JP2792343B2 - Manufacturing method of galvannealed steel sheet with excellent weldability - Google Patents
Manufacturing method of galvannealed steel sheet with excellent weldabilityInfo
- Publication number
- JP2792343B2 JP2792343B2 JP15870192A JP15870192A JP2792343B2 JP 2792343 B2 JP2792343 B2 JP 2792343B2 JP 15870192 A JP15870192 A JP 15870192A JP 15870192 A JP15870192 A JP 15870192A JP 2792343 B2 JP2792343 B2 JP 2792343B2
- Authority
- JP
- Japan
- Prior art keywords
- bath
- alloying
- steel sheet
- phase
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Coating With Molten Metal (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は溶接性に優れた合金化
溶融亜鉛めっき鋼板の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a galvannealed steel sheet having excellent weldability.
【0002】[0002]
【従来の技術】合金化溶融亜鉛めっき鋼板の上層にZn
Oを主成分とする酸化皮膜が存在すると、めっき鋼板の
溶接性が向上することが知られており、この場合のZn
Oの最適値は30〜3000mg/m2(片面当り)で
あるとされている。従来、合金化溶融亜鉛めっき鋼板の
製造プロセスにおける合金化処理は、一般にガス加熱炉
方式で行われているが、このガス加熱炉方式ではバーナ
ー炎の当りが鋼板幅方向で不均一になり易く、且つ鋼板
の幅方向、長手方向での板温の変動も生じ易いため、合
金化時に生成する酸化皮膜は不均一な分布を示し、且つ
ポーラス状のものとなり易く、溶接性向上には不適であ
る。2. Description of the Related Art Zn is formed on an alloyed hot-dip galvanized steel sheet.
It is known that the presence of an oxide film containing O as a main component improves the weldability of a plated steel sheet.
The optimum value of O is said to be 30 to 3000 mg / m 2 (per side). Conventionally, alloying treatment in the manufacturing process of alloyed hot-dip galvanized steel sheet is generally performed by a gas heating furnace method, but in this gas heating furnace method, the contact of the burner flame tends to be uneven in the width direction of the steel sheet, In addition, since the sheet temperature tends to fluctuate in the width direction and the longitudinal direction of the steel sheet, the oxide film generated at the time of alloying shows a non-uniform distribution and tends to be porous, which is not suitable for improving the weldability. .
【0003】従来、合金化溶融亜鉛めっき鋼板上層に酸
化皮膜(主としてZnOを主成分とするもの)を形成さ
せるため、以下のような方法が採られている。 HNO3、HClを主成分とした処理液中に浸漬処
理するか、同処理液をスプレー処理する方法 合金化処理後の気水冷却において、冷却処理液中に
オゾン添加を添加し、酸化を促進する方法Conventionally, the following method has been employed to form an oxide film (mainly ZnO as a main component) on the upper layer of a galvannealed steel sheet. A method of immersing in a processing solution containing HNO 3 or HCl as a main component or spraying the same. In air-water cooling after alloying, ozone is added to the cooling solution to promote oxidation. how to
【0004】[0004]
【発明が解決しようとする課題】しかしながら、これら
のうちの方法は、その処理のためのスペースを確保す
る必要があるとともに、処理タンクや循環タンク等のた
めの設備コストが高いという難点があり、また、酸性液
による浸漬、スプレー処理により表面エッチングが発生
し、めっき鋼板の耐パウダリング性が劣化するという問
題がある。また、の方法では、合金化処理後の気水冷
却は水漏れ等のトラブルが発生し易く、保全上問題があ
るとともに、合金化直後に気水冷却すると合金化ヒート
パターンのフレキシビリティーが小さくなるという問題
もある。However, these methods are disadvantageous in that it is necessary to secure a space for the treatment, and the equipment cost for the treatment tank, the circulation tank, and the like is high. In addition, there is a problem that surface immersion occurs due to immersion and spray treatment with an acidic solution, and the powdering resistance of the plated steel sheet is deteriorated. In addition, in the method (1), air-water cooling after the alloying treatment is liable to cause a problem such as water leakage, and there is a problem in terms of maintenance. There is also the problem of becoming.
【0005】本発明はこのような従来の問題に鑑みなさ
れたもので、上記、のような問題を生じることな
く、上層に緻密で且つ均一な酸化皮膜を有する合金化溶
融亜鉛めっき鋼板の製造方法を提供しようとするもので
ある。SUMMARY OF THE INVENTION The present invention has been made in view of such conventional problems, and a method for producing an alloyed hot-dip galvanized steel sheet having a dense and uniform oxide film on the upper layer without causing the above-mentioned problems. It is intended to provide.
【0006】[0006]
【課題を解決するための手段】従来一般に行われている
ガス加熱方式による合金化処理では、めっき皮膜の外側
から熱が加えられるため加熱が不均一となり易く、この
ため合金化処理段階でめっき皮膜の上層に酸化皮膜を均
一に形成させることは困難である。これに対し、高周波
誘導加熱方式の合金化炉による合金化処理では、高周波
誘導加熱により鋼板自体が直接加熱されるため、めっき
皮膜をその内側から均一に加熱することが可能である。
また、高周波誘導加熱方式はガス加熱方式と異なり雰囲
気ガスを比較的自由に選択、制御できるという特徴があ
り、合金化炉を所定の酸素濃度以上の酸化性雰囲気に保
つことが可能である。Means for Solving the Problems In the conventional alloying treatment by the gas heating method, heat is applied from the outside of the plating film, so that the heating tends to be non-uniform. It is difficult to form an oxide film uniformly on the upper layer. On the other hand, in the alloying process using the high-frequency induction heating type alloying furnace, the steel sheet itself is directly heated by the high-frequency induction heating, so that the plating film can be uniformly heated from the inside.
Also, the high-frequency induction heating method is different from the gas heating method in that the atmosphere gas can be selected and controlled relatively freely, and the alloying furnace can be kept in an oxidizing atmosphere having a predetermined oxygen concentration or higher.
【0007】本発明者らは、このような高周波誘導加熱
方式の特徴を利用することにより、合金化処理工程でめ
っき皮膜上層に均一な酸化皮膜を形成させ得ることを見
出し、本発明を完成させたものである。すなわち本発明
は、鋼板を溶融亜鉛めっきした後、酸素濃度が25%以
上の酸化性雰囲気に保たれた高周波誘導加熱炉において
合金化処理することを特徴とする溶接性に優れた合金化
溶融亜鉛めっき鋼板の製造方法である。The present inventors have found that a uniform oxide film can be formed on the plating film in the alloying step by utilizing such characteristics of the high-frequency induction heating method, and the present invention has been completed. It is a thing. That is, the present invention provides an alloyed hot-dip galvanized steel excellent in weldability, characterized in that after hot-dip galvanizing a steel sheet, an alloying treatment is performed in a high-frequency induction heating furnace maintained in an oxidizing atmosphere having an oxygen concentration of 25% or more. This is a method for producing a plated steel sheet.
【0008】[0008]
【作用】溶融亜鉛めっき処理された鋼板を、酸素濃度2
5%以上の酸化性雰囲気に保たれた高周波誘導加熱炉に
導入し合金化処理することにより、めっき層の上層に緻
密で且つ均一な酸化皮膜(ZnO)が形成される。高周
波誘導加熱炉内の雰囲気の酸素濃度が25%未満では、
酸化皮膜の付着量が十分ではなく、鋼板各部での酸化皮
膜の形成が不均一になり易い。[Function] A steel sheet subjected to a hot-dip galvanizing treatment is treated with an oxygen concentration of 2
By introducing into a high-frequency induction heating furnace kept in an oxidizing atmosphere of 5% or more and performing an alloying treatment, a dense and uniform oxide film (ZnO) is formed on the plating layer. If the oxygen concentration of the atmosphere in the high-frequency induction heating furnace is less than 25%,
The amount of the oxide film deposited is not sufficient, and the formation of the oxide film on each part of the steel sheet tends to be uneven.
【0009】図1は、本発明による合金化溶融亜鉛めっ
き鋼板の製造プロセスの一例を模式的に示したもので、
1はめっき浴、2はシンクロール、3はワイピングノズ
ル、4は高周波誘導加熱方式の合金化炉、5はこの合金
化炉と連通した保熱帯、6は冷却帯である。FIG. 1 schematically shows an example of a manufacturing process of a galvannealed steel sheet according to the present invention.
1 is a plating bath, 2 is a sink roll, 3 is a wiping nozzle, 4 is an alloying furnace of a high frequency induction heating system, 5 is a preservation zone connected to the alloying furnace, and 6 is a cooling zone.
【0010】前記合金化炉4は高周波誘導加熱装置7と
これを覆う密閉カバー8とで構成され、この密閉カバー
8内にはガス導入部9を通じて酸化性ガスが導入され、
炉内を所定の酸素濃度の酸化性雰囲気とする。前記保熱
帯5は伝熱リボンヒーターによる保熱方式としてある。
また、合金化炉4の入口と保熱帯5の出口にはシール装
置10a、10bが設けられ、合金化炉4とこれに連通
した保熱帯5とを密閉構造としている。The alloying furnace 4 includes a high-frequency induction heating device 7 and a closed cover 8 covering the high-frequency induction heating device 7. An oxidizing gas is introduced into the closed cover 8 through a gas inlet 9.
The inside of the furnace is set to an oxidizing atmosphere having a predetermined oxygen concentration. The preservation zone 5 is a heat preservation system using a heat transfer ribbon heater.
Sealing devices 10a and 10b are provided at the entrance of the alloying furnace 4 and the outlet of the preservation zone 5, respectively, so that the alloying furnace 4 and the preservation zone 5 communicating therewith are sealed.
【0011】このような製造ラインでは、めっき浴1で
めっきされた鋼板Sは、シンクロール2を経て浴外に導
かれ、ワイピングノズル3によりめっき目付量調整が行
われた後、合金化炉4に導かれて合金化処理される。合
金化炉4(密閉カバー8)内にはガス導入部9を通じて
O2、H2O(水蒸気)、NOxまたはSOxを含む酸素
濃度25%以上の酸化性ガスが導入され、炉圧が正圧に
保たれている。また、合金化炉4と連通した保熱帯5内
部も同様の雰囲気に保たれている。合金化炉3に導入さ
れためっき鋼板Sは、高周波誘導加熱装置7で均一に加
熱されつつ、合金化炉4および保熱帯5を通過する過程
で、炉内酸化性雰囲気によりめっき皮膜上層に緻密且つ
均一な酸化皮膜が形成される。なお、合金化炉4および
保熱帯5での酸化を促進させるため、鋼板の板温は合金
化炉で450〜600℃、保熱帯で350〜550℃に
保持されることが好ましい。保熱帯5を出ためっき鋼板
Sは、冷却帯6に導入され冷却される。In such a production line, the steel sheet S plated in the plating bath 1 is guided to the outside of the bath via the sink roll 2, and the basis weight of the steel sheet S is adjusted by the wiping nozzle 3. And alloyed. An oxidizing gas containing O 2 , H 2 O (steam), NOx or SOx and having an oxygen concentration of 25% or more is introduced into the alloying furnace 4 (sealed cover 8) through a gas introduction unit 9, and the furnace pressure is set to a positive pressure. It is kept in. Also, the inside of the tropical zone 5 communicating with the alloying furnace 4 is kept in the same atmosphere. The plated steel sheet S introduced into the alloying furnace 3 is uniformly heated by the high-frequency induction heating device 7, while passing through the alloying furnace 4 and the preservation zone 5, and is densely formed on the plating film by an oxidizing atmosphere in the furnace. In addition, a uniform oxide film is formed. In order to promote oxidation in the alloying furnace 4 and the preservation zone 5, the plate temperature of the steel sheet is preferably maintained at 450 to 600 ° C in the alloying furnace and 350 to 550 ° C in the preservation zone. The plated steel sheet S that has left the preservation zone 5 is introduced into the cooling zone 6 and cooled.
【0012】次に、めっき皮膜の上層に酸化皮膜を均一
に形成させるためには、めっき皮膜そのものが平滑であ
ることが好ましい。そして、このようなめっき皮膜の平
滑性という観点から言うと、合金化溶融亜鉛めっき層は
δ1相主体の平滑な塊状晶が鋼板面に均一に形成された
ものであることが好ましい。また、このような合金化溶
融亜鉛めっき層は、単に酸化皮膜の均一性を高めるだけ
でなく、鋼板に優れた耐パウダリング性およびプレス成
形性を付与する。以下、このような合金化めっき皮膜を
得るための好ましい条件について説明する。Next, in order to uniformly form an oxide film on the plating film, it is preferable that the plating film itself is smooth. Then, from the viewpoint of the smoothness of such a plating film, it is preferable that the alloyed hot-dip galvanized layer is formed by forming a smooth bulk crystal mainly composed of δ 1 phase uniformly on the surface of the steel sheet. Further, such an alloyed hot-dip galvanized layer not only enhances the uniformity of the oxide film but also imparts excellent powdering resistance and press formability to the steel sheet. Hereinafter, preferable conditions for obtaining such an alloyed plating film will be described.
【0013】本発明者らは、δ1相主体の平滑な塊状晶
が鋼板面に均一に形成された合金化溶融亜鉛めっき層を
形成させることにより、酸化皮膜のより優れた均一性と
優れた耐パウダリング性およびプレス成形性を有する合
金化溶融亜鉛めっき鋼板を安定的に製造することができ
る方法について検討を行い、以下のような知見を得た。The present inventors have formed an alloyed hot-dip galvanized layer in which smooth bulk crystals mainly composed of δ 1 phase are uniformly formed on the surface of a steel sheet, so that the oxide film has more excellent uniformity and superiority. A method for stably producing an alloyed hot-dip galvanized steel sheet having powdering resistance and press formability was studied, and the following findings were obtained.
【0014】 めっき浴中で合金化反応(ζ相の生
成)を抑制し、しかもその後の合金化処理を高周波誘導
加熱方式の加熱炉を用いて行なうことにより、δ1相を
主体とする合金化相がストリップの幅方向、長手方向で
均一に形成された皮膜が得られること また、このようにして得られる合金化めっき皮膜
は、上述したようなマクロ的な均一性のみならず、ミク
ロ的にも合金化反応が均一に起きるため、この面からも
優れた耐パウダリング性とプレス成形性が得られること[0014] By suppressing the alloying reaction (generation of the ζ phase) in the plating bath and performing the subsequent alloying treatment by using a high-frequency induction heating type heating furnace, the alloying mainly composed of the δ 1 phase is achieved. A film in which the phase is uniformly formed in the width direction and the longitudinal direction of the strip is obtained.In addition, the alloyed plating film obtained in this way has not only macro uniformity as described above, but also microscopic Since the alloying reaction occurs uniformly, excellent powdering resistance and press formability can be obtained from this aspect as well.
【0015】 浴条件と高周波誘導加熱方式の加熱炉
出側板温条件を規定することにより、厳密な皮膜の制御
が可能であること 具体的には、低Al浴で且つ浴中Al量との関係で規定
される低目の侵入板温でめっきを施すことにより、或い
は、高Al浴で且つ浴中Al量との関係で規定される高
目の侵入板温でめっきを施し、浴中で合金化抑制相であ
るFe2Al5を厚く生成させることにより、浴中での合
金化反応(ζ相の発生)を適切に抑えることが可能であ
り、さらに、このようなめっき鋼板に対する高周波誘導
加熱方式の加熱炉を用いた合金化処理を、加熱炉出側で
の板温を495℃超〜520℃に管理して行うことによ
り、上記、で述べたような皮膜が得られること、Strict control of the coating is possible by specifying the bath conditions and the sheet temperature conditions on the exit side of the heating furnace of the high-frequency induction heating method. Specifically, the relationship between the low Al bath and the amount of Al in the bath By plating at a low intrusion plate temperature specified in the above, or by plating in a high Al bath and at a high intrusion plate temperature specified in relation to the amount of Al in the bath, and By thickly forming Fe 2 Al 5 , which is an anti-oxidation phase, it is possible to appropriately suppress the alloying reaction (generation of ζ phase) in the bath, and further, to perform high-frequency induction heating on such a plated steel sheet. By performing the alloying treatment using a heating furnace of the system by controlling the sheet temperature at the exit side of the heating furnace to be more than 495 ° C. to 520 ° C., the film as described above is obtained,
【0016】そして、このような知見に基づき検討を加
えた結果、以下(1)または(2)の条件で溶融亜鉛め
っき処理および合金化処理することにより、上述のよう
な平滑且つ均一な合金化溶融亜鉛めっき層が得られるこ
とが判った。As a result of an examination based on such knowledge, as a result of performing a hot-dip galvanizing treatment and an alloying treatment under the following conditions (1) or (2), a smooth and uniform alloying as described above is obtained. It was found that a hot-dip galvanized layer was obtained.
【0017】(1)浴中Al量:0.05%以上、0.
13%未満、浴温度:460℃以下で、且つ、浴中Al
量と鋼板のめっき浴中への侵入板温とが、 437.5×〔Al%〕+428>T≧437.5×〔Al%〕+408 但し、〔Al%〕:浴中Al量(%) T :侵入板温(℃) を満足する条件で溶融亜鉛めっきを行うことにより、浴
中でFe−Zn合金化反応を抑制し、めっき後、高周波
誘導加熱炉で加熱炉出側の板温が495℃超〜520℃
となるように加熱する。(1) Al content in bath: 0.05% or more;
Less than 13%, bath temperature: 460 ° C or less, and Al in the bath
437.5 × [Al%] + 428> T ≧ 437.5 × [Al%] + 408 where [Al%]: Al amount in bath (%) T: Hot-dip galvanizing under conditions satisfying the penetration plate temperature (° C.) suppresses the Fe—Zn alloying reaction in the bath, and after plating, the plate temperature on the exit side of the heating furnace in the high-frequency induction heating furnace is reduced. More than 495 ° C to 520 ° C
Heat so that
【0018】(2)浴中Al量:0.13%以上、浴温
度:470℃以下で、且つ、浴中Al量と鋼板のめっき
浴中への侵入板温とが、 571×〔Al%〕+416≧T≧571×〔Al%〕+396 但し、〔Al%〕:浴中Al量(%) T :侵入板温(℃) を満足する条件でめっきを行うことにより、浴中で合金
化抑制相であるFe2Al5を積極的に形成させてFe−
Zn合金化反応を抑制し、めっき後、高周波誘導加熱炉
で加熱炉出側の板温が495℃超〜520℃となるよう
に加熱する。(2) Al content in the bath: 0.13% or more, bath temperature: 470 ° C. or less, and the Al content in the bath and the temperature of the steel sheet entering the plating bath are 571 × [Al% + 416 ≧ T ≧ 571 × [Al%] + 396, where [Al%]: Al amount in bath (%) T: Alloying in bath by plating under conditions that satisfy: The inhibitory phase, Fe 2 Al 5, is actively formed to form Fe-
After the Zn alloying reaction is suppressed, and after plating, the sheet is heated in a high-frequency induction heating furnace so that the sheet temperature on the exit side of the heating furnace is more than 495 ° C to 520 ° C.
【0019】すなわち、浴中での合金化反応を極力抑制
し、且つこのように合金化が抑制されためっき皮膜に対
し、高周波誘導加熱による合金化処理を特定の条件で実
施することにより、Γ相が少なく、且つ鋼板各部におい
てδ1相を主体とする平滑な合金化相が均一に形成さ
れ、しかも皮膜構造のミクロ的な均一性によって全体と
して優れた耐パウダリング性を有し、さらにプレス成形
性にも優れためっき鋼板が得られるものである。したが
って、このような合金化溶融亜鉛めっき皮膜を形成させ
る際、本発明に従って所定の酸化性雰囲気の合金化炉内
で合金化処理することでめっき皮膜の上層に極めて均一
な酸化膜を生成させることができる。That is, the alloying reaction in the bath is suppressed as much as possible and the alloying treatment by high-frequency induction heating is performed under specific conditions on the plating film in which the alloying is suppressed as described above. phase is small, and smooth alloying phase consisting mainly of [delta] 1 phase in the steel sheet each section is uniformly formed, yet has excellent powdering resistance as a whole by the microscopic uniformity of the film structure, further pressing A plated steel sheet excellent in formability can be obtained. Therefore, when such an alloyed hot-dip galvanized film is formed, an extremely uniform oxide film is formed on the upper surface of the plated film by alloying in an alloying furnace having a predetermined oxidizing atmosphere according to the present invention. Can be.
【0020】このようなめっき−合金化処理条件におい
て、上述のような優れた特性のめっき皮膜が得られるの
は、次のような理由によるものと推定される。まず、第
1に、合金化処理において高周波誘導加熱方式を用いる
ことにより、鋼板自体を直接加熱することができ、しか
も、めっき皮膜に接する界面が最も加熱されるため、雰
囲気加熱方式に較べ界面におけるFe−Zn反応が短時
間でしかもストリップ上の位置に無関係に均一に起き、
このため、鋼板上での部分的な過合金やζ相の残留がな
く、均一なδ1相が形成され、これにより皮膜の平滑性
および均一性と均一な耐パウダリング性およびプレス成
形性が得られるものと推定される。It is presumed that, under such plating-alloying conditions, the plating film having the excellent characteristics as described above is obtained for the following reasons. First, by using the high-frequency induction heating method in the alloying treatment, the steel sheet itself can be directly heated, and the interface in contact with the plating film is heated most. The Fe-Zn reaction occurs uniformly in a short time and independently of the position on the strip,
Therefore, partial no residual peracetic alloy or ζ phase on the steel sheet, homogeneous [delta] 1 phase is formed, thereby smoothness and uniformity and uniform powdering resistance and press formability of the coating It is presumed to be obtained.
【0021】第2に、高周波誘導加熱は上記のように鋼
板側からの加熱であるため、微視的にも均一な合金化反
応が生じることによるものと推定される。すなわち、従
来一般に行われているガス加熱による合金化処理では、
皮膜の外側から熱が加えられるため加熱が不均一となり
易く、このため合金化反応が微視的に不均一に生じ易
い。特に結晶粒界は反応性に富むため、所謂アウトバ−
スト反応が生じ易く、このようにアウトバ−スト組織が
発生すると、この部分からΓ相が成長し始め、このΓ相
の形成により耐パウダリング性が劣化する。これに対
し、高周波誘導加熱は鋼板側からの加熱であるため、上
記のような合金化の局部的なバラツキが少なく、また、
鋼板面の酸化物や浴中で生じた合金化抑制物質(Fe2
Al5)も容易に拡散するため、ミクロ的にも均一な合
金化皮膜が得られるものと思われる。Second, since the high-frequency induction heating is heating from the steel plate side as described above, it is presumed that a uniform alloying reaction occurs microscopically. That is, in the conventional alloying treatment by gas heating,
Since heat is applied from the outside of the film, the heating is likely to be non-uniform, and the alloying reaction is likely to be microscopically non-uniform. In particular, since the crystal grain boundaries are highly reactive, the so-called outover
A strike reaction is likely to occur, and when an outburst structure is generated in this way, a Γ phase starts to grow from this portion, and the formation of the Γ phase deteriorates the powdering resistance. On the other hand, since high-frequency induction heating is heating from the steel plate side, there is little local variation in the alloying as described above,
Oxide on steel plate surface and alloying inhibitor (Fe 2
Since Al 5 ) is also easily diffused, it is considered that a uniform alloyed film can be obtained even from a microscopic viewpoint.
【0022】第3に、高周波誘導加熱はめっきを短時間
で合金化できることからΓ相の成長時間が短いことが挙
げられる。そして、本発明では浴中でのΓ相の発生も抑
えられるため、最終的なΓ相の形成量が少なく、このこ
とも耐パウダリング性の向上に大きく寄与しているもの
と考えられる。Third, the high frequency induction heating can shorten the growth time of the Γ phase because the plating can be alloyed in a short time. In the present invention, since the generation of the Γ phase in the bath can be suppressed, the final formation amount of the 少 な く phase is small, which is also considered to contribute greatly to the improvement of the powdering resistance.
【0023】第4に、高周波誘導加熱の利点として、鋼
板幅方向、長さ方向で均一な加熱が可能であるため、加
熱炉出側での厳密な板温管理が可能であり、また、ガス
炉等の雰囲気加熱方式とは異なり、加熱された雰囲気ガ
スの上昇(ドラフト効果)がないため、特殊な冷却をし
なくても過合金が起り難いことによるものと考えられ
る。Fourth, as an advantage of high-frequency induction heating, uniform heating can be performed in the width and length directions of the steel sheet, so that strict control of the sheet temperature on the exit side of the heating furnace is possible, and gas Unlike an atmosphere heating method such as a furnace, there is no rise in the heated atmosphere gas (draft effect), so it is considered that overalloy hardly occurs even without special cooling.
【0024】また、合金化抑制相であるFe2Al5を浴
中で形成させることによりFe−Zn反応を抑制し、続
く加熱処理においてδ1相を形成させる上記(2)の方
法では、上記のように高周波誘導加熱が鋼板側からの加
熱であるため、合金化時にFe2Al5が容易に拡散しδ
1相を形成する。つまり、Fe−Zn反応を適切に抑制
するためにFe2Al5を厚く形成させても、合金化時に
これを確実且つ均一に拡散することができる。この結
果、合金化がミクロ的にも均一化し、厚いFe2Al5の
形成により浴中でのΓ相の発生が抑制されることと相俟
って、均一な合金相と優れた耐パウダリング性が得られ
るものと考えられる。In the method (2), the Fe—Zn reaction is suppressed by forming Fe 2 Al 5 as an alloying suppressing phase in a bath, and the δ 1 phase is formed in the subsequent heat treatment. Since the high-frequency induction heating is heating from the steel sheet side, Fe 2 Al 5 is easily diffused during alloying and δ
Form one phase. In other words, even if Fe 2 Al 5 is formed thick to appropriately suppress the Fe—Zn reaction, it can be diffused reliably and uniformly during alloying. As a result, the alloying becomes microscopically uniform, and the formation of a thick Fe 2 Al 5 suppresses the generation of a Γ phase in the bath, which results in a uniform alloy phase and excellent powdering resistance. It is considered that the property can be obtained.
【0025】上記(1)および(2)方法では、めっき
浴中での合金化反応を極力抑制するため、めっき浴中の
Al量、めっき浴に侵入する際の鋼板の板温及び浴温度
が規定される。すなわち、めっき浴中での合金化反応を
抑制するため、(1)の方法では低Al浴で且つ浴中A
l量との関係で規定される低目の侵入板温とし、また、
(2)の方法では高Al浴で且つ浴中Al量との関係で
規定される高目の侵入板温とする。In the above methods (1) and (2), in order to minimize the alloying reaction in the plating bath, the amount of Al in the plating bath, the sheet temperature of the steel sheet when entering the plating bath, and the bath temperature are reduced. Stipulated. That is, in order to suppress the alloying reaction in the plating bath, the method (1) uses a low Al bath and
and the lower invading plate temperature defined in relation to the
In the method (2), the temperature of the infiltration plate is set to be a high Al bath and a higher penetration plate temperature defined in relation to the amount of Al in the bath.
【0026】以下、それぞれのめっき条件について、そ
の限定理由を説明する。上記(1)の条件では、めっき
浴中での合金化反応(ζ相の生成)を抑えるために、低
Al浴中において低い侵入板温でめっきを行うが、Al
量が0.05%未満では、Fe2Al5による合金化抑制
効果がないため、浴中でアウトバ−スト反応が生じ、耐
パウダリング性が劣化する。このため浴中のAl量は
0.05%以上とする。一方、Al量が0.13%以上
では、浴中でFe−Zn合金化反応が過度に抑制される
ため、後の合金化処理において急激な合金化反応を生じ
させる必要があり、このような急激な合金反応はめっき
皮膜の平滑性および均一性と耐パウダリング性を劣化さ
せる。このため浴中のAl量は0.13%未満とする。The reasons for limiting the respective plating conditions will be described below. Under the condition (1), plating is performed in a low Al bath at a low penetration plate temperature in order to suppress the alloying reaction (generation of the ζ phase) in the plating bath.
If the amount is less than 0.05%, since there is no effect of suppressing alloying by Fe 2 Al 5 , an outburst reaction occurs in the bath, and the powdering resistance deteriorates. Therefore, the Al content in the bath is set to 0.05% or more. On the other hand, if the Al content is 0.13% or more, the Fe-Zn alloying reaction is excessively suppressed in the bath, and therefore it is necessary to cause a rapid alloying reaction in the subsequent alloying treatment. The rapid alloy reaction deteriorates the smoothness and uniformity of the plating film and the powdering resistance. Therefore, the Al content in the bath is set to less than 0.13%.
【0027】侵入板温は浴中Al量との関係で下記関係
式の条件を満足する必要がある。 437.5×〔Al%〕+428>T≧437.5×〔Al%〕+408 但し、〔Al%〕:浴中Al量(%) T :侵入板温(℃) 侵入板温が浴中Al量との関係で上記上限を超えると、
浴中での合金化反応が生じてζ相が形成され、最終的に
目的とするδ1相を主体とした合金化相が得られない。
一方、侵入板温が上記下限を下回るとFe2Al5が不均
一に生成されるようになり、局部的な合金化反応を生じ
るためめっき皮膜の平滑性および均一性と耐パウダリン
グ性が劣化してしまう。It is necessary that the penetration plate temperature satisfies the condition of the following relational expression in relation to the amount of Al in the bath. 437.5 × [Al%] + 428> T ≧ 437.5 × [Al%] + 408 where [Al%]: Al amount in bath (%) T: Temperature of penetrating plate (° C.) Temperature of penetrating plate is Al in bath If the above upper limit is exceeded in relation to the amount,
Ζ phase occurs alloying reaction in the bath is formed, not eventually alloyed phase mainly composed of [delta] 1 phase of interest is obtained.
On the other hand, if the penetration plate temperature is lower than the above lower limit, Fe 2 Al 5 is generated non-uniformly, and a local alloying reaction occurs, so that the smoothness and uniformity of the plating film and the powdering resistance deteriorate. Resulting in.
【0028】めっき浴温度が高いと浴中における合金化
反応が促進されるため、浴温度を460℃以下とする。
また、浴温度が高過ぎると浴中に浸漬された構造物が侵
食され、ドロスが発生するなどの問題を生じる。If the plating bath temperature is high, the alloying reaction in the bath is accelerated, so that the bath temperature is set to 460 ° C. or lower.
On the other hand, if the bath temperature is too high, structures immersed in the bath are eroded, causing problems such as the generation of dross.
【0029】次に、上記(2)の条件では、めっき浴中
のAlは浴侵入直後の鋼板表面にFe2Al5を形成し、
Fe−Zn合金の発生を抑制する。Al量が0.13%
未満ではこのような抑制効果が小さく、浴中でζ相が形
成され、最終的に目的とするδ1相を主体とした合金化
相が得られない。このため浴中Al量は0.13%以上
とする。Next, under the above condition (2), Al in the plating bath forms Fe 2 Al 5 on the steel sheet surface immediately after entering the bath,
Suppress the generation of Fe-Zn alloy. Al content is 0.13%
Small Such inhibitory effect is less than, is formed ζ phase in the bath, not eventually alloyed phase mainly composed of [delta] 1 phase of interest is obtained. Therefore, the amount of Al in the bath is set to 0.13% or more.
【0030】Al量を0.13%以上含む浴では侵入板
温を上昇させると鋼板侵入直後の反応温度が高くなり、
Fe2Al5が厚く形成されるようになる。この結果、浴
中でのFe−Zn合金反応が抑制される。但し、侵入板
温は浴中Al量との関係で下記関係式の条件を満足する
必要がある。 571×〔Al%〕+416≧T≧571×〔Al%〕+396 但し、〔Al%〕:浴中Al量(%) T :侵入板温(℃)In a bath containing 0.13% or more of Al, the reaction temperature immediately after entering the steel sheet increases when the temperature of the entering sheet increases,
Fe 2 Al 5 is formed to be thick. As a result, the reaction of the Fe—Zn alloy in the bath is suppressed. However, the penetration plate temperature needs to satisfy the condition of the following relational expression in relation to the Al content in the bath. 571 × [Al%] + 416 ≧ T ≧ 571 × [Al%] + 396 where [Al%]: Al amount in bath (%) T: Temperature of intruding plate (° C.)
【0031】上述したように(2)の方法は高Al浴、
高侵入板温を基本とするものであるが、侵入板温が浴中
Al量との関係で上記上限を超えると、Feの拡散速度
が増すため、Fe2Al5による抑制効果が不十分とな
り、浴中で部分的にアウトバースト組織が生成するた
め、めっき皮膜の平滑性および均一性と耐パウダリング
性が劣化してしまう。一方、侵入板温が上記下限を下回
るとFe2Al5の形成量が十分でなく、浴中でのFe−
Zn合金反応の抑制作用が適切に得られない。As described above, the method (2) uses a high Al bath,
Although it is based on a high penetration plate temperature, if the penetration plate temperature exceeds the above upper limit in relation to the amount of Al in the bath, the diffusion rate of Fe increases, and the suppression effect by Fe 2 Al 5 becomes insufficient. Since the outburst structure is partially generated in the bath, the smoothness and uniformity of the plating film and the powdering resistance are deteriorated. On the other hand, if the penetration plate temperature is below the lower limit, the amount of Fe 2 Al 5 formed is not sufficient, and the Fe-
The effect of suppressing the Zn alloy reaction cannot be obtained properly.
【0032】なお、侵入板温が520℃を超えると、F
e2Al5が局部的に過剰に生成され易くなるため焼きム
ラが発生し、めっき皮膜の均一性と耐パウダリング性が
劣化してしまう。また、ポットへの入熱量増加により浴
温冷却手段等の付加的設備が必要になり、さらに、浴中
でのドロス発生量が増加し、表面欠陥が多発する等の問
題を生じる。このため侵入板温は、浴中Al量に関係な
く520℃以下とすることが好ましい。また、上記
(1)と同様、浴温度は470℃以下とする。When the invading plate temperature exceeds 520 ° C., F
Since e 2 Al 5 tends to be locally excessively generated, baking unevenness occurs, and the uniformity and the powdering resistance of the plating film deteriorate. In addition, an increase in the amount of heat input to the pot requires additional equipment such as a bath temperature cooling unit, and further, increases the amount of dross generated in the bath and causes problems such as frequent occurrence of surface defects. For this reason, it is preferable that the penetration plate temperature be 520 ° C. or less regardless of the amount of Al in the bath. Further, similarly to the above (1), the bath temperature is 470 ° C. or less.
【0033】めっきされた鋼板は、高周波誘導加熱炉で
合金化処理する必要があり、従来一般に行われているガ
ス加熱では、目的とする合金化めっき皮膜は全く得られ
ない。この合金化処理では、炉出側の板温が495℃超
〜520℃となるように加熱し、所定時間保持後冷却す
る。δ1相を形成させるためには495℃を超える温度
での加熱が必要であり、浴中での合金化が抑制されため
っきをここで合金化し、δ1相を主体とした塊状晶の合
金相を形成させる。しかし、520℃を超える加熱温度
ではΓ相が形成され、耐パウダリング性が劣化するた
め、加熱温度の上限は520℃とする。高周波誘導加熱
炉出側の板温を管理する理由は、その部分が合金化熱サ
イクルでの最高板温となるためである。また、合金相の
成長速度はこの付近で最大となるため、出側板温を管理
することにより、その温度での合金化反応を起すことが
可能になる。The plated steel sheet needs to be subjected to alloying treatment in a high-frequency induction heating furnace, and a gas alloying method generally performed in the related art cannot obtain a target alloyed plating film at all. In this alloying treatment, the sheet is heated so that the sheet temperature on the outlet side of the furnace becomes more than 495 ° C. to 520 ° C., and is cooled after holding for a predetermined time. In order to form the δ 1 phase, heating at a temperature exceeding 495 ° C. is necessary, and the plating in which the alloying in the bath is suppressed is alloyed here, and the bulk crystal alloy mainly composed of the δ 1 phase is formed. Allow a phase to form. However, if the heating temperature exceeds 520 ° C., the Γ phase is formed, and the powdering resistance deteriorates. Therefore, the upper limit of the heating temperature is 520 ° C. The reason why the sheet temperature at the exit side of the high-frequency induction heating furnace is controlled is that the temperature becomes the highest sheet temperature in the alloying heat cycle. In addition, since the growth rate of the alloy phase becomes maximum in this vicinity, it is possible to cause an alloying reaction at that temperature by controlling the outlet sheet temperature.
【0034】このようにして得られる合金化めっき皮膜
は、表層側に均一且つ平滑な塊状晶であるδ1相が存在
し、その下層に極く薄いΓ相が存在するとともに、最上
層に均一な酸化皮膜(ZnO)が存在するめっき構造と
なる。The alloyed plating film thus obtained has a uniform and smooth bulk crystal δ 1 phase on the surface layer side, an extremely thin Δ phase under the layer, and a uniform layer on the uppermost layer. The plating structure has a fine oxide film (ZnO).
【0035】[0035]
〔実施例1〕図1に示すラインにおいて、板厚0.80
mmの冷延鋼板を溶融亜鉛めっき(めっき目付量:片面
当り60g/m2)した後、表1に示す炉内雰囲気に保
たれた高周波誘導加熱方式の合金化炉で合金化処理し、
合金化めっき層中のFe%が10±0.5wt%の合金
化溶融亜鉛めっき鋼板を製造した。得られた鋼板のめっ
き皮膜上層(ZnO量)の酸化皮膜量とスポット溶接連
続打点数による溶接性試験の結果を表1に併せて示す。Example 1 In the line shown in FIG.
mm cold-rolled steel sheet is hot-dip galvanized (coating weight: 60 g / m 2 per side), and then alloyed in a high-frequency induction heating type alloying furnace maintained in the furnace atmosphere shown in Table 1.
An alloyed hot-dip galvanized steel sheet in which the Fe% in the alloyed plating layer was 10 ± 0.5 wt% was produced. Table 1 also shows the results of a weldability test based on the oxide film amount of the upper layer (ZnO amount) of the plating film and the number of continuous spot welding points of the obtained steel sheet.
【0036】[0036]
【表1】 [Table 1]
【0037】〔実施例2〕下記鋼種のAlキルド鋼、I
F鋼から製造された冷延鋼板を素材とし、表2および表
3に示される条件で溶融亜鉛めっき、合金化加熱処理を
行った。また、上記合金化加熱処理はガス加熱方式また
は高周波誘導加熱方式で行った。 鋼種A:0.03%C−0.02%Sol.Al(Al
キルド鋼) 鋼種B:0.0025%C−0.04%Sol.Al−
0.07%Ti(Ti添加IF鋼) 鋼種C :0.0024%C−0.06%Sol.Al
−0.06%Ti−0.007%Nb(Ti、Nb添加
IF鋼) 得られた合金化溶融亜鉛めっき鋼板の特性を表4および
表5に示す。Example 2 Al-killed steel of the following steel type, I
A cold-rolled steel sheet manufactured from F steel was used as a material, and hot-dip galvanizing and alloying heat treatment were performed under the conditions shown in Tables 2 and 3. The alloying heat treatment was performed by a gas heating method or a high-frequency induction heating method. Steel type A: 0.03% C-0.02% Sol. Al (Al
Killed steel) Steel type B: 0.0025% C-0.04% Sol. Al-
0.07% Ti (Ti-added IF steel) Steel type C: 0.0024% C-0.06% Sol. Al
-0.06% Ti-0.007% Nb (Ti, Nb-added IF steel) The properties of the obtained galvannealed steel sheet are shown in Tables 4 and 5.
【0038】本実施例において、鋼板のめっき浴中への
侵入温度は放射型温度計で測定した浸漬直前の鋼板の表
面温度である。また、加熱炉出側の板温は放射型温度計
で測定した鋼板の表面温度である。また、めっき浴中A
l量は下式に定義される有効Al濃度である。 〔有効Al濃度〕=〔浴中全Al濃度〕−〔浴中鉄濃
度〕+0.03 皮膜中Fe%は浴条件、加熱条件および冷却条件に依存
する。冷却条件は本発明の特徴の一つである皮膜構造の
マクロ或いはミクロな均一性にほとんど影響を及ぼさな
いが、合金化度(皮膜中Fe%)を変化させることによ
り特性に影響を及ぼす。したがって、本実施例では冷却
用のブロアの風量、ミストの量を調整し、皮膜中のFe
%を制御した。また、各特性に関する試験、評価方法は
以下の通りである。In the present embodiment, the temperature at which the steel sheet enters the plating bath is the surface temperature of the steel sheet immediately before immersion measured by a radiation thermometer. The sheet temperature on the exit side of the heating furnace is the surface temperature of the steel sheet measured by a radiation thermometer. In addition, A
The 1 amount is the effective Al concentration defined by the following equation. [Effective Al concentration] = [Total Al concentration in bath] − [Iron concentration in bath] +0.03 Fe% in the coating depends on bath conditions, heating conditions and cooling conditions. The cooling conditions hardly affect the macro or micro uniformity of the film structure, which is one of the features of the present invention, but affect the characteristics by changing the degree of alloying (Fe% in the film). Therefore, in this embodiment, the amount of air and the amount of mist of the cooling blower are adjusted, and the amount of Fe in the film is adjusted.
% Was controlled. Tests and evaluation methods for each characteristic are as follows.
【0039】○製品皮膜中ζ相の量:得られた皮膜をX
線回折し、ζ相についてはd=1.900のピ−ク強度
Iζ(421)を、またδ1相についてはd=1.990の
ピ−ク強度Iδ1(249)をそれぞれ取り、下式で示すピ
−ク強度比をもって皮膜中のζ相の量を表した。なお、
Ibgはバックグランドであり、Z/Dが20以下なら
ば実質的にζ相は存在しない。 Z/D=(Iζ(421)−Ibg)/(Iδ1(249)−
Ibg)×100○ Amount of phase in product film: X obtained film
And ray diffraction, for ζ phase peak of d = 1.900 - click strength Iζ the (421), also peak of d = 1.990 for [delta] 1 Phase - takes click intensity i? 1 a (249), respectively, under The amount of ζ phase in the film was represented by the peak strength ratio shown in the equation. In addition,
Ibg is a background, and if Z / D is 20 or less, substantially no ζ phase exists. Z / D = (Iζ ( 421 ) −Ibg) / (Iδ 1 ( 249 ) −
Ibg) × 100
【0040】○耐パウダリング性:試験片に防錆油(パ
−カ−興産(株)製ノックスラスト530F)を1g/
m2塗布した後、ビ−ド半径R:0.5mm、押し付け
荷重P:500kg、押し込み深さh:4mmでビ−ド
引き抜き試験を行い、テ−プ剥離後、成形前後の重量変
化から剥離量を算出した。なお、表中の数値は複数の測
定値(5×5=25個)の平均値である。○ Powdering resistance: 1 g / rust-proof oil (Knoxlast 530F manufactured by Parker Kosan Co., Ltd.) was added to the test piece.
After applying m 2 , a bead pull-out test was performed with a bead radius R: 0.5 mm, a pressing load P: 500 kg, and an indentation depth h: 4 mm. The amount was calculated. The numerical values in the table are average values of a plurality of measured values (5 × 5 = 25).
【0041】○耐パウダリング性の板幅方向最大偏差:
操業条件が安定した箇所で、コイル長さ方向5点、コイ
ル幅方向5点(両エッジ、1/4の位置およびセンタ−
部)で上記耐パウダリング性をそれぞれ測定し、最大値
と最小値の差をとった。○ Maximum deviation in powder width direction of powdering resistance:
5 points in coil length direction, 5 points in coil width direction (both edges, 1/4 position and center
Part), the powdering resistance was measured, and the difference between the maximum value and the minimum value was determined.
【0042】○摩擦係数:試験片に防錆油(パ−カ−興
産(株)製ノックスラスト530F)を1g/m2塗布
した後、工具鋼SKD11製の圧子を荷重400kgで
押し付け、1m/minの引き抜き速度で引き抜きを行
い、引き抜き荷重と押し付け荷重との比を摩擦係数とし
た。なお、表中の数値は複数の測定値(5×5=25
個)の平均値である。○ Coefficient of friction: After applying 1 g / m 2 of rust-preventive oil (Knoxlast 530F, manufactured by Parker Kosan Co., Ltd.) to the test piece, an indenter made of tool steel SKD11 was pressed with a load of 400 kg to obtain 1 m / m 2. The drawing was performed at a drawing speed of min, and the ratio between the drawing load and the pressing load was defined as the friction coefficient. The numerical values in the table represent a plurality of measured values (5 × 5 = 25).
).
【0043】○摩擦係数の板幅方向最大偏差:耐パウダ
リング性と同一箇所で摩擦係数をそれぞれ測定し、最大
値と最小値の差をとった。The maximum deviation of the coefficient of friction in the sheet width direction: The coefficient of friction was measured at the same location as the powdering resistance, and the difference between the maximum value and the minimum value was determined.
【0044】[0044]
【表2】 [Table 2]
【0045】[0045]
【表3】 [Table 3]
【0046】[0046]
【表4】 [Table 4]
【0047】[0047]
【表5】 [Table 5]
【図1】本発明法による製造プロセスの一例を示す説明
図FIG. 1 is an explanatory diagram showing an example of a manufacturing process according to the method of the present invention.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−337059(JP,A) 特開 平2−263970(JP,A) 特開 平2−170961(JP,A) (58)調査した分野(Int.Cl.6,DB名) C23C 2/00 - 2/40────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-337059 (JP, A) JP-A-2-263970 (JP, A) JP-A-2-170961 (JP, A) (58) Field (Int.Cl. 6 , DB name) C23C 2/00-2/40
Claims (1)
が25%以上の酸化性雰囲気に保たれた高周波誘導加熱
炉において合金化処理することを特徴とする溶接性に優
れた合金化溶融亜鉛めっき鋼板の製造方法。An alloyed hot-dip galvanized steel excellent in weldability, characterized in that a steel sheet is hot-dip galvanized and then alloyed in a high-frequency induction heating furnace kept in an oxidizing atmosphere having an oxygen concentration of 25% or more. Manufacturing method of plated steel sheet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15870192A JP2792343B2 (en) | 1992-05-26 | 1992-05-26 | Manufacturing method of galvannealed steel sheet with excellent weldability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15870192A JP2792343B2 (en) | 1992-05-26 | 1992-05-26 | Manufacturing method of galvannealed steel sheet with excellent weldability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05320854A JPH05320854A (en) | 1993-12-07 |
JP2792343B2 true JP2792343B2 (en) | 1998-09-03 |
Family
ID=15677475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15870192A Expired - Lifetime JP2792343B2 (en) | 1992-05-26 | 1992-05-26 | Manufacturing method of galvannealed steel sheet with excellent weldability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2792343B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3582504B2 (en) | 2001-08-31 | 2004-10-27 | 住友金属工業株式会社 | Hot-press plated steel sheet |
JP5126677B2 (en) * | 2008-07-03 | 2013-01-23 | 新日鐵住金株式会社 | Method for producing alloyed hot-dip galvanized steel sheet and alloying heating equipment used therefor |
KR101372672B1 (en) * | 2011-12-08 | 2014-03-11 | 주식회사 포스코 | Galvanized steel sheet having excellent spot weldability and method for manufacturing the same |
KR101934524B1 (en) | 2018-08-24 | 2019-01-02 | 김상호 | Manufacfuring Apparatus and Method for Galvanized steel sheet having a Mg |
-
1992
- 1992-05-26 JP JP15870192A patent/JP2792343B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05320854A (en) | 1993-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2792346B2 (en) | Manufacturing method of alloyed hot-dip galvanized steel sheet with excellent clarity after painting | |
JP2792343B2 (en) | Manufacturing method of galvannealed steel sheet with excellent weldability | |
JP2658580B2 (en) | Method for producing alloyed hot-dip galvanized steel sheet excellent in press formability and powdering resistance | |
JPH0441658A (en) | Galvannealed steel sheet excellent in powdering resistance and having baking hardenability and high strength and its production | |
JP2770824B2 (en) | Method for producing alloyed hot-dip galvanized steel sheet excellent in press formability and powdering resistance | |
US5518769A (en) | Process for manufacturing galvannealed steel sheet having excellent anti-powdering property | |
JP2776150B2 (en) | Method for producing two-layer alloyed hot-dip galvanized steel sheet with excellent ED resistance | |
JPH0748662A (en) | Production of galvanized steel sheet excellent in plating adhesion and appearance | |
JP5533730B2 (en) | Method for producing galvannealed steel sheet | |
JP2658608B2 (en) | Method for producing alloyed hot-dip galvanized steel sheet excellent in press formability and powdering resistance | |
JP3082438B2 (en) | Adjustment method for surface roughness of galvannealed steel sheet | |
JP2576329B2 (en) | Method for producing high-strength alloyed hot-dip galvanized steel sheet with excellent coating uniformity and powdering resistance | |
JP2776151B2 (en) | Method for producing two-layer alloyed hot-dip galvanized steel sheet | |
JP2770825B2 (en) | Method for producing alloyed hot-dip galvanized steel sheet excellent in press formability and powdering resistance | |
JP2709194B2 (en) | Manufacturing method of galvannealed steel sheet with excellent powdering resistance | |
JP3166568B2 (en) | Manufacturing method of hot-dip galvanized steel | |
JP2009280859A (en) | Hot dip galvannealed steel sheet having excellent workability, plating adhesion, corrosion resistance and appearance quality | |
JPH0741923A (en) | Production of hot dip galvanized steel sheet excellent in adhension of zinc layer and appearance | |
JPH04193938A (en) | Manufacture of alloyed hot-dip galvanized steel sheet excellent in press formability and powdering resistance | |
JP2792345B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in powdering resistance and outer surface suitability and method for producing the same | |
JPH05320850A (en) | Production of galvannealed steel sheet having excellent powdering resistance and weldability | |
JP2727595B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same | |
JP3367455B2 (en) | Method for producing hot-dip coated steel sheet with uniform crystal pattern | |
JPH0816260B2 (en) | Method for producing galvannealed steel sheet having excellent press formability and powdering resistance | |
JPH03281764A (en) | Production of glavannealed steel sheet for deep drawing excellent in surface appearance |