JPS6129553 B2 JP S6129553B2 JP 55087336 A JP55087336 A JP 55087336A JP 8733680 A JP8733680 A JP 8733680A JP S6129553 B2 JPS6129553 B2 JP S6129553B2
Authority
JP
Japan
Prior art keywords
impurity
region
substrate
impurity region
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55087336A
Other languages
Japanese (ja)
Other versions
JPS5712549A (en
Inventor
Kenji Minami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP8733680A priority Critical patent/JPS5712549A/en
Publication of JPS5712549A publication Critical patent/JPS5712549A/en
Publication of JPS6129553B2 publication Critical patent/JPS6129553B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、半導体基板内に負荷トランジスタを
設けた半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device in which a load transistor is provided within a semiconductor substrate.

一般に、今までの埋込負荷論理(Buried Load
Logic)型半導体装置、特にこの型の集積回路装
置は、相補型(C―MOS)のプロセスを使用し
て製造されている。(1980,IE3ISSCCC
SESSION IVP56)而して、相補型(C―MOS)
半導体装置と同様にウエル層(埋込層)の電位
は、グランドに接地されていた。相補型半導体装
置にて埋込層の電位が接地されている理由は、ウ
エル層が個々分離して形成されているためグラン
ドと異なる電位を与えようとすると、従来のよう
にグランドライン(Ground line)を利用する場
合に比べて高集積化(to achieve high packing
density)が達成されないからである。また、ウ
エル層をグランドに接地しても特に支障を来たさ
ないからでもある。
In general, traditional embedded load logic
Logic) type semiconductor devices, particularly integrated circuit devices of this type, are manufactured using a complementary type (C-MOS) process. (1980, IE 3 ISSCCC
SESSION IVP56) Complementary type (C-MOS)
Similar to semiconductor devices, the potential of the well layer (buried layer) was grounded. The reason why the buried layer potential is grounded in complementary semiconductor devices is that the well layers are formed separately, so if you try to apply a potential different from the ground, the ground line (Ground line) ) to achieve high packing
density) is not achieved. This is also because there is no problem even if the well layer is grounded.

しかしながら、埋込負荷論理(Buried Load
Logic)では、負荷として接合形電界効果トラン
ジスタ(Junction Field Effect Transistor)を
用いるためウエル層をグランドに接地して使用す
ると、接合形電界効果トランジスタにより形成さ
れる負荷のチヤネルが狭められるために生じる所
謂バツクバイアス(BaCk Bias)効果によつて負
荷特性を著しく劣化させ、遅延時間消費電流積
(Power―Delay積)を低下させる問題がある。そ
の結果、集積回路の高速高能率動作を阻害するこ
とになる。
However, embedded load logic (Buried Load logic)
Logic) uses a Junction Field Effect Transistor as a load, so if the well layer is grounded, the so-called load channel formed by the Junction Field Effect Transistor is narrowed. There is a problem in that the back bias (BaCk Bias) effect significantly deteriorates the load characteristics and reduces the delay time current consumption product (Power-Delay product). As a result, high-speed, high-efficiency operation of the integrated circuit is hindered.

本発明は、かかる点に鑑みてなされたもので、
集積度及び負荷特性を向上させて高速動作を達成
した半導体装置を提供するものである。
The present invention has been made in view of these points,
The present invention provides a semiconductor device that achieves high-speed operation by improving the degree of integration and load characteristics.

以下、本発明の実施例を図面を参照して詳細に
説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図Dは、本発明の一実施例の断面図であ
る。図中1はP導電型の半導体基板である。半導
体基板1の所定領域にはフイールド酸化膜2が形
成されている。フイールド酸化膜2の直下及びフ
イールド酸化膜2で仕切られた半導体基板1の全
域には、後述する第2不純物層5の形成予定領域
を除いてP導電型の不純物領域3が形成されてい
る。フイールド酸化膜2で囲まれた能動領域の不
純物領域3内には、N導電型の第1不純物層4が
形成されている。不純物領域3で囲まれた半導体
基板1から不純物領域3には、N導電型の第1不
純物層5が延出している。第1,第2不純物層
4,5に挾まれた不純物領域3の表面にはゲート
酸化膜6を介してゲート電極7が形成されてい
る。ゲート電極7,第1,第2不純物層4,5の
露出表面、及びフイールド酸化膜2上には所定厚
さのCVD―SiO2膜8が形成されている。不純物
領域3及び第1,第2不純物層4,5には、
CVD―SiO2膜8に開孔されたコンタクトホール
9を介して各々の取出電極10,11,12が形
成されている。取出電型10,11,12及び
CVD―SiO2膜8の露出表面には保護膜13が形
成されている。
FIG. 1D is a cross-sectional view of one embodiment of the present invention. In the figure, 1 is a P conductivity type semiconductor substrate. A field oxide film 2 is formed in a predetermined region of a semiconductor substrate 1. As shown in FIG. Directly below the field oxide film 2 and in the entire area of the semiconductor substrate 1 partitioned by the field oxide film 2, a P conductivity type impurity region 3 is formed except for a region where a second impurity layer 5, which will be described later, is to be formed. A first impurity layer 4 of N conductivity type is formed in the impurity region 3 of the active region surrounded by the field oxide film 2 . A first impurity layer 5 of N conductivity type extends from the semiconductor substrate 1 surrounded by the impurity region 3 to the impurity region 3 . A gate electrode 7 is formed on the surface of the impurity region 3 sandwiched between the first and second impurity layers 4 and 5 with a gate oxide film 6 interposed therebetween. A CVD-SiO 2 film 8 having a predetermined thickness is formed on the exposed surfaces of the gate electrode 7, the first and second impurity layers 4 and 5, and the field oxide film 2. In the impurity region 3 and the first and second impurity layers 4 and 5,
Respective lead electrodes 10, 11, and 12 are formed through contact holes 9 formed in the CVD-SiO 2 film 8. Electrical extraction type 10, 11, 12 and
A protective film 13 is formed on the exposed surface of the CVD-SiO 2 film 8.

このように構成された半導体装置14によれ
ば、半導体基板1の能動領域に形成された第2不
純物層5と不純物領域3とにより能動領域の駆動
MOSトランジスタの負荷となる接合形電界効果
トランジスタが形成され、不純物領域3は所定領
域を除いて半導体基板1の全域に一体に形成され
ているので、電源電位と異なる埋込層3の電位を
特別の配線を不要にして埋込層3に供給して集積
度を…向上させることができる。なお、負荷とな
る接合形電界効果トランジスタのゲートは、不純
物領域3の部分であり、ソースは第2不純物層5
の部分であり、ドレインは半導体基板1の部分で
あり、両不純物領域3,3の間の半導体基板1の
領域部分がチヤネルとなつている。
According to the semiconductor device 14 configured in this way, the second impurity layer 5 and the impurity region 3 formed in the active region of the semiconductor substrate 1 drive the active region.
A junction field effect transistor serving as a load for the MOS transistor is formed, and the impurity region 3 is formed integrally over the entire semiconductor substrate 1 except for a predetermined region, so that the potential of the buried layer 3, which is different from the power supply potential, is specially controlled. It is possible to improve the degree of integration by eliminating the need for wiring and supplying it to the buried layer 3. Note that the gate of the junction field effect transistor serving as a load is in the impurity region 3, and the source is in the second impurity layer 5.
The drain is a portion of the semiconductor substrate 1, and the region of the semiconductor substrate 1 between the two impurity regions 3, 3 is a channel.

また、不純物領域3の電位を負の電位に設定す
ることにより、負荷となる接合型電界効果トラン
ジスタのチヤンネルに対して電界の影響を緩和
し、(所謂バツクバイアス(Back Bias)効果を
抑制し、)遅延時間消費電流積(Power―Delay)
の向上を図つて高速動作を達成することができ
る。
In addition, by setting the potential of the impurity region 3 to a negative potential, the influence of the electric field on the channel of the junction field effect transistor serving as the load is alleviated, and the so-called back bias effect is suppressed. ) Delay time current consumption product (Power-Delay)
It is possible to achieve high-speed operation by improving the

また、不純物領域3の電位を基板バイアス回路
によつて与えれば、3電源を用いることなく負荷
特性を向上させることができる。
Furthermore, if the potential of impurity region 3 is applied by a substrate bias circuit, the load characteristics can be improved without using three power supplies.

次に本発明に半導体装置の製造方法を第1図A
乃至同図Dを参照して説明する。第1図Aに示す
如く、N導電型の半導体基板1に接合形トランジ
スタを構成する第2不純物層5の形成予定領域を
除いて全面にホウ素Bイオンの注入を行いP導電
型の不純物領域3を形成する。次いで、不純物領
域3の所定領域に熱酸化により選択的にフイール
ド酸化膜2を1μ相当形成する。
Next, FIG. 1A shows a method for manufacturing a semiconductor device according to the present invention.
This will be explained with reference to FIG. As shown in FIG. 1A, boron B ions are implanted into the entire surface of the N-conductivity type semiconductor substrate 1 except for the region where the second impurity layer 5 constituting the junction transistor is to be formed. form. Next, a field oxide film 2 with a thickness of 1 μm is selectively formed in a predetermined region of the impurity region 3 by thermal oxidation.

次に、同図Bに示す如く、フイールド酸化膜2
で仕切られた能動領域及びフイールド酸化膜2上
にゲート酸化膜6となる酸化膜を厚さ約800Å形
成し、この酸化膜上に多結晶シリコン膜を厚さ
4000Å形成する。次いで、多結晶シリコン膜に写
真蝕刻法により所定のパターンニングを施しゲー
ト電極7を形成する。このゲート電極7をマスク
にしてその直下の酸化膜が残存するようにエツチ
ングを行い、ゲート酸化膜6を形成する。次い
で、フイールド酸化膜2及びゲート電極7をマス
クにしてリンPの不純物拡散を行い、能動領域の
不純物領域3内にN導電型の第1不純物層4を、
不純物領域3で囲まれた半導体基板1にN導電型
の第2不純物層5を形成する。
Next, as shown in FIG.
An oxide film to be the gate oxide film 6 is formed to a thickness of approximately 800 Å on the active region and field oxide film 2 partitioned by
Forms 4000Å. Next, the polycrystalline silicon film is subjected to predetermined patterning by photolithography to form gate electrode 7. Using this gate electrode 7 as a mask, etching is performed so that the oxide film directly under it remains, thereby forming a gate oxide film 6. Next, using the field oxide film 2 and the gate electrode 7 as masks, phosphorus P impurity diffusion is performed to form a first impurity layer 4 of N conductivity type in the impurity region 3 of the active region.
A second impurity layer 5 of N conductivity type is formed in semiconductor substrate 1 surrounded by impurity region 3 .

次に、同図Cに示す如く、C.V.D.(Chemical
Vapor Deposition)法によりフイールド酸化
膜、ゲート電極7及び第1,第2不純物層4,5
の露出表面にC.V.D―SiO2膜8を厚さ12000Å形
成する。次いで、このC.V.D―SiO2膜8の所定領
域にエツチングを施して第1,第2不純物層4,
5に通じるコンタクトホール9及び不純物領域3
の所定領域に向うコンタクトホール9を形成す
る。更に別途選択エツチングを施して不純物領域
3に向うコンタクトホール9を不純物領域3に到
達せしめる。
Next, as shown in Figure C, CVD (Chemical
The field oxide film, the gate electrode 7 and the first and second impurity layers 4 and 5 are formed using the Vapor Deposition method.
A CVD-SiO 2 film 8 with a thickness of 12000 Å is formed on the exposed surface of the substrate. Next, a predetermined region of this CVD-SiO 2 film 8 is etched to form the first and second impurity layers 4,
Contact hole 9 leading to impurity region 5 and impurity region 3
A contact hole 9 is formed toward a predetermined region of the substrate. Furthermore, selective etching is separately performed to make the contact hole 9 facing the impurity region 3 reach the impurity region 3.

然る後、同図Dに示す如く、これらのコンタク
トホール9内及びCVD―SiO2膜8の露出表面全
面にアルミニウム層を被覆し、このアルミニウム
層に写真蝕刻法によりパターンニングを施して不
純物領域3及び第1,第2の不純物層4,5に接
合する取出電極10,11,12を形成する。次
に、約450℃で取出電極10,11,12と不純
物領域3及び第1,第2不純物層4,5とのオー
ミツクコンタクトを形成するための焼成を行つた
後、取出電極10,11,12及びCVD―SiO2
膜8の露出表面にリンケイ酸化ガラス等からなる
保護膜13を被着し、この保護膜13に電極取出
用のパツド(図示せず)を形成して半導体装置1
4を得る。
Thereafter, as shown in Figure D, an aluminum layer is coated within these contact holes 9 and the entire exposed surface of the CVD-SiO 2 film 8, and this aluminum layer is patterned by photolithography to form impurity regions. 3, and extraction electrodes 10, 11, 12 which are connected to the first and second impurity layers 4, 5 are formed. Next, after baking is performed at about 450°C to form ohmic contact between the extraction electrodes 10, 11, 12 and the impurity region 3 and the first and second impurity layers 4, 5, the extraction electrodes 10, 11 , 12 and CVD-SiO 2
A protective film 13 made of phosphorus silicate glass or the like is deposited on the exposed surface of the film 8, and pads (not shown) for taking out electrodes are formed on this protective film 13, thereby forming the semiconductor device 1.
Get 4.

このようにこの半導体装置の製造方法によれ
ば、能動領域に駆動MOSトランジスタとその負
荷となる接合形電界効果トランジスタを設けてイ
ンバータ構成に要する面積の縮小を図つた半導体
装置14を容易に製造することができる。
As described above, according to this semiconductor device manufacturing method, it is possible to easily manufacture the semiconductor device 14 in which the drive MOS transistor and the junction field effect transistor serving as its load are provided in the active region to reduce the area required for the inverter configuration. be able to.

尚、実施例では、N導電型の半導体基板1にP
導電型の不純物領域3を形成した半導体装置14
について説明したが、P導電型の半導体基板にN
導電型の不純物領域を形成しても良い。
In the embodiment, P is applied to the N conductivity type semiconductor substrate 1.
Semiconductor device 14 in which conductive type impurity region 3 is formed
However, N is applied to a P conductivity type semiconductor substrate.
A conductive type impurity region may be formed.

以上説明した如く、本発明に係る半導体装置に
よれば、能動領域に駆動MOSトランジスタとそ
の負荷となる接合形電界効果トランジスタを形成
し、各々のトランジスタを構成する不純物領域に
基板バイアス回路によつて基板と異極性の電位を
与えるようにしたので、集積度及び負荷特性を向
上させて高速動作を達成できる等顕著な効果を有
するものである。
As explained above, according to the semiconductor device according to the present invention, a drive MOS transistor and a junction field effect transistor serving as its load are formed in the active region, and a substrate bias circuit is formed in the impurity region constituting each transistor. Since a potential with a polarity different from that of the substrate is applied, it has remarkable effects such as improving the degree of integration and load characteristics and achieving high-speed operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A及至同図Dは、本発明に係る半導体装
置の製造工程を工程順に従つて示す説明図であ
り、同図Aは、フイールド酸化膜を設けた半導体
基板内に埋込層を形成したものを示す説明図、同
図Bは、同半導体基板の素子領域にゲート電極を
形成したものを示す説明図、同図Cは、同半導体
基板の露出表面にCVD―SiO2膜を形成したもの
を示す説明図、同図Dは、本発明の一実施例の断
面図である。 1……半導体基板、3……不純物領域、4……
第1不純物層、5……第2不純物層、7……ゲー
ト電極、14……半導体装置。
1A to 1D are explanatory diagrams showing the manufacturing process of a semiconductor device according to the present invention in the order of steps, and FIG. 1A shows the formation of a buried layer in a semiconductor substrate provided with a field oxide film. Figure B is an explanatory diagram showing a gate electrode formed in the element region of the same semiconductor substrate, and Figure C is an explanatory diagram showing a gate electrode formed on the exposed surface of the same semiconductor substrate. Figure D is a sectional view of an embodiment of the present invention. 1... Semiconductor substrate, 3... Impurity region, 4...
First impurity layer, 5... Second impurity layer, 7... Gate electrode, 14 ... Semiconductor device.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型の半導体基板と、この基板の所定領
域を選択的に残してこの基板の表面から所定の深
さで延在する逆導電型の不純物領域と、この不純
物領域内に形成された一導電型の第1不純物層
と、この第1不純物層と同電型でこの第1不純物
層と離間して前記基板の所定領域から前記不純物
領域内に延出された第2不純物層とを備え、前記
第1不純物層、第2不純物層及びこれの間の基板
上に設けらたゲート電極とで駆動MOSトランジ
スタを構成し、かつ、前記基板、前記不純物領域
及び前記第2不純物層とで負荷となる接合型電界
効果トランジスタを構成すると共に、前記基板に
印加される電源電位と前記不純物領域に印加され
る電源電位とが異なることを特徴とする半導体装
置。
1 A semiconductor substrate of one conductivity type, an impurity region of an opposite conductivity type extending from the surface of the substrate to a predetermined depth while selectively leaving a predetermined region of the substrate, and a semiconductor substrate formed within the impurity region. a first impurity layer having a conductivity type; and a second impurity layer having the same conductivity type as the first impurity layer and extending from a predetermined region of the substrate into the impurity region apart from the first impurity layer. , the first impurity layer, the second impurity layer, and a gate electrode provided on the substrate between these form a drive MOS transistor, and the substrate, the impurity region, and the second impurity layer form a load. 1. A semiconductor device comprising a junction field effect transistor, wherein a power supply potential applied to the substrate and a power supply potential applied to the impurity region are different.
JP8733680A 1980-06-27 1980-06-27 Semiconductor device Granted JPS5712549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8733680A JPS5712549A (en) 1980-06-27 1980-06-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8733680A JPS5712549A (en) 1980-06-27 1980-06-27 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5712549A JPS5712549A (en) 1982-01-22
JPS6129553B2 true JPS6129553B2 (en) 1986-07-07

Family

ID=13912022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8733680A Granted JPS5712549A (en) 1980-06-27 1980-06-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5712549A (en)

Also Published As

Publication number Publication date
JPS5712549A (en) 1982-01-22

Similar Documents

Publication Publication Date Title
US5442223A (en) Semiconductor device with stress relief
JPS638622B2 (en)
JPH08255846A (en) Semiconductor device and manufacture thereof
JPS62126675A (en) Semiconductor device and manufacture thereof
JPS5816337B2 (en) Manufacturing method of semiconductor device
JPH02178965A (en) Insulated isolation type field-effect semiconductor device
JPS6129553B2 (en)
JPS6050063B2 (en) Complementary MOS semiconductor device and manufacturing method thereof
JP2777942B2 (en) Method for manufacturing MOS transistor
JPH0363219B2 (en)
JPH03239368A (en) Semiconductor device
JPH05315437A (en) Manufacture of semiconductor device
JP2001298195A (en) Mos transistor
JP3049255B2 (en) Method for manufacturing CMIS semiconductor device
JPH065795B2 (en) Semiconductor device
JPH0212030B2 (en)
JPH0548108A (en) Semiconductor device and its manufacture
JPH0431193B2 (en)
JPH0527995B2 (en)
JPS6146042A (en) Semiconductor device
JP3099450B2 (en) Semiconductor device and manufacturing method thereof
JPH04139765A (en) Semiconductor device
JPS63102355A (en) Complementary field effect transistor device
JPS6046546B2 (en) Manufacturing method of semiconductor device
JPS62208674A (en) Semiconductor device