JP2776150B2 - Method for producing two-layer alloyed hot-dip galvanized steel sheet with excellent ED resistance - Google Patents

Method for producing two-layer alloyed hot-dip galvanized steel sheet with excellent ED resistance

Info

Publication number
JP2776150B2
JP2776150B2 JP4158702A JP15870292A JP2776150B2 JP 2776150 B2 JP2776150 B2 JP 2776150B2 JP 4158702 A JP4158702 A JP 4158702A JP 15870292 A JP15870292 A JP 15870292A JP 2776150 B2 JP2776150 B2 JP 2776150B2
Authority
JP
Japan
Prior art keywords
plating
bath
alloying
steel sheet
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4158702A
Other languages
Japanese (ja)
Other versions
JPH05320949A (en
Inventor
洋一 宮川
隆治 永山
秋彦 中村
正洋 岩渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP4158702A priority Critical patent/JP2776150B2/en
Publication of JPH05320949A publication Critical patent/JPH05320949A/en
Application granted granted Critical
Publication of JP2776150B2 publication Critical patent/JP2776150B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、自動車の車体、足回
り部品等に用いられる2層合金化溶融亜鉛めっき鋼板、
特に、ED塗装適合性および耐EDブツ性に優れた合金
化溶融亜鉛めっき鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a two-layer alloyed hot-dip galvanized steel sheet used for an automobile body, underbody parts and the like.
In particular, the present invention relates to a method for producing an alloyed hot-dip galvanized steel sheet having excellent ED coating compatibility and ED spot resistance.

【0002】[0002]

【従来の技術】合金化溶融亜鉛めっき層の上層にFe系
めっき層を有する2層合金化溶融亜鉛めっき鋼板は優れ
た塗装後耐食性、塗装適合性を有するため、自動車用防
錆鋼板としてその需要が近年増加しており、特に最近で
は、耐食性を確保するため亜鉛めっき皮膜が厚目付化す
る傾向にある。
2. Description of the Related Art A two-layer alloyed galvanized steel sheet having an Fe-based coating layer on an alloyed hot-dip galvanized layer has excellent corrosion resistance after painting and coating compatibility. Has recently increased, and in recent years, in particular, the thickness of the galvanized film tends to be increased in order to ensure corrosion resistance.

【0003】従来、溶融亜鉛めっき後の合金化処理には
ガス炉が広く用いられているが、このようにガス炉で合
金化処理されためっき皮膜は、以下のような理由により
上層のFe系めっきの被覆性が劣るという問題がある。 ガス炉を用いて合金化しためっき皮膜の表面には、
安定且つ不活性な酸化皮膜層が生成しており、このよう
な不活性なめっき皮膜上にFeリッチなFe−Zn合金
電気めっきを施した場合、電析の起点となる活性点が少
ないため、均一な上層めっき皮膜を得ることが難しい。 ガス加熱は鋼板各部に対する加熱が不均一となり易
いため、めっき皮膜自体の平滑性、均一性が劣り、上層
めっきの被覆性が悪い。
Conventionally, a gas furnace has been widely used for alloying treatment after hot-dip galvanizing. However, a plating film alloyed in such a gas furnace has an upper Fe-based alloy for the following reasons. There is a problem that the plating coverage is poor. On the surface of the plating film alloyed using a gas furnace,
A stable and inactive oxide film layer is generated, and when Fe-rich Fe-Zn alloy electroplating is performed on such an inactive plating film, there are few active points to be a starting point of electrodeposition, It is difficult to obtain a uniform upper plating film. Since gas heating tends to cause uneven heating of each part of the steel sheet, the smoothness and uniformity of the plating film itself are poor, and the coverage of the upper plating is poor.

【0004】[0004]

【発明が解決しようとする課題】したがって、このよう
な合金化溶融亜鉛めっき皮膜の上層にFe系めっきを施
し、良好なED塗装適合性を確保しようとした場合、上
層めっきの被覆性を確保するためにめっき付着量を多く
せざるを得ない。しかしながら、上層めっきの付着量が
多くなると、上層めっき被膜中の水素がユーザー(自動
車メーカー等)での電着塗装時に口を開く、所謂EDブ
ツと呼ばれる欠陥の原因となり、したがって付着量をむ
やみに増加することができないという問題がある。
Therefore, when an Fe-based plating is applied to the upper layer of such an alloyed hot-dip galvanized film to ensure good ED coating compatibility, the coverage of the upper plating is ensured. Therefore, the plating adhesion amount must be increased. However, when the deposition amount of the upper plating increases, the hydrogen in the upper plating film causes a defect called so-called ED spot, which opens a mouth at the time of electrodeposition coating by a user (an automobile manufacturer or the like), and therefore, the deposition amount is unnecessarily increased. There is a problem that it cannot be increased.

【0005】このように、ED耐クレータリング性に優
れ、しかもEDブツ発生に対しても有利な2層合金化溶
融亜鉛めっき鋼板を製造するためには、上層のFe系め
っきを少量の付着量でしかも均一な被覆状態に形成させ
る必要があるが、上述したような問題からこのようなめ
っき鋼板を得ることは困難であった。
[0005] As described above, in order to produce a two-layer alloyed hot-dip galvanized steel sheet having excellent ED cratering resistance and also advantageous in generating ED bumps, a small amount of the Fe-based plating in the upper layer is required. In addition, it is necessary to form a uniform coated state, but it is difficult to obtain such a plated steel sheet due to the above-mentioned problems.

【0006】[0006]

【課題を解決するための手段】本発明は、このような従
来の問題に鑑み検討を重ねた結果なされたもので、以下
のような知見事実に基づきなされたものである。 溶融亜鉛めっき後の合金化処理を誘導加熱方式の合
金化炉で行うことにより、均一な合金相が得られ(ガス
加熱による合金化処理ではめっき皮膜の外側から熱が加
えられるために加熱が不均一となりやすく、このため不
均一な合金相となりやすいのに対して、高周波誘導加熱
による合金化処理では下地鋼板自体が直接加熱されるた
めにめっき皮膜の均一な加熱が可能となり、このため均
一な合金相が得られる)、これが上層めっきの被覆性を
向上させる。 炉内の雰囲気を自由にコントロールできるという誘
導加熱方式の合金化炉の特徴を利用し、非酸化性雰囲気
に保たれた誘導加熱方式の合金化炉内で合金化処理する
ことにより、上層めっきの被覆性を害するめっき表面酸
化膜の生成を防止できる。すなわち、本発明が狙いとし
ているような上層めっきによる高度の被覆性は、ガス加
熱による合金化処理で生成するような安定且つ不活性な
酸化皮膜層だけでなく、高周波誘導加熱による合金化処
理を大気中で行なった場合に生じる程度のめっき表面酸
化膜でも著しく害されてしまうが、非酸化性雰囲気に保
たれた誘導加熱方式の合金化炉内で合金化処理すること
によりそのようなめっき表面酸化膜の生成が適切に防止
され、上層めっきの高度の被覆性を確保できる。 合金化処理後、所定の条件でスキンパスを実施する
ことにより、合金化溶融亜鉛めっき皮膜の平滑性をさら
に向上させ、上層めっきの被覆性をより高めることが
きる。
According to the present invention, there is provided such a system.
It is a result of repeated examination in view of the problem of the coming,Less than
It was made based on the findings and facts as described above.  The alloying process after hot-dip galvanizing is combined with induction heating.
By using a metallurgical furnace, a uniform alloy phase can be obtained.(gas
In the alloying process by heating, heat is applied from outside the plating film.
Heating tends to be non-uniform,
High frequency induction heating while easy to form a uniform alloy phase
In the alloying process by heating, the base steel sheet itself is directly heated
This enables uniform heating of the plating film,
A uniform alloy phase is obtained)This increases the coverage of the upper plating.
ImprovementLet it.  Invitation to freely control the atmosphere inside the furnace
Utilizing the characteristics of the induction heating alloying furnace, a non-oxidizing atmosphere
Alloying in an induction heating type alloying furnace kept at a constant temperature
Surface acid that impairs coatability of upper plating
Prevent formation of oxide filmit can. That is, the present invention is aimed at
High coverage by the upper plating
Stable and inert as produced by thermal alloying
In addition to the oxide film layer, alloying treatment by high-frequency induction heating
Surface acid generated to the extent that processing takes place in air
Can be significantly harmed by the oxide film, but keep it in a non-oxidizing atmosphere.
Alloying treatment in a dipped induction heating alloying furnace
Properly prevents the formation of such surface oxide film on the plating
Thus, a high degree of coverage of the upper plating can be secured.  After alloying, perform skin pass under specified conditions
This improves the smoothness of the galvannealed film.
To improve the coverage of the upper plating.ThanCan enhanceso
Wear.

【0007】すなわち、本発明は、鋼板を溶融亜鉛めっ
き浴でめっきした後、非酸化性雰囲気に保たれた高周波
誘導加熱炉内で合金化処理し、次いで、圧下力0.2T
on/mm以上でスキンパスを施し、しかる後、合金化
溶融亜鉛めっきの上層にFe系めっきを施すことを特徴
とする耐EDブツ性に優れた2層合金化溶融亜鉛めっき
鋼板の製造方法である。
That is, according to the present invention, after a steel sheet is galvanized in a hot-dip galvanizing bath, it is alloyed in a high-frequency induction heating furnace kept in a non-oxidizing atmosphere.
A method for producing a two-layer alloyed hot-dip galvanized steel sheet having excellent resistance to ED spots, wherein a skin pass is applied at on / mm or more, and then an Fe-based plating is applied to the upper layer of the galvannealed steel sheet. .

【0008】[0008]

【作用】以下、本発明の詳細とその限定理由を説明す
る。図1は、本発明におけるめっきおよび合金化処理の
実施状況の一例を示すもので、以下これに基づき説明す
る。図において1はめっき浴、2はワイピングノズル、
3は高周波誘導加熱方式の合金化炉、4は保熱帯(例え
ば、伝熱リボンヒータによる保熱帯)、5は冷却帯であ
る。めっき浴1に浸漬されめっきされた鋼板Sは、シン
クロール6を経て浴外に導かれ、ワイピングノズル2に
より目付量調整がなされた後、合金化炉3に導入されて
合金化処理される。この合金化炉3内には雰囲気ガス導
入口7より還元性ガスまたは不活性ガス若しくはこれら
の混合ガス(H2,CO,CH4,N2,Al,He,N
e,Kr等またはこれらの混合ガス)が導入され、合金
化炉3内を正圧の非酸化性雰囲気に保つ。合金化炉3で
合金化処理された鋼板Sは保熱帯4を経由した後、冷却
帯5に導入され冷却される。この冷却帯5では、通常、
冷却用ガスとしてN2が用いられ、外気に触れてもめっ
き皮膜が酸化しない温度(300℃程度以下)まで冷却
する。
The details of the present invention and the reasons for limiting the same will be described below. FIG. 1 shows an example of the state of implementation of the plating and alloying treatment in the present invention, which will be described below. In the figure, 1 is a plating bath, 2 is a wiping nozzle,
Reference numeral 3 denotes a high-frequency induction heating type alloying furnace, 4 denotes a tropical zone (for example, a tropical style with a heat transfer ribbon heater), and 5 denotes a cooling zone. The steel sheet S immersed in the plating bath 1 and plated is guided to the outside of the bath via the sink roll 6, the basis weight is adjusted by the wiping nozzle 2, and then introduced into the alloying furnace 3 to be alloyed. In the alloying furnace 3, a reducing gas or an inert gas or a mixed gas thereof (H 2 , CO, CH 4 , N 2 , Al, He, N
e, Kr or the like or a mixed gas thereof) is introduced, and the inside of the alloying furnace 3 is maintained in a positive pressure non-oxidizing atmosphere. The steel sheet S alloyed in the alloying furnace 3 passes through the preservation zone 4 and is introduced into the cooling zone 5 where it is cooled. In this cooling zone 5, usually,
N 2 is used as a cooling gas, and cooling is performed to a temperature (about 300 ° C. or less) at which the plating film does not oxidize even when exposed to outside air.

【0009】前記合金化炉3での鋼板板温は450〜6
00℃程度に、また保熱帯4での鋼板板温は350〜5
50℃程度とされ、合金化反応時の表面酸化を防止す
る。また、合金化炉3の入側と冷却帯5の出側には外気
の侵入を防止するためのシール装置8a、8bが、ま
た、保熱帯4と冷却帯5との間には、合金化炉・保熱帯
と冷却帯との雰囲気ガスが混合しないようにするための
シール装置8cがそれぞれ設けられている。
The steel sheet temperature in the alloying furnace 3 is 450 to 6
The temperature of the steel plate at about 00 ° C and the temperature of Hot Spring 4 is 350-5
The temperature is set to about 50 ° C. to prevent surface oxidation during the alloying reaction. Sealing devices 8a and 8b for preventing outside air from entering are provided on the inlet side of the alloying furnace 3 and the outlet side of the cooling zone 5, and alloying is provided between the preservation zone 4 and the cooling zone 5. Sealing devices 8c are provided for preventing the atmosphere gases of the furnace / preserving zone and the cooling zone from mixing.

【0010】以上のようにして合金化処理されためっき
鋼板には、スキンパスが施される。このスキンパスは、
圧下力を0.2Ton/mm以上とする。0.2Ton
/mm未満の圧下力では、めっき皮膜の表面を十分に平
滑化することができない。
[0010] The plated steel sheet alloyed as described above is subjected to a skin pass. This skin pass is
The rolling force is 0.2 Ton / mm or more. 0.2Ton
If the rolling force is less than / mm, the surface of the plating film cannot be sufficiently smoothed.

【0011】以上のようなスキンパス後、塗装適合性を
改善するために、Fe系上層めっきが施される。合金化
溶融亜鉛めっき鋼板は電着塗装時にクレ−タリングと呼
ばれる欠陥が発生し易く、最終塗装後の外観に影響を与
える。上層めっきはこのような塗装欠陥の発生を防止
し、めっき鋼板の塗装適合性を高める。塗装適合性を向
上させるには上層めっきをα単相とすることが好まし
く、Fe系めっきではFe含有量がほぼ50%以上でα
単相となることから、上層めっきのFe含有量は50%
以上とすることが好ましい。
After the above skin pass, an Fe-based upper plating is applied in order to improve the coating compatibility. The alloyed hot-dip galvanized steel sheet is liable to cause a defect called cratering during electrodeposition coating, which affects the appearance after final coating. The upper plating prevents the occurrence of such coating defects and enhances the coating compatibility of the coated steel sheet. In order to improve coating compatibility, it is preferable that the upper layer plating be an α single phase.
Since it is a single phase, the Fe content of the upper plating is 50%
It is preferable to make the above.

【0012】以上のように鋼板を溶融亜鉛めっき浴でめ
っきした後、非酸化性雰囲気に保たれた高周波誘導加熱
炉内で合金化処理し、次いで、圧下力0.2Ton/m
m以上でスキンパスを施し、しかる後合金化溶融亜鉛め
っき層の上層にFe系めっきを施すことにより、上記
〜の作用によって上層めっきの高度の被覆性が確保さ
れる。本発明では上層めっきの被覆性が向上するため、
3g/m2以下の上層めっき付着量でも均一なめっきが
可能となる。しかし、付着量が1g/m2未満では、本
発明によっても上層めっきの被覆性が十分でなくなる恐
れがあり、このため付着量は1g/m2を下限とするこ
とが好ましい。
As described above, the steel sheet is placed in a hot-dip galvanizing bath.
High frequency induction heating maintained in a non-oxidizing atmosphere
Alloying treatment in a furnace, and then a rolling force of 0.2 Ton / m
m and pass skin pass, then alloyed molten zinc
By applying Fe-based plating to the upper layer of the plating layer,
A high degree of coverage of the upper plating is ensured by the action of
It is. In the present invention, since the coverage of the upper plating is improved,
Uniform plating is possible even with an upper layer plating amount of 3 g / m 2 or less. However, if the coating amount is less than 1 g / m 2 , the coating of the upper plating may not be sufficient even by the present invention, and therefore the lower limit of the coating amount is preferably 1 g / m 2 .

【0013】次に、めっき皮膜の平滑性という観点から
言うと、合金化溶融亜鉛めっき層はδ1相主体の平滑な
塊状晶が鋼板面に均一に形成されたものであることが好
ましい。すなわち、このような合金化めっき層を、表面
酸化皮膜を生成させることなく鋼板面上に均一に形成さ
せ、これを所定の条件でスキンパス圧延することによ
り、合金化溶融亜鉛めっき層を極めて均一且つ平滑なも
のとすることができ、少ない付着量でもFe系上層めっ
きの被覆性を格段に向上させることができる。また、こ
のような合金化溶融亜鉛めっき層は、単に上層めっきの
被覆性を高めるだけでなく、優れた耐パウダリング性お
よびプレス成形性を付与する。以下、このような合金化
めっき皮膜を得るための好ましい条件について説明す
る。
Next, from the viewpoint of the smoothness of the plating film, it is preferable that the alloyed hot-dip galvanized layer has a smooth bulk crystal mainly composed of δ 1 phase uniformly formed on the surface of the steel sheet. That is, such an alloyed galvanized layer is uniformly formed on the steel sheet surface without generating a surface oxide film, and is subjected to skin pass rolling under a predetermined condition, so that the alloyed galvanized layer is extremely uniform. The coating can be made smooth and the coverage of the Fe-based upper plating can be remarkably improved with a small amount of adhesion. Further, such an alloyed hot-dip galvanized layer not only enhances the coverage of the upper plating, but also imparts excellent powdering resistance and press formability. Hereinafter, preferable conditions for obtaining such an alloyed plating film will be described.

【0014】本発明者らは、δ1相主体の平滑な塊状晶
が鋼板面に均一に形成された合金化溶融亜鉛めっき層を
形成させることにより、Fe系上層めっきの良好な被覆
性と優れた耐パウダリング性およびプレス成形性を安定
的に得ることができる方法について検討を行い、以下の
ような知見を得た。 めっき浴中で合金化反応(ζ相の生成)を抑制し、
しかもその後の合金化処理を高周波誘導加熱方式の加熱
炉を用いて行なうことにより、δ1相を主体とする合金
化相がストリップの幅方向、長手方向で均一に形成され
た皮膜が得られること また、このようにして得られる合金化めっき皮膜
は、上述したようなマクロ的な均一性のみならず、ミク
ロ的にも合金化反応が均一に起きるため、この面からも
優れた耐パウダリング性とプレス成形性が得られること
The present inventors formed a galvannealed layer in which smooth bulk crystals mainly composed of δ 1 phase were uniformly formed on the surface of a steel sheet, so that good coverage and excellent coverage of the Fe-based upper layer plating were obtained. A method for stably obtaining the powdering resistance and the press formability was also studied, and the following findings were obtained. Suppress alloying reaction (generation of ζ phase) in plating bath,
Moreover by carrying out the subsequent alloying treatment using a heating furnace of high frequency induction heating method, the width direction of the alloying phase consisting mainly of [delta] 1 phase strip, is uniformly formed film in the longitudinal direction is obtained In addition, the alloyed plating film thus obtained not only has the macroscopic uniformity as described above, but also has an excellent alloying reaction even microscopically. And press formability

【0015】 浴条件と高周波誘導加熱方式の加熱炉
出側板温条件を規定することにより、厳密な皮膜の制御
が可能であること 具体的には、低Al浴で且つ浴中Al量との関係で規定
される低目の侵入板温でめっきを施すことにより、或い
は、高Al浴で且つ浴中Al量との関係で規定される高
目の侵入板温でめっきを施し、浴中で合金化抑制相であ
るFe2Al5を厚く生成させることにより、浴中での合
金化反応(ζ相の発生)を適切に抑えることが可能であ
り、さらに、このようなめっき鋼板に対する高周波誘導
加熱方式の加熱炉を用いた合金化処理を、加熱炉出側で
の板温を495℃超〜520℃に管理して行うことによ
り、上記、で述べたような皮膜が得られること、
Strict control of the coating is possible by specifying the bath conditions and the sheet temperature conditions on the exit side of the heating furnace of the high-frequency induction heating method. Specifically, the relationship between the low Al bath and the amount of Al in the bath By plating at a low intrusion plate temperature specified in the above, or by plating in a high Al bath and at a high intrusion plate temperature specified in relation to the amount of Al in the bath, and By thickly forming Fe 2 Al 5 , which is an anti-oxidation phase, it is possible to appropriately suppress the alloying reaction (generation of ζ phase) in the bath, and further, to perform high-frequency induction heating on such a plated steel sheet. By performing the alloying treatment using a heating furnace of the system by controlling the sheet temperature at the exit side of the heating furnace to be more than 495 ° C. to 520 ° C., the film as described above is obtained,

【0016】そして、このような知見に基づき検討を加
えた結果、以下(1)または(2)の条件で溶融亜鉛め
っき処理および合金化処理することにより、上述のよう
な平滑且つ均一な合金化溶融亜鉛めっき層が得られるこ
とが判った。
As a result of an examination based on such knowledge, as a result of performing a hot-dip galvanizing treatment and an alloying treatment under the following conditions (1) or (2), a smooth and uniform alloying as described above is obtained. It was found that a hot-dip galvanized layer was obtained.

【0017】(1)浴中Al量:0.05%以上、0.
13%未満、浴温度:470℃以下で、且つ、浴中Al
量と鋼板のめっき浴中への侵入板温とが、 437.5×〔Al%〕+428>T≧437.5×〔Al%〕+408 但し、〔Al%〕:浴中Al量(%) T :侵入板温(℃) を満足する条件で溶融亜鉛めっきを行うことにより、浴
中でFe−Zn合金化反応を抑制し、めっき後、高周波
誘導加熱炉で加熱炉出側の板温が495℃超〜520℃
となるように加熱する。
(1) Al content in bath: 0.05% or more;
Less than 13%, bath temperature: 470 ° C. or less, and Al in the bath
437.5 × [Al%] + 428> T ≧ 437.5 × [Al%] + 408 where [Al%]: Al amount in bath (%) T: Hot-dip galvanizing under conditions satisfying the penetration plate temperature (° C.) suppresses the Fe—Zn alloying reaction in the bath, and after plating, the plate temperature on the exit side of the heating furnace in the high-frequency induction heating furnace is reduced. More than 495 ° C to 520 ° C
Heat so that

【0018】(2)浴中Al量:0.13%以上、浴温
度:470℃以下で、且つ、浴中Al量と鋼板のめっき
浴中への侵入板温とが、 571×〔Al%〕+416≧T≧571×〔Al%〕+396 但し、〔Al%〕:浴中Al量(%) T :侵入板温(℃) を満足する条件でめっきを行うことにより、浴中で合金
化抑制相であるFe2Al5を積極的に形成させてFe−
Zn合金化反応を抑制し、めっき後、高周波誘導加熱炉
で加熱炉出側の板温が495℃超〜520℃となるよう
に加熱する。
(2) Al content in the bath: 0.13% or more, bath temperature: 470 ° C. or less, and the Al content in the bath and the temperature of the steel sheet entering the plating bath are 571 × [Al% + 416 ≧ T ≧ 571 × [Al%] + 396, where [Al%]: Al amount in bath (%) T: Alloying in bath by plating under conditions that satisfy: The inhibitory phase, Fe 2 Al 5, is actively formed to form Fe-
After the Zn alloying reaction is suppressed, and after plating, the sheet is heated in a high-frequency induction heating furnace so that the sheet temperature on the exit side of the heating furnace is more than 495 ° C to 520 ° C.

【0019】すなわち、浴中での合金化反応を極力抑制
し、且つこのように合金化が抑制されためっき皮膜に対
し、高周波誘導加熱による合金化処理を特定の条件で実
施することにより、Γ相が少なく、且つ鋼板各部におい
てδ1相を主体とする平滑な合金化相が均一に形成さ
れ、しかも皮膜構造のミクロ的な均一性によって全体と
して優れた耐パウダリング性を有し、さらにプレス成形
性にも優れためっき鋼板が得られるものである。したが
って、このような合金化溶融亜鉛めっき皮膜を形成させ
る際、本発明に従って非酸化性雰囲気の合金化炉内で合
金化処理することで酸化膜の生成を防止し、且つ所定の
条件でスキンパスを施すことにより、少ない付着量でも
格段に被覆性の優れた上層めっきが可能となる。
That is, the alloying reaction in the bath is suppressed as much as possible and the alloying treatment by high-frequency induction heating is performed under specific conditions on the plating film in which the alloying is suppressed as described above. phase is small, and smooth alloying phase consisting mainly of [delta] 1 phase in the steel sheet each section is uniformly formed, yet has excellent powdering resistance as a whole by the microscopic uniformity of the film structure, further pressing A plated steel sheet excellent in formability can be obtained. Therefore, when forming such an alloyed hot-dip galvanized film, an alloying treatment is performed in an alloying furnace in a non-oxidizing atmosphere according to the present invention to prevent the formation of an oxide film and to prevent skin pass under a predetermined condition. By applying, even with a small amount of adhesion, it is possible to form an upper layer plating having remarkably excellent coverage.

【0020】このようなめっき−合金化処理条件におい
て、上述のような優れた特性のめっき皮膜が得られるの
は、次のような理由によるものと推定される。まず、第
1に、合金化処理において高周波誘導加熱方式を用いる
ことにより、鋼板自体を直接加熱することができ、しか
も、めっき皮膜に接する界面が最も加熱されるため、雰
囲気加熱方式に較べ界面におけるFe−Zn反応が短時
間でしかもストリップ上の位置に無関係に均一に起き、
このため、鋼板上での部分的な過合金やζ相の残留がな
く、均一なδ1相が形成され、これにより皮膜の平滑性
および均一性と均一な耐パウダリング性およびプレス成
形性が得られるものと推定される。
It is presumed that, under such plating-alloying conditions, the plating film having the excellent characteristics as described above is obtained for the following reasons. First, by using the high-frequency induction heating method in the alloying treatment, the steel sheet itself can be directly heated, and the interface in contact with the plating film is heated most. The Fe-Zn reaction occurs uniformly in a short time and independently of the position on the strip,
Therefore, partial no residual peracetic alloy or ζ phase on the steel sheet, homogeneous [delta] 1 phase is formed, thereby smoothness and uniformity and uniform powdering resistance and press formability of the coating It is presumed to be obtained.

【0021】第2に、高周波誘導加熱は上記のように鋼
板側からの加熱であるため、微視的にも均一な合金化反
応が生じることによるものと推定される。すなわち、従
来一般に行われているガス加熱による合金化処理では、
皮膜の外側から熱が加えられるため加熱が不均一となり
易く、このため合金化反応が微視的に不均一に生じ易
い。特に結晶粒界は反応性に富むため、所謂アウトバ−
スト反応が生じ易く、このようにアウトバ−スト組織が
発生すると、この部分からΓ相が成長し始め、このΓ相
の形成により耐パウダリング性が劣化する。これに対
し、高周波誘導加熱は鋼板側からの加熱であるため、上
記のような合金化の局部的なバラツキが少なく、また、
鋼板面の酸化物や浴中で生じた合金化抑制物質(Fe2
Al5)も容易に拡散するため、ミクロ的にも均一な合
金化皮膜が得られるものと思われる。
Second, since the high-frequency induction heating is heating from the steel plate side as described above, it is presumed that a uniform alloying reaction occurs microscopically. That is, in the conventional alloying treatment by gas heating,
Since heat is applied from the outside of the film, the heating is likely to be non-uniform, and the alloying reaction is likely to be microscopically non-uniform. In particular, since the crystal grain boundaries are highly reactive, the so-called outover
A strike reaction is likely to occur, and when an outburst structure is generated in this way, a Γ phase starts to grow from this portion, and the formation of the Γ phase deteriorates the powdering resistance. On the other hand, since high-frequency induction heating is heating from the steel plate side, there is little local variation in the alloying as described above,
Oxide on steel plate surface and alloying inhibitor (Fe 2
Since Al 5 ) is also easily diffused, it is considered that a uniform alloyed film can be obtained even from a microscopic viewpoint.

【0022】第3に、高周波誘導加熱はめっきを短時間
で合金化できることからΓ相の成長時間が短いことが挙
げられる。そして、本発明では浴中でのΓ相の発生も抑
えられるため、最終的なΓ相の形成量が少なく、このこ
とも耐パウダリング性の向上に大きく寄与しているもの
と考えられる。
Third, the high frequency induction heating can shorten the growth time of the Γ phase because the plating can be alloyed in a short time. In the present invention, since the generation of the Γ phase in the bath can be suppressed, the final formation amount of the 少 な く phase is small, which is also considered to contribute greatly to the improvement of the powdering resistance.

【0023】第4に、高周波誘導加熱の利点として、鋼
板幅方向、長さ方向で均一な加熱が可能であるため、加
熱炉出側での厳密な板温管理が可能であり、また、ガス
炉等の雰囲気加熱方式とは異なり、加熱された雰囲気ガ
スの上昇(ドラフト効果)がないため、特殊な冷却をし
なくても過合金が起り難いことによるものと考えられ
る。
Fourth, as an advantage of high-frequency induction heating, uniform heating can be performed in the width and length directions of the steel sheet, so that strict control of the sheet temperature on the exit side of the heating furnace is possible, and gas Unlike an atmosphere heating method such as a furnace, there is no rise in the heated atmosphere gas (draft effect), so it is considered that overalloy hardly occurs even without special cooling.

【0024】また、合金化抑制相であるFe2Al5を浴
中で形成させることによりFe−Zn反応を抑制し、続
く加熱処理においてδ1相を形成させる上記(2)の方
法では、上記のように高周波誘導加熱が鋼板側からの加
熱であるため、合金化時にFe2Al5が容易に拡散しδ
1相を形成する。つまり、Fe−Zn反応を適切に抑制
するためにFe2Al5を厚く形成させても、合金化時に
これを確実且つ均一に拡散することができる。この結
果、合金化がミクロ的にも均一化し、厚いFe2Al5
形成により浴中でのΓ相の発生が抑制されることと相俟
って、均一な合金相と優れた耐パウダリング性が得られ
るものと考えられる。
In the method (2), the Fe—Zn reaction is suppressed by forming Fe 2 Al 5 as an alloying suppressing phase in a bath, and the δ 1 phase is formed in the subsequent heat treatment. Since the high-frequency induction heating is heating from the steel sheet side, Fe 2 Al 5 is easily diffused during alloying and δ
Form one phase. In other words, even if Fe 2 Al 5 is formed thick to appropriately suppress the Fe—Zn reaction, it can be diffused reliably and uniformly during alloying. As a result, the alloying becomes microscopically uniform, and the formation of a thick Fe 2 Al 5 suppresses the generation of a Γ phase in the bath, which results in a uniform alloy phase and excellent powdering resistance. It is considered that the property can be obtained.

【0025】上記(1)および(2)方法では、めっき
浴中での合金化反応を極力抑制するため、めっき浴中の
Al量、めっき浴に侵入する際の鋼板の板温及び浴温度
が規定される。すなわち、めっき浴中での合金化反応を
抑制するため、(1)の方法では低Al浴で且つ浴中A
l量との関係で規定される低目の侵入板温とし、また、
(2)の方法では高Al浴で且つ浴中Al量との関係で
規定される高目の侵入板温とする。
In the above methods (1) and (2), in order to minimize the alloying reaction in the plating bath, the amount of Al in the plating bath, the sheet temperature of the steel sheet when entering the plating bath, and the bath temperature are reduced. Stipulated. That is, in order to suppress the alloying reaction in the plating bath, the method (1) uses a low Al bath and
and the lower invading plate temperature defined in relation to the
In the method (2), the temperature of the infiltration plate is set to be a high Al bath and a higher penetration plate temperature defined in relation to the amount of Al in the bath.

【0026】以下、それぞれのめっき条件について、そ
の限定理由を説明する。上記(1)の条件では、めっき
浴中での合金化反応(ζ相の生成)を抑えるために、低
Al浴中において低い侵入板温でめっきを行うが、Al
量が0.05%未満では、Fe2Al5による合金化抑制
効果がないため、浴中でアウトバ−スト反応が生じ、耐
パウダリング性が劣化する。このため浴中のAl量は
0.05%以上とする。一方、Al量が0.13%以上
では、浴中でFe−Zn合金化反応が過度に抑制される
ため、後の合金化処理において急激な合金化反応を生じ
させる必要があり、このような急激な合金反応はめっき
皮膜の平滑性および均一性と耐パウダリング性を劣化さ
せる。このため浴中のAl量は0.13%未満とする。
The reasons for limiting the respective plating conditions will be described below. Under the condition (1), plating is performed in a low Al bath at a low penetration plate temperature in order to suppress the alloying reaction (generation of the ζ phase) in the plating bath.
If the amount is less than 0.05%, since there is no effect of suppressing alloying by Fe 2 Al 5 , an outburst reaction occurs in the bath, and the powdering resistance deteriorates. Therefore, the Al content in the bath is set to 0.05% or more. On the other hand, if the Al content is 0.13% or more, the Fe-Zn alloying reaction is excessively suppressed in the bath, and therefore it is necessary to cause a rapid alloying reaction in the subsequent alloying treatment. The rapid alloy reaction deteriorates the smoothness and uniformity of the plating film and the powdering resistance. Therefore, the Al content in the bath is set to less than 0.13%.

【0027】侵入板温は浴中Al量との関係で下記関係
式の条件を満足する必要がある。 437.5×〔Al%〕+428>T≧437.5×〔Al%〕+408 但し、〔Al%〕:浴中Al量(%) T :侵入板温(℃) 侵入板温が浴中Al量との関係で上記上限を超えると、
浴中での合金化反応が生じてζ相が形成され、最終的に
目的とするδ1相を主体とした合金化相が得られない。
一方、侵入板温が上記下限を下回るとFe2Al5が不均
一に生成されるようになり、局部的な合金化反応を生じ
るためめっき皮膜の平滑性および均一性と耐パウダリン
グ性が劣化してしまう。めっき浴温度が高いと浴中にお
ける合金化反応が促進されるため、浴温度を470℃以
下とする。また、浴温度が高過ぎると浴中に浸漬された
構造物が侵食され、ドロスが発生するなどの問題を生じ
る。
It is necessary that the penetration plate temperature satisfies the condition of the following relational expression in relation to the amount of Al in the bath. 437.5 × [Al%] + 428> T ≧ 437.5 × [Al%] + 408 where [Al%]: Al amount in bath (%) T: Temperature of penetrating plate (° C.) Temperature of penetrating plate is Al in bath If the above upper limit is exceeded in relation to the amount,
Ζ phase occurs alloying reaction in the bath is formed, not eventually alloyed phase mainly composed of [delta] 1 phase of interest is obtained.
On the other hand, if the penetration plate temperature is lower than the above lower limit, Fe 2 Al 5 is generated non-uniformly, and a local alloying reaction occurs, so that the smoothness and uniformity of the plating film and the powdering resistance deteriorate. Resulting in. If the plating bath temperature is high, the alloying reaction in the bath is accelerated, so the bath temperature is set to 470 ° C. or lower. On the other hand, if the bath temperature is too high, structures immersed in the bath are eroded, causing problems such as the generation of dross.

【0028】次に、上記(2)の条件では、めっき浴中
のAlは浴侵入直後の鋼板表面にFe2Al5を形成し、
Fe−Zn合金の発生を抑制する。Al量が0.13%
未満ではこのような抑制効果が小さく、浴中でζ相が形
成され、最終的に目的とするδ1相を主体とした合金化
相が得られない。このため浴中Al量は0.13%以上
とする。
Next, under the above condition (2), Al in the plating bath forms Fe 2 Al 5 on the steel sheet surface immediately after entering the bath,
Suppress the generation of Fe-Zn alloy. Al content is 0.13%
Small Such inhibitory effect is less than, is formed ζ phase in the bath, not eventually alloyed phase mainly composed of [delta] 1 phase of interest is obtained. Therefore, the amount of Al in the bath is set to 0.13% or more.

【0029】Al量を0.13%以上含む浴では侵入板
温を上昇させると鋼板侵入直後の反応温度が高くなり、
Fe2Al5が厚く形成されるようになる。この結果、浴
中でのFe−Zn合金反応が抑制される。但し、侵入板
温は浴中Al量との関係で下記関係式の条件を満足する
必要がある。 571×〔Al%〕+416≧T≧571×〔Al%〕+396 但し、〔Al%〕:浴中Al量(%) T :侵入板温(℃)
In a bath containing 0.13% or more of Al, when the temperature of the intruding plate is increased, the reaction temperature immediately after entering the steel plate increases,
Fe 2 Al 5 is formed to be thick. As a result, the reaction of the Fe—Zn alloy in the bath is suppressed. However, the penetration plate temperature needs to satisfy the condition of the following relational expression in relation to the Al content in the bath. 571 × [Al%] + 416 ≧ T ≧ 571 × [Al%] + 396 where [Al%]: Al amount in bath (%) T: Temperature of intruding plate (° C.)

【0030】上述したように(2)の方法は高Al浴、
高侵入板温を基本とするものであるが、侵入板温が浴中
Al量との関係で上記上限を超えると、Feの拡散速度
が増すため、Fe2Al5による抑制効果が不十分とな
り、浴中で部分的にアウトバースト組織が生成するた
め、めっき皮膜の平滑性および均一性と耐パウダリング
性が劣化してしまう。一方、侵入板温が上記下限を下回
るとFe2Al5の形成量が十分でなく、浴中でのFe−
Zn合金反応の抑制作用が適切に得られない。
As described above, the method (2) uses a high Al bath,
Although it is based on a high penetration plate temperature, if the penetration plate temperature exceeds the above upper limit in relation to the amount of Al in the bath, the diffusion rate of Fe increases, and the suppression effect by Fe 2 Al 5 becomes insufficient. Since the outburst structure is partially generated in the bath, the smoothness and uniformity of the plating film and the powdering resistance are deteriorated. On the other hand, if the penetration plate temperature is below the lower limit, the amount of Fe 2 Al 5 formed is not sufficient, and the Fe-
The effect of suppressing the Zn alloy reaction cannot be obtained properly.

【0031】なお、侵入板温が520℃を超えると、F
2Al5が局部的に過剰に生成され易くなるため焼きム
ラが発生し、めっき皮膜の均一性と耐パウダリング性が
劣化してしまう。また、ポットへの入熱量増加により浴
温冷却手段等の付加的設備が必要になり、さらに、浴中
でのドロス発生量が増加し、表面欠陥が多発する等の問
題を生じる。このため侵入板温は、浴中Al量に関係な
く520℃以下とすることが好ましい。また、上記
(1)と同様、浴温度は470℃以下とする。
When the invading plate temperature exceeds 520 ° C., F
Since e 2 Al 5 tends to be locally excessively generated, baking unevenness occurs, and the uniformity and the powdering resistance of the plating film deteriorate. In addition, an increase in the amount of heat input to the pot requires additional equipment such as a bath temperature cooling unit, and further, increases the amount of dross generated in the bath and causes problems such as frequent occurrence of surface defects. For this reason, it is preferable that the penetration plate temperature be 520 ° C. or less regardless of the amount of Al in the bath. Further, similarly to the above (1), the bath temperature is 470 ° C. or less.

【0032】めっきされた鋼板は、高周波誘導加熱炉に
おいて合金化のために加熱処理される。従来一般に行わ
れているガス加熱では、目的とする合金化めっき皮膜は
全く得られない。この合金化処理では、炉出側の板温が
495℃超〜520℃となるように加熱し、所定時間保
持後冷却する。δ1相を形成させるためには495℃を
超える温度での加熱が必要であり、浴中での合金化が抑
制されためっきをここで合金化し、δ1相を主体とした
塊状晶の合金相を形成させる。しかし、520℃を超え
る加熱温度ではΓ相が形成され、耐パウダリング性が劣
化するため、加熱温度の上限は520℃とする。高周波
誘導加熱炉出側の板温を管理する理由は、その部分が合
金化熱サイクルでの最高板温となるためである。また、
合金相の成長速度はこの付近で最大となるため、出側板
温を管理することにより、その温度での合金化反応を起
すことが可能になる。このようにして得られる合金化め
っき皮膜は、表層に均一且つ平滑な塊状晶であるδ1
が存在し、その下層に極く薄いΓ相が存在するめっき構
造となる。
The plated steel sheet is heat-treated in a high-frequency induction heating furnace for alloying. Conventionally, generally, gas heating cannot provide a target alloyed plating film at all. In this alloying treatment, the sheet is heated so that the sheet temperature on the outlet side of the furnace becomes more than 495 ° C. to 520 ° C., and is cooled after holding for a predetermined time. In order to form the δ 1 phase, heating at a temperature exceeding 495 ° C. is necessary, and the plating in which the alloying in the bath is suppressed is alloyed here, and the bulk crystal alloy mainly composed of the δ 1 phase is formed. Allow a phase to form. However, if the heating temperature exceeds 520 ° C., the Γ phase is formed, and the powdering resistance deteriorates. Therefore, the upper limit of the heating temperature is 520 ° C. The reason why the sheet temperature at the exit side of the high-frequency induction heating furnace is controlled is that the temperature becomes the highest sheet temperature in the alloying heat cycle. Also,
Since the growth rate of the alloy phase is maximized in this vicinity, it is possible to cause an alloying reaction at that temperature by controlling the outlet sheet temperature. The alloyed plating film thus obtained has a plating structure in which a δ 1 phase, which is a uniform and smooth massive crystal, is present in the surface layer and an extremely thin Γ phase is present in the lower layer.

【0033】[0033]

【実施例】本発明の実施例を表1ないし表6に示す。こ
の実施例では、下記鋼種のAlキルド鋼、IF鋼から製
造された冷延鋼板を素材とし、表1ないし表4に示され
る条件で溶融亜鉛めっき、合金化加熱処理、スキンパス
および上層めっきを行った。また、上記合金化加熱処理
はガス加熱方式または高周波誘導加熱方式で行った。 鋼種A:0.03%C−0.02%Sol.Al(Al
キルド鋼) 鋼種B:0.0025%C−0.04%Sol.Al−
0.07%Ti(Ti添加IF鋼) 鋼種C :0.0024%C−0.06%Sol.Al
−0.06%Ti−0. 007%Nb(T
i、Nb添加IF鋼) 得られた合金化溶融亜鉛めっき鋼板の特性を表5および
表6に示す。
EXAMPLES Examples of the present invention are shown in Tables 1 to 6. In this example, a cold-rolled steel sheet manufactured from the following steel types, ie, Al-killed steel and IF steel, was used as a material and subjected to hot-dip galvanizing, alloying heat treatment, skin pass, and upper layer plating under the conditions shown in Tables 1 to 4. Was. The alloying heat treatment was performed by a gas heating method or a high-frequency induction heating method. Steel type A: 0.03% C-0.02% Sol. Al (Al
Killed steel) Steel type B: 0.0025% C-0.04% Sol. Al-
0.07% Ti (Ti-added IF steel) Steel type C: 0.0024% C-0.06% Sol. Al
-0.06% Ti-0. 007% Nb (T
i, Nb-added IF steel) Tables 5 and 6 show the properties of the obtained galvannealed steel sheet.

【0034】本実施例において、鋼板のめっき浴中への
侵入温度は放射型温度計で測定した浸漬直前の鋼板の表
面温度である。また、加熱炉出側の板温は放射型温度計
で測定した鋼板の表面温度である。また、めっき浴中A
l量は下式に定義される有効Al濃度である。 〔有効Al濃度〕=〔浴中全Al濃度〕−〔浴中鉄濃
度〕+0.03
In the present embodiment, the temperature at which the steel sheet enters the plating bath is the surface temperature of the steel sheet immediately before immersion measured by a radiation thermometer. The sheet temperature on the exit side of the heating furnace is the surface temperature of the steel sheet measured by a radiation thermometer. In addition, A
The 1 amount is the effective Al concentration defined by the following equation. [Effective Al concentration] = [Total Al concentration in bath] − [Iron concentration in bath] +0.03

【0035】皮膜中Fe%は浴条件、加熱条件および冷
却条件に依存する。冷却条件は本発明の特徴の一つであ
る皮膜構造のマクロ或いはミクロな均一性にほとんど影
響を及ぼさないが、合金化度(皮膜中Fe%)を変化さ
せることにより特性に影響を及ぼす。したがって、本実
施例では冷却用のブロアの風量、ミストの量を調整し、
皮膜中のFe%を制御した。また、各特性に関する試
験、評価方法は以下の通りである。
The Fe% in the film depends on bath conditions, heating conditions and cooling conditions. The cooling conditions hardly affect the macro or micro uniformity of the film structure, which is one of the features of the present invention, but affect the characteristics by changing the degree of alloying (Fe% in the film). Therefore, in this embodiment, the air volume of the cooling blower and the amount of mist are adjusted,
Fe% in the film was controlled. Tests and evaluation methods for each characteristic are as follows.

【0036】○製品皮膜中ζ相の量:得られた皮膜をX
線回折し、ζ相についてはd=1.900のピ−ク強度
Iζ(421)を、またδ1相についてはd=1.990の
ピ−ク強度Iδ1249)をそれぞれ取り、下式で示すピ
−ク強度比をもって皮膜中のζ相の量を表した。なお、
Ibgはバックグランドであり、Z/Dが20以下なら
ば実質的にζ相は存在しない。 Z/D=(Iζ(421)−Ibg)/(Iδ1249)−
Ibg)×100
量 Amount of phase in product film: X obtained film
And ray diffraction, for ζ phase peak of d = 1.900 - click strength Iζ the (421), also peak of d = 1.990 for [delta] 1 Phase - takes click intensity i? 1 a (249), respectively, under The amount of ζ phase in the film was represented by the peak strength ratio shown in the equation. In addition,
Ibg is a background, and if Z / D is 20 or less, substantially no ζ phase exists. Z / D = (Iζ ( 421 ) −Ibg) / (Iδ 1 ( 249 ) −
Ibg) × 100

【0037】○耐パウダリング性:試験片に防錆油(パ
−カ−興産(株)製ノックスラスト530F)を1g/
2塗布した後、ビ−ド半径R:0.5mm、押し付け
荷重P:500kg、押し込み深さh:4mmでビ−ド
引き抜き試験を行い、テ−プ剥離後、成形前後の重量変
化から剥離量を算出した。なお、表中の数値は複数の測
定値(5×5=25個)の平均値である。
Powdering resistance: 1 g / rust-proof oil (Knoxlast 530F manufactured by Parker Kosan Co., Ltd.) was added to the test piece.
After applying m 2 , a bead pull-out test was performed with a bead radius R: 0.5 mm, a pressing load P: 500 kg, and an indentation depth h: 4 mm. The amount was calculated. The numerical values in the table are average values of a plurality of measured values (5 × 5 = 25).

【0038】○耐パウダリング性の板幅方向最大偏差:
操業条件が安定した箇所で、コイル長さ方向5点、コイ
ル幅方向5点(両エッジ、1/4の位置およびセンタ−
部)で上記耐パウダリング性をそれぞれ測定し、最大値
と最小値の差をとった。
○ Maximum deviation in powder width direction in powdering resistance:
5 points in coil length direction, 5 points in coil width direction (both edges, 1/4 position and center
Part), the powdering resistance was measured, and the difference between the maximum value and the minimum value was determined.

【0039】○摩擦係数:試験片に防錆油(パ−カ−興
産(株)製ノックスラスト530F)を1g/m2塗布
した後、工具鋼SKD11製の圧子を荷重400kgで
押し付け、1m/minの引き抜き速度で引き抜きを行
い、引き抜き荷重と押し付け荷重との比を摩擦係数とし
た。なお、表中の数値は複数の測定値(5×5=25
個)の平均値である。
○ Coefficient of friction: After applying 1 g / m 2 of rust-preventive oil (Knoxlast 530F, manufactured by Parker Kosan Co., Ltd.) to the test piece, an indenter made of tool steel SKD11 was pressed with a load of 400 kg to obtain 1 m / m 2. The drawing was performed at a drawing speed of min, and the ratio between the drawing load and the pressing load was defined as the friction coefficient. The numerical values in the table represent a plurality of measured values (5 × 5 = 25).
).

【0040】○摩擦係数の板幅方向最大偏差:耐パウダ
リング性と同一箇所で摩擦係数をそれぞれ測定し、最大
値と最小値の差をとった。
The maximum deviation of the coefficient of friction in the sheet width direction: The coefficient of friction was measured at the same location as the powdering resistance, and the difference between the maximum value and the minimum value was determined.

【0041】○耐EDブツ性 本発明材および比較材の各々の表面に浸漬処理によって
リン酸塩皮膜を形成した後、下記条件によりカチオンタ
イプの電着塗装を施した。 電圧 : 300V 浴温 : 26.5℃ 供試体面積/陽極面積 : 1/1 塗膜の厚さ : 20μm 焼付温度 : 170℃ 焼付時間 : 20分 上記のようにして電着塗装を施した供試体の塗膜に生じ
たブツ状欠陥を、目視により調べ、48mmφ中の欠陥
発生個数から下記の評価を行った。 ○ : ブツ状欠陥 0 ○〜△ : ブツ状欠陥 2個未満 △ : ブツ状欠陥 2個以上 5個未満 × : ブツ状欠陥 5個以上
ED Resistance to ED spots After a phosphate film was formed on each surface of the material of the present invention and the comparative material by immersion treatment, a cationic type electrodeposition coating was applied under the following conditions. Voltage: 300 V Bath temperature: 26.5 ° C. Specimen area / anode area: 1/1 Coating thickness: 20 μm Baking temperature: 170 ° C. Baking time: 20 minutes Specimen subjected to electrodeposition coating as described above The spot-like defects generated in the coating film were visually inspected, and the following evaluation was performed based on the number of defects generated in 48 mmφ. :: bump-like defect 0 △ to Δ: bump-like defect less than 2 △: bump-like defect 2 or more and less than 5 ×: bump-like defect 5 or more

【0042】○耐クレータリング性 本発明材および比較材の各々の表面に、浸漬処理によっ
て燐酸塩皮膜を形成した後、下記条件によりカチオンタ
イプの電着塗装を施した。 電圧 : 300V 浴温 : 26.5℃ 供試体面積/陽極面積 : 1/1 塗膜の厚さ : 20μm 焼付温度 : 170℃ 焼付時間 : 20分 上記のようにして電着塗装を施した供試体の塗膜に生じ
たクレータ状欠陥を、目視により調べ、48mmφ中の
クレータ状欠陥発生個数から下記の評価を行った。 ○ : クレータ状欠陥 5個以下 △ : クレータ状欠陥 5個超〜20個以下 × : クレータ状欠陥 20個超え
Cratering Resistance After a phosphate film was formed on each surface of the material of the present invention and the comparative material by immersion treatment, a cationic type electrodeposition coating was applied under the following conditions. Voltage: 300 V Bath temperature: 26.5 ° C. Specimen area / anode area: 1/1 Coating thickness: 20 μm Baking temperature: 170 ° C. Baking time: 20 minutes Specimen subjected to electrodeposition coating as described above The crater-like defects generated in the coating film were visually inspected, and the following evaluation was performed based on the number of crater-like defects generated in 48 mmφ. ○: 5 or less crater-like defects △: more than 5 crater-like defects to 20 or less ×: more than 20 crater-like defects

【0043】○P比 めっき鋼板の外面適性(主としてFe系上層めっき被覆
性)の評価であり、浸漬処理によってリン酸塩皮膜を形
成し、この皮膜をX線回折により分析してフォスフォフ
ィライト結晶とホパイト結晶のピーク値を測定し、下記
式にてP比を定義した。 P比=(フォスフォフィライト結晶回折ピーク高さ)/
〔(フォスフォフィライト結晶回折ピーク高さ)+(ホパ
イト結晶回折ピーク高さ)〕 P比は下記によって評価した。 ○ : P比 0.8以上 ○〜△ : P比 0.7以上 0.8未満 △ : P比 0.5以上 0.7未満 × : P比 0.5未満
○ P ratio This is an evaluation of the suitability of the outer surface of the plated steel sheet (mainly, the coatability of the upper layer of the Fe system). A phosphate film is formed by immersion treatment, and the film is analyzed by X-ray diffraction to determine the phosphophyllite. The peak values of the crystal and the whipite crystal were measured, and the P ratio was defined by the following equation. P ratio = (Phosphophyllite crystal diffraction peak height) /
[(Phosphophyllite crystal diffraction peak height) + (Hopite crystal diffraction peak height)] The P ratio was evaluated as follows. : P ratio of 0.8 or more △ to P: P ratio of 0.7 to less than 0.8 △: P ratio of 0.5 to less than 0.7 ×: P ratio of less than 0.5

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【表3】 [Table 3]

【0047】[0047]

【表4】 [Table 4]

【0048】[0048]

【表5】 [Table 5]

【0049】備考 ※1 上層めっき被覆性に劣るため、耐EDクレータリ
ング性、P比が悪い。 ※2 従来技術での適正範囲(上層めっき3〜4g/m
2) ※3 従来技術での適正範囲(上層めっき3〜4g/m
2) ※4 上層めっき付着量が多いため、耐EDブツ性が悪
い。 ※5 部分的にΓ相が厚く形成されるため耐パウダリン
グ性が悪く、また炉内雰囲気温度調整が困難なため、上
層めっき被覆性にも劣る。 ※6 部分的にΓ相が厚く形成されるため耐パウダリン
グ性が悪く、また、炉内雰囲気温度調整が困難なため、
上層めっき被覆性にも劣る。
Remarks * 1 ED cratering resistance and P ratio are poor due to poor upper layer plating coverage. * 2 Suitable range for conventional technology (upper plating 3-4 g / m
2 ) * 3 Appropriate range in conventional technology (upper plating 3-4 g / m
2 ) * 4 Poor ED resistance due to large amount of upper layer plating. * 5 Poor powdering resistance due to partial thickening of the Γ phase, and poor coatability of the upper plating due to difficulty in adjusting the atmosphere temperature in the furnace. * 6 Due to the partial thickening of the Γ phase, the powdering resistance is poor, and it is difficult to adjust the atmosphere temperature in the furnace.
Also poor in coatability of upper layer plating.

【0050】[0050]

【表6】 [Table 6]

【0051】備考 ※7 上層めっき被覆性に劣るため、耐EDクレータリ
ング性、P比が悪い。 ※8 従来技術での適正範囲(上層めっき3〜4g/m
2) ※9 従来技術での適正範囲(上層めっき3〜4g/m
2) ※10 上層めっき付着量が多いため、耐EDブツ性が悪
い。 ※11 スキンパス圧下力不足のため、表面が粗く上層被
覆性が悪い。 ※12 焼きムラのため不均一
Remarks * 7 ED cratering resistance and P ratio are poor due to poor upper layer plating coverage. * 8 Appropriate range for conventional technology (upper plating 3-4 g / m
2 ) * 9 Appropriate range for conventional technology (upper plating 3-4 g / m
2 ) * 10 Poor ED spot resistance due to large amount of upper plating. * 11 Due to insufficient skin pass rolling force, the surface is rough and the upper layer coverage is poor. * 12 Uneven due to uneven grilling

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明におけるめっき−合金化処理の実施状況
の一例を示す説明図
FIG. 1 is an explanatory diagram showing an example of an implementation state of a plating-alloying process in the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩渕 正洋 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 昭60−224791(JP,A) 特開 昭61−207561(JP,A) 特開 平1−177353(JP,A) 特開 平2−225652(JP,A) 特開 昭61−253397(JP,A) 特開 平1−177352(JP,A) 特公 昭52−48342 (58)調査した分野(Int.Cl.6,DB名) C23C 28/00 - 30/00 C23C 2/00 - 2/26 C21D 1/42────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiro Iwabuchi 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Inside Nippon Kokan Co., Ltd. (56) References JP-A-60-224791 (JP, A) JP-A-61 JP-A-207561 (JP, A) JP-A-1-177353 (JP, A) JP-A-2-225652 (JP, A) JP-A-61-253397 (JP, A) JP-A-1-177352 (JP, A) (JP) 52-48342 (58) Fields investigated (Int.Cl. 6 , DB name) C23C 28/00-30/00 C23C 2/00-2/26 C21D 1/42

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鋼板を溶融亜鉛めっき浴でめっきした
後、非酸化性雰囲気に保たれた高周波誘導加熱炉内で合
金化処理し、次いで、圧下力0.2Ton/mm以上で
スキンパスを施し、しかる後、合金化溶融亜鉛めっき層
の上層にFe系めっきを施すことを特徴とする耐EDブ
ツ性に優れた2層合金化溶融亜鉛めっき鋼板の製造方
法。
1. A steel sheet is plated in a hot-dip galvanizing bath, alloyed in a high-frequency induction heating furnace maintained in a non-oxidizing atmosphere, and then subjected to a skin pass with a rolling force of 0.2 Ton / mm or more. Thereafter, a method for producing a two-layer alloyed hot-dip galvanized steel sheet having excellent ED spot resistance, wherein Fe-based plating is applied to an upper layer of the alloyed hot-dip galvanized layer.
JP4158702A 1992-05-26 1992-05-26 Method for producing two-layer alloyed hot-dip galvanized steel sheet with excellent ED resistance Expired - Lifetime JP2776150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4158702A JP2776150B2 (en) 1992-05-26 1992-05-26 Method for producing two-layer alloyed hot-dip galvanized steel sheet with excellent ED resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4158702A JP2776150B2 (en) 1992-05-26 1992-05-26 Method for producing two-layer alloyed hot-dip galvanized steel sheet with excellent ED resistance

Publications (2)

Publication Number Publication Date
JPH05320949A JPH05320949A (en) 1993-12-07
JP2776150B2 true JP2776150B2 (en) 1998-07-16

Family

ID=15677496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4158702A Expired - Lifetime JP2776150B2 (en) 1992-05-26 1992-05-26 Method for producing two-layer alloyed hot-dip galvanized steel sheet with excellent ED resistance

Country Status (1)

Country Link
JP (1) JP2776150B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248342B2 (en) * 1972-06-09 1977-12-09
JPS60224791A (en) * 1984-04-23 1985-11-09 Nippon Steel Corp Installation for producing double-layered galvanized steel sheet
JPS61207561A (en) * 1985-03-11 1986-09-13 Sumitomo Metal Ind Ltd Production of alloyed hot dip galvanized steel sheet
JP2602868B2 (en) * 1988-01-05 1997-04-23 川崎製鉄株式会社 Manufacturing method of alloyed galvanized steel sheet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
特公 昭52−48342

Also Published As

Publication number Publication date
JPH05320949A (en) 1993-12-07

Similar Documents

Publication Publication Date Title
JP2792346B2 (en) Manufacturing method of alloyed hot-dip galvanized steel sheet with excellent clarity after painting
JP2000309824A (en) Cold rolled steel sheet, hot dip plated steel sheet and their production
US5409553A (en) Process for manufacturing galvannealed steel sheets having high press-formability and anti-powdering property
JP2792343B2 (en) Manufacturing method of galvannealed steel sheet with excellent weldability
JP2776150B2 (en) Method for producing two-layer alloyed hot-dip galvanized steel sheet with excellent ED resistance
JP2770824B2 (en) Method for producing alloyed hot-dip galvanized steel sheet excellent in press formability and powdering resistance
US5518769A (en) Process for manufacturing galvannealed steel sheet having excellent anti-powdering property
JPH0748662A (en) Production of galvanized steel sheet excellent in plating adhesion and appearance
JP2776151B2 (en) Method for producing two-layer alloyed hot-dip galvanized steel sheet
JP3239831B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2576329B2 (en) Method for producing high-strength alloyed hot-dip galvanized steel sheet with excellent coating uniformity and powdering resistance
JP3016122B2 (en) Galvannealed steel sheet with excellent paintability and its manufacturing method
JP3082438B2 (en) Adjustment method for surface roughness of galvannealed steel sheet
JP2658608B2 (en) Method for producing alloyed hot-dip galvanized steel sheet excellent in press formability and powdering resistance
JPH0978214A (en) Galvannealed steel sheet excellent in film adhesion and its production
JP3400289B2 (en) Manufacturing method of galvannealed steel sheet with excellent plating adhesion
JP2770825B2 (en) Method for producing alloyed hot-dip galvanized steel sheet excellent in press formability and powdering resistance
JP2709194B2 (en) Manufacturing method of galvannealed steel sheet with excellent powdering resistance
JPH0816261B2 (en) Method for producing galvannealed steel sheet having excellent press formability and powdering resistance
JPH0741923A (en) Production of hot dip galvanized steel sheet excellent in adhension of zinc layer and appearance
JP3166568B2 (en) Manufacturing method of hot-dip galvanized steel
JPH0211746A (en) Manufacture of steel plate coated with fused alloyed zinc by galvanization
JPH0816260B2 (en) Method for producing galvannealed steel sheet having excellent press formability and powdering resistance
JP3367455B2 (en) Method for producing hot-dip coated steel sheet with uniform crystal pattern
JP2727597B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same