JPS61295362A - Alloying treatment furnace - Google Patents

Alloying treatment furnace

Info

Publication number
JPS61295362A
JPS61295362A JP13552585A JP13552585A JPS61295362A JP S61295362 A JPS61295362 A JP S61295362A JP 13552585 A JP13552585 A JP 13552585A JP 13552585 A JP13552585 A JP 13552585A JP S61295362 A JPS61295362 A JP S61295362A
Authority
JP
Japan
Prior art keywords
alloying
zone
heating
steel strip
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13552585A
Other languages
Japanese (ja)
Other versions
JPH0515780B2 (en
Inventor
Toshio Nakamori
中森 俊夫
Atsuyoshi Shibuya
渋谷 敦義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP13552585A priority Critical patent/JPS61295362A/en
Publication of JPS61295362A publication Critical patent/JPS61295362A/en
Publication of JPH0515780B2 publication Critical patent/JPH0515780B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve quality as well as productivity by passing, continuously in succession, a galvanized sheet through heating-up, rapid cooling and other zones so that alloying is carried out by initial heating and the steel sheet can be cooled rapidly before the completion of the alloying up to the surface. CONSTITUTION:The hot dip galvanized steel strip 11 is introduced into the heating-up zone 28 and heated to >=about 550 deg.C to undergo alloying. The heated steel strip 11 is then introduced into the rapid cooling zone 30 and rapidly cooled before the completion of the alloying up to the surface. Subsequently, the steel strip 11 is introduced into a holding zone 32 to undergo final alloying and then cooled in a cooling zone 34 successively provided, so that excessive alloying can be inhibited.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、熔融亜鉛めっき鋼板の合金化処理炉、詳述す
れば品質特性、特に加工時にめっき層の剥離の少ない合
金化熔融亜鉛めっき鋼板(以下、「GA鋼板」と略す)
を高い生産性で製造するための熔融亜鉛めっき鋼板の合
金化処理炉に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an alloying processing furnace for hot-dip galvanized steel sheets, and more specifically, to an alloyed hot-dip galvanized steel sheet that has quality characteristics, in particular, less peeling of the coating layer during processing. (Hereinafter abbreviated as "GA steel plate")
This invention relates to an alloying processing furnace for hot-dip galvanized steel sheets for manufacturing with high productivity.

(従来の技術) GA鋼板は、一般に熔融亜鉛めっき鋼板をめっき直後、
連続的に熱処理することによって製造される。通常、熱
処理時のFe −Znの相互拡散により、めっき層は8
.5〜13%のFeを含有し、2.3種の金属間化合物
の層状組織より構成される。このようにして得た素材は
塗装性、溶接性が一般の亜鉛鋼板より優れているため今
日広汎な用途に用いられているが、めっき層に全く塑性
変形能がないので、プレス加工などの成形加工時にパウ
ダリングと呼ばれるめっき層の粉末状の剥離もしくは部
分的脱離を生じやすい。
(Prior art) GA steel sheets are generally produced by hot-dip galvanized steel sheets immediately after plating.
Manufactured by continuous heat treatment. Usually, due to mutual diffusion of Fe-Zn during heat treatment, the plating layer becomes 8
.. It contains 5 to 13% Fe and is composed of a layered structure of 2.3 types of intermetallic compounds. The material obtained in this way has better paintability and weldability than ordinary galvanized steel sheets, so it is used in a wide range of applications today. During processing, powdery peeling or partial detachment of the plating layer, called powdering, is likely to occur.

かかる欠点を解決する方策として、従来から知見されて
いることは、合金化処理時の材料温度を低下させるか、
あるいはZn中に含有されているAlを増加させること
であり、いずれの場合もFe−Znの相互拡散を抑制す
る方法である。
As a measure to solve this drawback, what has been known so far is to lower the material temperature during alloying treatment, or to
Alternatively, it is a method of increasing Al contained in Zn, and in either case, mutual diffusion of Fe-Zn is suppressed.

かかる観点からのGA鋼板のパウダリング現象を克服す
るための様々な試みの1例としては、合金化時のヒート
パターンの面から検討しようとするものがある。例えば
、特公昭59−14541号では、合金化熱処理装置を
1次加熱装置と2次加熱装置とに分割し、この2次加熱
をオフラインで行うことを提案している。しかし、この
オフライン法は、耐パウダリング性のある程度の改善の
効果はみられるが、ボストアニーリングの効果を除けば
、その、不利益については改めて述べるまでもない。
As an example of various attempts to overcome the powdering phenomenon of GA steel sheets from this perspective, there are attempts to study from the aspect of the heat pattern during alloying. For example, Japanese Patent Publication No. 59-14541 proposes dividing the alloying heat treatment apparatus into a primary heating apparatus and a secondary heating apparatus, and performing the secondary heating off-line. However, although this offline method has the effect of improving powdering resistance to some extent, there is no need to mention its disadvantages again, except for the effect of boss annealing.

更に、特開昭59−173255号は、耐パウダリング
性の改善のための現象論的な背景を解説するとともに、
めっき後520℃以下に6秒以上保持して合金化するこ
とを提案しているが、要するに、時間をかけてゆっくり
合金化することがポイントとされ、極言すれば、生産性
を低下させれば品質の良好なものが得られることを記述
している。
Furthermore, JP-A-59-173255 explains the phenomenological background for improving powdering resistance, and
It is proposed to hold the temperature below 520℃ for 6 seconds or more to alloy it after plating, but the key is to slowly alloy it over time. It states that products of good quality can be obtained.

しかし、最終温度、上限時間等の規定がないため、その
ような処理条件は十分条件とは言えず、したがって、耐
パウダリング性が不良のものもかなり発生し、いたずら
に炉長の増大を招くにすぎない場合も考えられる。
However, since there are no regulations regarding final temperature, upper limit time, etc., such processing conditions cannot be said to be sufficient conditions, and therefore, there are many cases where the powdering resistance is poor, leading to an unnecessary increase in the furnace length. It is also possible that there are no more than .

近年溶融亜鉛めっきラインは高生産性を追求して通板速
度の高速化が行われており、比較的新しいものでは15
0〜200m/winの通板速度が達成される。したが
って、上述のような解決策はこの点からも満足するもの
ではなかった。
In recent years, hot-dip galvanizing lines have been increasing their threading speeds in pursuit of high productivity, and relatively new galvanizing lines have a speed of 15
A threading speed of 0 to 200 m/win is achieved. Therefore, the above-mentioned solutions were not satisfactory from this point of view as well.

このような高い生産性で、GAil板を製造しようとす
る場合、従来の考え方では合金化処理時の鋼板の温度が
抑制されるため必然的に長大な合金化炉が必要となる。
In order to manufacture a GAil plate with such high productivity, a long alloying furnace is inevitably required because the temperature of the steel plate during alloying treatment is suppressed according to the conventional concept.

しかし、一般的に合金化炉は、めっきポット上に垂直に
配置され、例えば後述する第2図に示すようにターンロ
ール23と浴面の間に配置されるため、合金化炉が長大
化すると、建屋の高さが非常に大きくなるとともに、中
間ロールがない場合、鋼帯11が支持ロール15とター
ンロール23の間で大きく振動する。
However, the alloying furnace is generally arranged vertically above the plating pot, for example between the turn roll 23 and the bath surface as shown in Fig. 2, which will be described later. When the height of the building becomes very large and there is no intermediate roll, the steel strip 11 vibrates greatly between the support roll 15 and the turn roll 23.

実際には、Glll用板して中間ロールを設けることは
可能であるが、非GAll板の通板時に大きな障害とな
る。
In reality, it is possible to provide a Gll board with an intermediate roll, but this poses a major obstacle when passing a non-Gll board.

この点から、現実的には合金化処理炉の総炉長は35〜
50+mに制約されることが多いが、これは最終冷却帯
を含めた炉長であって、現実に合金化に寄与するのは高
々15〜30mである。これは現実的には30mの場合
150m/++inで通板したとすると12秒の合金化
時間となる。すなわち、このような短い時間で合金化を
達成するには、合金化めっき鋼板の温度として550℃
程度の温度が、例えばZn付着量片面50g/ m2時
に要求される。しかしながら、一般に530℃以上で耐
パウダリング性が低下するため、従来法では経済的生産
を行うと、耐パウダリング特性は劣悪なものにならざる
を得ない。
From this point of view, realistically the total length of the alloying processing furnace is 35~
Although it is often limited to 50+ m, this is the furnace length including the final cooling zone, and in reality, the length that contributes to alloying is at most 15 to 30 m. In reality, this means that in the case of 30 m, if the plate is threaded at 150 m/++in, the alloying time will be 12 seconds. In other words, in order to achieve alloying in such a short time, the temperature of the alloyed plated steel sheet must be 550°C.
For example, when the Zn coating amount is 50 g/m2 on one side, a temperature of about 100 g/m2 is required. However, since the powdering resistance generally decreases at temperatures above 530° C., if economical production is carried out using conventional methods, the powdering resistance will inevitably be poor.

(発明が解決しようとする問題点) かくして、本発明の目的とするところは、これら従来法
の欠点を解消した合金化処理炉を提供することである。
(Problems to be Solved by the Invention) Thus, an object of the present invention is to provide an alloying treatment furnace that eliminates the drawbacks of these conventional methods.

また、本発明の別の目的は、比較的短い合金化処理時間
で、パウダリングを抑制したGAtR板の製造用の合金
化処理炉を提供することである。
Another object of the present invention is to provide an alloying furnace for producing GAtR plates in which powdering is suppressed in a relatively short alloying time.

(問題点を解決するための手段) すでに述べたように、合金化時の被めっき鋼板の温度(
以下、単に「材温」という)を低くすることにより、つ
まり低い材温、即ちζ相が核形成できる520℃以下の
温度で過処理にならない程度にゆっくり合金化すること
が耐パウダリング性改善には必要であると言われている
。しかし、これを達成するためには、いたずらに長い合
金化処理炉が必要となってくる。これでは、本発明の目
的が達成されない。
(Means for solving the problem) As already mentioned, the temperature of the steel plate to be plated during alloying (
Powdering resistance can be improved by lowering the material temperature (hereinafter simply referred to as "material temperature"), that is, by alloying slowly to the extent that overtreatment does not occur at a low material temperature, that is, a temperature of 520 ° C or less where the ζ phase can nucleate. is said to be necessary. However, in order to achieve this, an extremely long alloying furnace is required. In this case, the purpose of the present invention is not achieved.

そこで、本発明者らは550℃以上での合金化では、耐
パウダリング性が著しく劣化するが、この550℃以上
の合金化処理条件を、合金化時の1過程として、合金化
プロセスの中に組入れることを検討した結果、合金化加
熱の初期に、550℃以上の材温に保持しても、パウダ
リング特性の劣化は生じず、合金化処理時間の短縮効果
を認めた。そして、550℃以上の初期加熱で合金化を
開始し、表面迄合金化が完了する以前に鋼板を急冷し、
最終的な合金化処理を450〜530℃で行うことがら
成る方法について先きに特願昭60−64162号とし
て特許出願した。
Therefore, the present inventors decided that alloying at temperatures of 550°C or higher significantly deteriorates powdering resistance, but the alloying conditions at 550°C or higher were used as a step in the alloying process. As a result of considering the possibility of incorporating the material into the alloying process, it was found that even if the material temperature was maintained at 550°C or higher during the initial stage of alloying heating, no deterioration of the powdering properties occurred, and the effect of shortening the alloying treatment time was observed. Then, alloying is started by initial heating to 550°C or higher, and the steel plate is rapidly cooled before alloying is completed to the surface.
A patent application was previously filed in Japanese Patent Application No. 64,162/1983 for a method comprising carrying out the final alloying treatment at 450-530°C.

ここに、本発明は、そのような方法を実施するための装
置として開発したものであって、加熱帯に続いて急冷帯
を設けることにより、耐パウダリング性を損なうことな
く加熱帯での加熱温度を高くでき、これにより合金化処
理炉の炉長を著しく短縮できるのである。
The present invention has been developed as an apparatus for carrying out such a method, and by providing a quenching zone following the heating zone, heating in the heating zone can be performed without impairing powdering resistance. The temperature can be increased, which allows the length of the alloying furnace to be significantly shortened.

すなわち、従来の合金化処理炉は、加熱帯、保持帯、冷
却帯を連続して構成しているがこの装置では、高速通板
して、耐パウダリング性に優れたGA鋼板を得ることが
できない、したがって、本発明にあっては加熱帯と保持
帯の間に、急速冷却帯を設置しており、これにより加熱
帯のより高温加熱を可能にするとともに、保持帯の温度
を下げることができ、このヒートパターンによって得ら
れるGA#lR板は高速通板しても高品質となるのであ
る。
In other words, conventional alloying processing furnaces have a heating zone, a holding zone, and a cooling zone in succession, but with this equipment, it is possible to perform high-speed threading and obtain GA steel sheets with excellent powdering resistance. Therefore, in the present invention, a rapid cooling zone is installed between the heating zone and the holding zone, which makes it possible to heat the heating zone to a higher temperature and lower the temperature of the holding zone. The GA#lR board obtained by this heat pattern has high quality even when passed through at high speed.

すなわち、従来法は、高温つまり合金化速度が大きいと
耐パウダリング性が低下するとの技術思想であるが、本
発明は、パウダリング性と関連するのは合金化末期の合
金化速度であって、合金化初期の合金化速度は本質的に
パウダリング性と関連性がないという技術思想にもとす
くのである。
In other words, the technical concept of the conventional method is that powdering resistance decreases when high temperature or high alloying speed is used, but the present invention proposes that powdering resistance is related to the alloying speed at the final stage of alloying. This is based on the technical idea that the alloying rate at the initial stage of alloying has essentially no relation to powdering properties.

ここで、合金化末期とは、被膜の平均Fe含有率が5〜
lO重量%、特に8〜10重量%の合金化領域を指す。
Here, the final stage of alloying means that the average Fe content of the coating is 5 to 5.
It refers to the alloying region of 10% by weight, especially 8-10% by weight.

本発明者等の行った実験での末期合金化速度とパウダリ
ング性の関係を第1図(a)および中)にグラフで示し
た。
The relationship between the late-stage alloying rate and the powdering property in experiments conducted by the present inventors is shown graphically in FIGS. 1(a) and 1(middle).

第1図(alは、亜鉛めっき付着量46g/rrrで亜
鉛めっきを行い、成品被膜中の平均Fe含有率10〜1
2.5重量%のときの合金化後期即ち平均Fe含有率5
〜lO%の領域における被膜中へのFe富化速度(g/
鴫、s)に対するパウダリング量(g )をグラフにま
とめて示すものであり、図示グラフからも明らかなよう
にFe富化速度が低いときはパウダリングの発生量は少
ないことが分かる。
Figure 1 (al is zinc plating with a coating weight of 46 g/rrr, and the average Fe content in the finished film is 10 to 1
Late alloying when 2.5% by weight, that is, average Fe content 5
Fe enrichment rate (g/
The graph shows the amount of powdering (g) against the amount of powdering (g), and as is clear from the graph, it can be seen that when the Fe enrichment rate is low, the amount of powdering generated is small.

第1図(blは、上記の場合に平均Fe富化速度即ち合
金化開始から終了迄の平均的Fe富化速度を横軸にとっ
たときの同様のグラフであるが、これによれば、一定の
明確な相関はみられない、むしろ、平均Fe富化速度を
かなり高くしても必ずしもパウダリングが顕著に起こる
ということはないことが判る。
Figure 1 (bl) is a similar graph in which the average Fe enrichment rate in the above case, that is, the average Fe enrichment rate from the start to the end of alloying, is plotted on the horizontal axis; It can be seen that no clear correlation is observed; rather, even if the average Fe enrichment rate is made considerably high, powdering does not necessarily occur significantly.

この考え方に基づく新しい合金化処理の熱処理方法は、
合金化初期にはできるだけ合金化温度を上昇、少なくと
も550℃以上の材温に到るまで加熱する。500℃未
満では、Zn中のAIのFe−Znの相互拡散抑止効果
が大きいため比較的初期合金化速度が小さいが、550
℃以上では、FeZn−Aj!3元合金が早期に崩壊し
て高速の合金化が達成される。
The new alloying heat treatment method based on this idea is
At the initial stage of alloying, the alloying temperature is increased as much as possible until the material temperature reaches at least 550°C. At temperatures below 500°C, the initial alloying rate is relatively low due to the strong effect of inhibiting Fe-Zn mutual diffusion of AI in Zn;
Above ℃, FeZn-Aj! Rapid alloying is achieved due to early collapse of the ternary alloy.

しかし、合金化が中ば以上行われた後は、末期合金化速
度を抑制するために可及的速やかに530℃以下へ鋼帯
を冷却する必要がある。しかし420℃以下まで冷却す
ると、合金化の終了までに長時間を要するので、望まし
くは、450〜500℃で保持する必要がある。
However, after alloying has been carried out halfway or more, it is necessary to cool the steel strip to 530° C. or lower as soon as possible in order to suppress the late stage alloying rate. However, if it is cooled to below 420°C, it will take a long time to complete the alloying, so it is desirable to maintain the temperature at 450 to 500°C.

以上のような知見に基づき、本発明者らはさらに検討の
結果、以下の本発明の合金化処理炉を発明した。
Based on the above findings, the present inventors further investigated and invented the following alloying processing furnace of the present invention.

よって、本発明の要旨とするところは、溶融亜鉛めっき
した鋼帯を連続的に合金化処理する溶融亜鉛めっき鋼板
の合金化処理炉であって、加熱帯、急速冷却帯、保持帯
、および冷却帯をこの順序に連続配置してなる、合金化
処理炉である。
Therefore, the gist of the present invention is to provide an alloying processing furnace for hot-dip galvanized steel sheets in which a hot-dip galvanized steel strip is continuously alloyed. This is an alloying processing furnace in which the bands are successively arranged in this order.

前記加熱帯にあっては、好ましくは550〜700℃へ
の急速加熱を行なうものであるが、その際の加熱手段と
しては高周波誘導加熱装置を設けてもよく、および/ま
たはその長さは前記熔融亜鉛めっき浴を通過後、急速加
熱後の急冷開始までの時間を10秒以内とする程度とし
てもよく、好ましくは5秒以内である。加熱手段として
の高周波誘導加熱装置は、特に高周波誘導加熱の投入周
波数を適宜選定することにより鋼板表面とめっき層との
界面をのみ急速に強加熱することができるため本発明の
目的にとっては好ましい。
The heating zone preferably performs rapid heating to 550 to 700°C, and a high frequency induction heating device may be provided as the heating means at that time, and/or its length may be as long as the above. After passing through the molten galvanizing bath, the time from rapid heating to the start of rapid cooling may be within 10 seconds, preferably within 5 seconds. A high-frequency induction heating device as a heating means is preferable for the purpose of the present invention because it can rapidly and intensely heat only the interface between the steel plate surface and the plating layer by appropriately selecting the input frequency of high-frequency induction heating.

また、前記急速冷却帯は、好ましくは上述のような53
0℃以下の温度範囲へ急冷するためのちのであり、例え
ばミスト冷却および/またはジェットガス冷却装置を設
けていてもよい。次に、前記保持帯は、冷却した後に熔
融亜鉛めっき鋼板をその温度に保持することにより行う
ためのもので、そのときの低温合金化処理は3〜120
秒行うのが好ましいため、それにより長さが決定できる
。より好ましくはこのとき保持帯にも高周波誘導加熱装
置など適宜加熱装置を設けることができる。
Further, the rapid cooling zone is preferably 53 as described above.
It is used for rapid cooling to a temperature range of 0° C. or lower, and may be provided with, for example, a mist cooling and/or jet gas cooling device. Next, the holding band is used to hold the hot-dip galvanized steel sheet at that temperature after cooling, and the low-temperature alloying treatment at that time is 3 to 120 degrees.
It is preferable to do this for seconds, so that the length can be determined. More preferably, at this time, the holding band may also be provided with an appropriate heating device such as a high frequency induction heating device.

なお、前記加熱帯における加熱程度は「めっき層表面に
液相が残存する」状態とするのが好ましいが、これはめ
っき層内部に相互拡散によりFe −Zn合金層が形成
されるが、まだ表面にまではFeが拡散してきていない
状態を言い、一般にそのときはめっき層表面はまだ金属
光沢を有している。本発明に係る装置を利用した場合、
めっき条件にもよるが加熱開始より10秒以内、温度で
云えば550〜650℃程度であればそのような状態は
十分確保されている。
The degree of heating in the heating zone is preferably such that a liquid phase remains on the surface of the plating layer, but this means that although a Fe-Zn alloy layer is formed inside the plating layer due to interdiffusion, it is still on the surface. This refers to a state in which Fe has not yet diffused, and generally at that time the surface of the plating layer still has metallic luster. When using the device according to the present invention,
Although it depends on the plating conditions, such a state is sufficiently ensured within 10 seconds from the start of heating, as long as the temperature is about 550 to 650°C.

(作用) 次に、本発明にかかる合金化処理炉の構造を従来のそれ
と比較しながら説明する。
(Function) Next, the structure of the alloying processing furnace according to the present invention will be explained while comparing it with a conventional one.

第2図は、従来の合金化溶融亜鉛めっき鋼板製造装置1
0であり、鋼帯11はスナウト12を経て熔融亜鉛浴1
3に連続的に浸漬されジンクロール14および支持ロー
ル15を経て引き上げられる。符号16は目付量調節用
のガスワイパーを示すもので、これにより所要量の溶融
亜鉛がめっきされた鋼帯は一連の直火式バーナ17を備
えた加熱帯18、保持帯19、そして同じく直火式バー
ナ20を備えた保持帯21を備えた合金化処理炉22に
より各処理帯を順次通過して合金化処理が行われ、ター
ンロール23を経て装置外へ送られる。
Figure 2 shows a conventional alloyed hot-dip galvanized steel sheet manufacturing equipment 1.
0, and the steel strip 11 passes through the snout 12 and enters the molten zinc bath 1.
3 and then pulled up via a zinc roll 14 and a support roll 15. Reference numeral 16 indicates a gas wiper for adjusting the basis weight, whereby the steel strip coated with the required amount of hot-dip zinc is passed through a heating zone 18 equipped with a series of direct-fired burners 17, a holding zone 19, and also a direct-fired steel strip. The alloying treatment furnace 22 is equipped with a holding zone 21 equipped with a fire burner 20, and the alloying treatment is performed by sequentially passing through each treatment zone, and then sent to the outside of the apparatus via a turn roll 23.

一方、本発明による合金化処理炉を第3図に示すが、同
一部材は同一符号で示す。熔融亜鉛めっきをされた鋼帯
は前述の通常の方法によって付着量の制御を行った後、
可及的速やかに加熱帯28へ導入される。加熱帯は比較
的速やかに、鋼帯を望ましくは550℃以上に加熱する
機能を有するのもであって、望ましくは50℃/S以上
の昇温速度を能力として具備する。この目的のためには
、加熱帯2日の加熱装置が誘導加熱方式よりなることが
望ましいが、場合によっては対流加熱能の大きいバーナ
でもよく、必ずしも特定の加熱方式に限定されれるもの
ではない。
On the other hand, an alloying processing furnace according to the present invention is shown in FIG. 3, and the same members are designated by the same reference numerals. After controlling the amount of coating on the hot-dip galvanized steel strip using the usual method described above,
It is introduced into the heating zone 28 as soon as possible. The heating zone has the function of heating the steel strip relatively quickly, desirably to 550° C. or higher, and desirably has a heating rate of 50° C./S or higher. For this purpose, it is desirable that the heating device for the second heating zone be of an induction heating type, but in some cases a burner with a large convection heating capacity may be used, and the heating method is not necessarily limited to a specific one.

加熱帯28の直後に位置する急速冷却帯30は、加熱帯
28で少なくとも550℃以上に加熱された鋼帯11を
速やかに530℃以下の温度に急冷する機能を有するも
のである。理想的な態様においては、加熱帯28におい
て550℃以上に鋼帯11が加熱されるので、急速冷却
帯30は、20℃/S以上の冷却能を有することが望ま
しく、ガスジェットによる冷却の他、水等を併用したア
トマイズミストによる冷却を採用することができる。そ
のような冷却手段そのものは公知のものであってよい、
保持帯32は加熱帯28および急速冷却帯30を通して
半ば合金化され鋼帯11の最終的な合金化を行うために
、鋼帯を530℃以下の温度に保持することを目的とし
ており、その温度を保持するために、小容量の誘導加熱
装置(図示せず)あるいは、前記加熱帯28がバーナ加
熱である場合には、その廃熱が用いられる。
The rapid cooling zone 30 located immediately after the heating zone 28 has the function of rapidly cooling the steel strip 11, which has been heated to at least 550.degree. C. or higher in the heating zone 28, to a temperature of 530.degree. C. or lower. In an ideal embodiment, the steel strip 11 is heated to 550° C. or higher in the heating zone 28, so it is desirable that the rapid cooling zone 30 has a cooling capacity of 20° C./S or higher. , cooling by atomizing mist using water or the like can be employed. Such a cooling means itself may be a known one,
The purpose of the holding zone 32 is to maintain the steel strip at a temperature below 530° C. in order to carry out semi-alloying and final alloying of the steel strip 11 through the heating zone 28 and the rapid cooling zone 30, To maintain this, a small capacity induction heating device (not shown) or, if the heating zone 28 is burner heated, the waste heat thereof is used.

最終段における冷却帯34は合金化を終えためっき鋼帯
11を比較的速やかに冷却して過度の合金化を抑制する
目的で設けるものであって、この場合にあっても好まし
くはミスト冷却もしくはガス冷却装置を用いる。
The cooling zone 34 in the final stage is provided for the purpose of cooling the plated steel strip 11 after alloying relatively quickly and suppressing excessive alloying. Even in this case, it is preferable to use mist cooling or Use gas cooling equipment.

本発明における合金化度の調整は、加熱帯28の通電量
もしくは焚量によって行う他、急速冷却帯30の冷却用
のガス量もしくはミスト量および保持帯32の温度コン
トロールによって行うが、保持帯温度は望ましくは52
0℃以下であるため、加熱帯温度と急速冷却帯の流体流
量で調整することが、高品質の製品を得るためには適当
であると言える。
In the present invention, the degree of alloying is adjusted by controlling the amount of current or firing amount in the heating zone 28, as well as by controlling the amount of cooling gas or mist in the rapid cooling zone 30 and the temperature of the holding zone 32. is preferably 52
Since the temperature is below 0°C, it can be said that it is appropriate to adjust the temperature of the heating zone and the fluid flow rate of the rapid cooling zone in order to obtain a high-quality product.

なお、Znめっき層中のMの濃度は常法によるものであ
る。一般には0.05%以上含有される。本発明法では
合金化の促進ができるので好ましくは0゜35−t%以
下とするのがよい。
Note that the concentration of M in the Zn plating layer is determined by a conventional method. It is generally contained at 0.05% or more. In the method of the present invention, since alloying can be promoted, the content is preferably 0°35-t% or less.

以下、本発明を、実施例に基づき更に詳細に説明する。Hereinafter, the present invention will be explained in more detail based on Examples.

なお、以下の各実施例にあっては、ゼンジマ一方式で連
続的に製造された、厚さ0.6a+mの片面86g/r
lのZn付着量を有する亜鉛めっき鋼板を供試材とした
。このときの鋼板組成はC: 0.035%、St <
 0.01%、Mn : 0.22%、P:0.01%
、S : 0.009%、sol、AQ : 0.02
4%であり、Znめっき層中の有効AQ濃度は0.13
5%であった。
In addition, in each of the following examples, one side of 86g/r with a thickness of 0.6a+m, which was continuously manufactured by one-sided Senzima method, was used.
A galvanized steel sheet having a Zn coating amount of 1 was used as a test material. The steel plate composition at this time was C: 0.035%, St <
0.01%, Mn: 0.22%, P: 0.01%
, S: 0.009%, sol, AQ: 0.02
4%, and the effective AQ concentration in the Zn plating layer is 0.13.
It was 5%.

1隻皿 300+e巾、0.51厚の鋼帯を30+ 〜60m/
winの通板速度で、第3図に示す溶融亜鉛めっきのパ
イロットプラントを用いて40g/m2の片面当たり付
着量の溶融めっきを行い、めっきポット上方に設置され
た240KWの誘導加熱炉、最大20m ” /win
の量のガス吐出が可能なエアージェット、さらに120
に−の誘導加熱炉による保持帯、最大5 m ’ /m
inの量のガス吐出が可能なエアージェットによる冷却
帯を連続的に配備した合金化処理炉に通板して、エアー
ジェット量および通電量を変化させて各種の合金化処理
を行った。得られた鋼板は、直径60ffiIlのブラ
ンクの円筒絞り試験を行い、成形後テーピングテストに
より強制剥離させ、試験材の重量減量を評価することに
より耐パウダリング性を測定した。その結果を第4図(
a)および(blに示す。
1 plate 300+e width, 0.51 thickness steel strip 30+ ~60m/
Hot-dip galvanizing was carried out with a coating weight of 40 g/m2 per side using the hot-dip galvanizing pilot plant shown in Fig. 3 at a sheet threading speed of 100 kW. ”/win
air jet capable of discharging gas in an amount of 120
Holding zone by induction heating furnace, maximum 5 m'/m
The sheets were passed through an alloying processing furnace equipped with a continuous cooling zone using an air jet capable of discharging gas in an amount of 1.5 in., and various alloying treatments were performed by changing the amount of air jet and the amount of current applied. The obtained steel plate was subjected to a cylindrical drawing test using a blank having a diameter of 60 ffil, and the powdering resistance was measured by forcibly peeling it off by a taping test after forming and evaluating the weight loss of the test material. The results are shown in Figure 4 (
Shown in a) and (bl).

すなわち、第4図(a)は、急速冷却帯のエアジェツト
量8〜16 I+” /winのときの通板速度と誘導
加熱炉の通電量とに対し耐パウダリング性をプロットし
て示すグラフである。第4図(blは比較例として示す
もので同じく急速冷却帯のエアジェツト量をゼロとした
ときの同様のグラフである。図中、記号rOJはパウダ
リング量が0.03 g/個未満の場合、同「・」は0
.03 g/個以上の場合、そして「×」は未処理の場
合(めっき層の表層まで合金化が完結していない状態で
Zn層が残存)のパウダリング量をそれぞれ示す、この
ように急速冷却帯を具備した本発明においては、このパ
イロットプラントの例でも明らかなように高速通板時に
高品質のGA鋼板が得られることが判明した。
That is, FIG. 4(a) is a graph showing the powdering resistance plotted against the sheet passing speed and the amount of current in the induction heating furnace when the air jet amount in the rapid cooling zone is 8 to 16 I+"/win. Figure 4 (BL is shown as a comparative example and is a similar graph when the air jet amount in the rapid cooling zone is set to zero. In the figure, the symbol rOJ indicates that the powdering amount is less than 0.03 g/piece. In this case, the same "・" is 0
.. 03 g/piece or more, and "x" indicates the amount of powdering in the case of no treatment (alloying to the surface layer of the plating layer is not completed and the Zn layer remains). In the present invention equipped with a belt, it has been found that high-quality GA steel sheets can be obtained during high-speed threading, as is clear from this pilot plant example.

(発明の効果) 以上、本発明による炉では高い生産性で高品質の製品を
製造することができ、本発明に係る装置は、GA鋼板の
高速、つまり短時間熱処理装置として優れており、特に
比較的付着量の大きい素材や、Zn中の鮫濃度の高い場
合に優れた効果を示すもので、今日のように、蚊濃度の
高い合金化溶融亜鉛めっきが望まれている状況下におい
て生産性を高める手段として本発明の意義は大きい。
(Effects of the Invention) As described above, the furnace according to the present invention can manufacture high-quality products with high productivity, and the apparatus according to the present invention is excellent as a high-speed, short-time heat treatment apparatus for GA steel sheets, especially It shows excellent effects on materials with a relatively large amount of adhesion or when the shark concentration in Zn is high, and productivity is improved in today's situation where alloyed hot-dip galvanizing with a high mosquito concentration is desired. The present invention is of great significance as a means to increase this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(alおよび(blは、合金化後期のFe富化速
度および平均Fe富化速度とパウダリング量との関係を
それぞれ示すグラフ; 第2図は、従来装置を示す略式説明図;第3図は、本発
明に係る装置を示す略式説明図;および 第4図(alおよび(b)は、本発明の実施例および比
較例のデータを示すグラフである。 28:加熱帯    30:急速冷却帯32:保持帯 
   34:冷却帯 出願人  住友金属工業株式会社 代理人  弁理士 広 瀬 章 − 築ITW((1) 本1図<b> 遼)l(3□−’S”) 本2凹 肌3図 爲4凹(α) 葬、4回(b) xh扱i塵(m/mrn )
Figure 1 (al and (bl) are graphs showing the relationship between the Fe enrichment rate and the average Fe enrichment rate and the amount of powdering in the late stage of alloying, respectively; Figure 2 is a schematic explanatory diagram showing a conventional device; 3 is a schematic explanatory diagram showing an apparatus according to the present invention; and FIG. 4 (al and (b) are graphs showing data of examples and comparative examples of the present invention. 28: Heating zone 30: Rapid Cooling zone 32: retention zone
34: Cooling Zone Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent Attorney Akira Hirose - Tsuki ITW ((1) Book 1 Diagram <b> Liao) l (3□-'S”) Book 2 Concave Skin 3 Diagram 4 Concave (α) Funeral, 4 times (b) xh treatment i dust (m/mrn)

Claims (4)

【特許請求の範囲】[Claims] (1)溶融亜鉛めっきした鋼帯を連続的に合金化処理す
る溶融亜鉛めっき鋼板の合金化処理炉であって、加熱帯
、急速冷却帯、保持帯、および冷却帯をこの順序に連続
配置してなる、合金化処理炉。
(1) An alloying processing furnace for hot-dip galvanized steel sheets that continuously alloys hot-dip galvanized steel strips, in which a heating zone, a rapid cooling zone, a holding zone, and a cooling zone are successively arranged in this order. Alloying processing furnace.
(2)前記加熱帯が誘導加熱装置を有することを特徴と
する、特許請求の範囲第1項記載の合金化処理炉。
(2) The alloying processing furnace according to claim 1, wherein the heating zone has an induction heating device.
(3)前記急速冷却帯がミスト冷却および/またはジェ
ットガス冷却装置を備えた特許請求の範囲第1項または
第2項記載の合金化処理炉。
(3) The alloying processing furnace according to claim 1 or 2, wherein the rapid cooling zone is equipped with a mist cooling and/or a jet gas cooling device.
(4)前記保持帯が加熱装置を備えた特許請求の範囲第
1項ないし第3項のいずれかに記載の合金化処理炉。
(4) The alloying treatment furnace according to any one of claims 1 to 3, wherein the holding band is equipped with a heating device.
JP13552585A 1985-06-21 1985-06-21 Alloying treatment furnace Granted JPS61295362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13552585A JPS61295362A (en) 1985-06-21 1985-06-21 Alloying treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13552585A JPS61295362A (en) 1985-06-21 1985-06-21 Alloying treatment furnace

Publications (2)

Publication Number Publication Date
JPS61295362A true JPS61295362A (en) 1986-12-26
JPH0515780B2 JPH0515780B2 (en) 1993-03-02

Family

ID=15153808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13552585A Granted JPS61295362A (en) 1985-06-21 1985-06-21 Alloying treatment furnace

Country Status (1)

Country Link
JP (1) JPS61295362A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219450A (en) * 1988-07-05 1990-01-23 Nippon Steel Corp Formation of oxide film on alloyed hot dip galvanized steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219450A (en) * 1988-07-05 1990-01-23 Nippon Steel Corp Formation of oxide film on alloyed hot dip galvanized steel sheet

Also Published As

Publication number Publication date
JPH0515780B2 (en) 1993-03-02

Similar Documents

Publication Publication Date Title
JPH0515779B2 (en)
JPS61295362A (en) Alloying treatment furnace
JPH10176253A (en) Production of unrecrystallized hot dip galvanized steel sheet in continuous type hot dip galvanizing line
JPS6240352A (en) Production of alloyed zinc plated steel sheet
JP2792343B2 (en) Manufacturing method of galvannealed steel sheet with excellent weldability
CN108754381A (en) A kind of steel band is aluminized the continuous producing method of zinc chrome
JPS5931858A (en) Production of alloyed galvanized steel plate
JP2704819B2 (en) Method for producing high-Si hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JPS62205262A (en) Manufacture of alloyed steel sheet
JPS6240353A (en) Production of alloyed zinc plated steel sheet
JPS6354782B2 (en)
JPS6157374B2 (en)
JP2512147B2 (en) Method for producing galvannealed steel sheet with excellent powdering resistance
JPS6354783B2 (en)
JPH0794704B2 (en) Method for producing galvannealed steel sheet
JP2800700B2 (en) Manufacturing method for galvannealed steel sheet
JPS6240354A (en) Production of alloyed zinc plated steel sheet
JPS6156270A (en) Method for hot dip galvanizing dead soft steel
JPH03281764A (en) Production of glavannealed steel sheet for deep drawing excellent in surface appearance
JPH0448062A (en) Production of galvannealed steel sheet
JP2002220651A (en) Method for manufacturing hot-dip galvanized steel sheet
JP2003328097A (en) Apparatus and method for producing alloyed hot-dip galvanized steel plate
JPH01159360A (en) Hot dip coating method
JPH0237425B2 (en) GOKINKAAENMETSUKIKOHANNOSEIZOHOHO
JPH1025558A (en) Production of zinc-iron alloyed hot dip plated steel sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees