JPS6157374B2 - - Google Patents

Info

Publication number
JPS6157374B2
JPS6157374B2 JP55026077A JP2607780A JPS6157374B2 JP S6157374 B2 JPS6157374 B2 JP S6157374B2 JP 55026077 A JP55026077 A JP 55026077A JP 2607780 A JP2607780 A JP 2607780A JP S6157374 B2 JPS6157374 B2 JP S6157374B2
Authority
JP
Japan
Prior art keywords
temperature
cooling
strip
bath
steel strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55026077A
Other languages
Japanese (ja)
Other versions
JPS55145160A (en
Inventor
Horu Fuiritsupu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANTORU DO RUSHERUSHU METARYURUJIIKU
Original Assignee
SANTORU DO RUSHERUSHU METARYURUJIIKU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BE6/46771A external-priority patent/BE874599A/en
Application filed by SANTORU DO RUSHERUSHU METARYURUJIIKU filed Critical SANTORU DO RUSHERUSHU METARYURUJIIKU
Publication of JPS55145160A publication Critical patent/JPS55145160A/en
Publication of JPS6157374B2 publication Critical patent/JPS6157374B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高いエンボス性および/または延性を
有する被覆加工された帯鋼の製造方法に関する。
本発明は浸漬被覆法により亜鉛とアルミニウムの
混合物よりなる浴の中で帯鋼が被覆加工される場
合時に興味があるものである。 被覆加工された帯鋼に利用者が要求する主な性
質は特に用いらる鋼鉄の種類にとつてできるだけ
高いエンボス性であり、また帯鋼の予定されてい
る用途および場合に応じて、満足な疲労抵抗、延
性および溶接性である。 本出願者は被覆浴の出口において帯鋼に加えら
れる冷却状態はこの点に関し非常に重要であるこ
とを確認し、正に本発明の目的たるこの形式の新
規方法を完成した。 帯鋼が500℃以上の温度において金属浴中に浸
漬される本発明の目的たるこの方法は、浴の出口
において帯鋼はそれを被覆する金属が硬化する温
度まで第一次冷却を受け、次いで475℃以下の温
度まで強力な、しかし帯鋼の平面性を害しない冷
却を受けることを特徴とする。前記浸漬処理前に
おいてその再結晶温度以上のある温度にあらかじ
め加熱され、この温度において30秒以上保たれ、
次いで金属浴の温度よりも低くないある温度まで
冷却される。 本発明の方法によれば、再結晶温度以上の温度
において帯鋼が冷却され始める瞬間と、金属浴を
出た後被覆金属層が硬化せしめられる瞬間との間
の時間は20秒以下ではないが100秒以上ではな
い。この方法によつて特に興味ある特性を有する
被覆帯鋼を得ることができる。 上記金属浴の温度を500℃以上に保つのは、浴
中での局部的固化が生ずる危険を避けるようにす
るため、被覆合金もしくは金属の融点より充分に
高くするのを確実にするためである。 本発明方法においては、金属浴中に浸漬された
帯鋼をその出口において先ず被覆の硬化を生ぜし
める温度まで第一次冷却するのであるが、これは
帯鋼の平滑性を損うことなく、かつ被覆の良好な
品質を確実にするために行なうのである、そして
本発明方法において次に475℃以下の温度まで急
冷する。これは帯鋼の所望の平滑性と延性を得る
ために行なうのであり、また後述する軟鋼の場
合、被覆された帯鋼の過時効化に使用する温度範
囲の上限でもあるからである。 また上記浸漬処理前に、再結晶温度以上の温度
で30秒以上保つのは、帯鋼が均一な温度を有し、
完全に再結晶されることを確実にするためであ
る。次いで金属浴の温度より低くない温度まで冷
却するのは、金属浴より低い温度であると帯鋼を
浴中に導入浸漬したとき溶融金属の局部的固化を
生じ、平滑性を損うことがあるのを避けるためで
ある。また上述した再結晶温度以上の温度で帯鋼
が冷却され始める瞬間と急冷が始まる瞬間との間
の時間が20秒以下でなくするのは、鋼の所望の軟
化を得るのに必要であるからであり、また100秒
以上であつてはならないのはこの方法においてそ
れ以上時間をかけても得られる帯鋼の性質に何ら
それ以上の利点が得られず、工程の期間短縮の点
からもかくするのが良いことが判つた。 本発明の一つの態様によれば、エンボス用の軟
鋼よりなる帯鋼の場合では、強力で急速な冷却は
375℃と475℃の間のある温度まで行なわれ、次い
で帯鋼は冷却の終りの温度に30秒以上保たれ、そ
れからそれよりも速くない第二の冷却を室温まで
公知の方法で受ける。 極めて軟かい帯鋼を加工する場合、強力な冷却
の最後の温度は350℃以下であり、帯鋼は次いで
400℃〜500℃程度のある温度まで適当な炉の中で
再加熱操作を受け、そして少なくとも30秒間この
温度に保たれた後、室温まで徐冷される。 更に本発明の他の変法によれば、高い強度を有
する薄い鋼板の場合、強力な急速冷却は300℃以
下の、好ましくは250℃以下のある温度まで行な
われ、直ちに室温までそれより速くない第二の冷
却を公知の方法で受ける。 被覆すべき帯鋼を浸漬する浴は、本発明によれ
ば、700℃以下の溶融点を有する数種の金属また
は合金より構成される。それら金属のうち、特に
アルミニウムのような軽金属およびそれらの合金
が称讃される。特に有利な一つの応用はアルミニ
ウムと亜鉛よりなる浴である。 また本発明によれば、被覆浴の出口における帯
鋼の強力な急速冷却は75℃以上の温度好ましくは
その沸点に保たれた水浴中のクエンチによつて行
なわれる。 本出願者は、例えば電気メツキされたまたはさ
れていない鋼板の連続焼きなましのような他の応
用において、水性媒体中でのそのようなクエンチ
による利点を既に示すことができた。即ちこれら
鋼板に弾性限界と伸度の優れた組み合わせを付与
することができた。従つてエンボスへの大きな適
性およびそれらのすべての幅にわたつて性質の大
きな均一性を付与することができた。 鋼板を浸漬する水浴は鋼板を急速に冷却するた
めには水だけで構成されていてもよい。あるいは
懸濁液および/または溶液として熱の伝導係数を
変更し得る物質、例えば塩(特に塩化カルシウム
または硼砂)またはパルミチン酸、ステアリン
酸、オレイン酸のナトリウム塩またはカリウム塩
のような表面張力活性物質ならびに場合によつて
は腐蝕防止剤を含有してもよい。 本発明の一つの変法によれば、被覆浴の出口に
おける帯鋼の強力な急速冷却は、気体、好ましく
は空気中に懸濁された水の均一な霧よりなる流体
を射出することによつて行なわれる。 本発明者はベルギー特許第853821号に記載され
たそのような冷却を行ない得る噴霧管を完成し
た。この噴霧管はラヴアル管の形を有する中心導
管と、中心導管より広がる部分の出口域に30゜以
上好ましくは45゜位いの傾斜で出ている少なくと
も一つの導管よりなるものである。中心導管は、
収斂部分の入口末端において、細分する気体(好
ましくは空気、しかし場合により窒素など)を供
給され、そして側管は細分されるべき水を供給さ
れる。このような噴霧管はm2当り3メガワツトを
越え得る且つ均一な冷却性を失なうことなく非常
に広い範囲(1〜10程度)に変化し得る比冷却力
を有する。これら噴霧管は、効率が極めて良好で
あること、従つて同一冷却力について水の消費量
が少ないという利点を更に示している。 以下の例は説明のために記載されたものであつ
て制限のために記載されたものではない。 実施例 1 普通品質の軟鋼よりなる帯鋼 冷間圧延された0.8mmの厚さの帯鋼を、主とし
てアルミニウムと亜鉛よりなる浴中での浸漬によ
る連続被覆工程路線中で処理した。 該処理は、非酸化性の裸炎による炉の中で700
℃の温度まで帯鋼を加熱し、次いでこれを35秒ほ
どの短時間この温度に保つことよりなる。それか
ら帯鋼は600℃まで10秒かかつて冷却され、その
直後590℃温度のAl−Zn浴中に浸漬された。 浴の出口から、被覆を硬化するため510℃の温
度まで帯鋼は5秒かかつて急速に冷却され、次い
で極めて急速に425℃まで冷され、そしてこの温
度に45秒間保たれた。この最後の冷却は重クロム
酸カリまたは無水クロム酸のような不動態化元素
を含有する水浴中に帯鋼を浸漬することによつて
行なわれた。なお浴は95℃に保たれた。 80℃まで45秒かかつて徐々に冷却することによ
り処理は終了した。 比較のため、同じ帯鋼を、熱間浸漬による被覆
処理の従来方法と浴の出口において590℃(被覆
浴の温度)の帯鋼を1分間かかつて80℃にする単
一冷却工程で処理した。 得られた結果は次の如くである。
The present invention relates to a method for producing coated steel strips with high embossing properties and/or ductility.
The invention is sometimes of interest when steel strips are coated in a bath consisting of a mixture of zinc and aluminum by the dip coating process. The main properties required by users of coated steel strips are the highest possible embossability, especially for the type of steel used, and, depending on the intended use and case of the steel strip, satisfactory embossability. fatigue resistance, ductility and weldability. The applicant has recognized that the cooling conditions applied to the strip at the outlet of the coating bath are of great importance in this respect and has developed a new process of this type, which is precisely the object of the present invention. The method of the invention, in which the steel strip is immersed in a metal bath at a temperature above 500° C., is characterized in that at the exit of the bath the steel strip undergoes a primary cooling to a temperature at which the metal coating it hardens; It is characterized by being subjected to intense cooling to temperatures below 475°C, but without damaging the flatness of the steel strip. Before the immersion treatment, it is preheated to a certain temperature above its recrystallization temperature and kept at this temperature for 30 seconds or more,
It is then cooled to a temperature no lower than the temperature of the metal bath. According to the method of the invention, the time between the moment when the steel strip begins to cool down at a temperature above the recrystallization temperature and the moment when the coated metal layer is hardened after leaving the metal bath is not less than 20 seconds, but Not more than 100 seconds. This method makes it possible to obtain coated steel strips with particularly interesting properties. The temperature of the metal bath is kept above 500°C to ensure that it is well above the melting point of the coating alloy or metal, so as to avoid the risk of localized solidification in the bath. . In the method of the invention, the steel strip immersed in a metal bath is first cooled at its outlet to a temperature that causes hardening of the coating, without impairing the smoothness of the steel strip. and to ensure good quality of the coating, and in the process of the invention is then followed by rapid cooling to a temperature below 475°C. This is done to obtain the desired smoothness and ductility of the steel strip, and in the case of mild steel, which will be discussed later, is also the upper limit of the temperature range used for overaging the coated steel strip. In addition, the reason why the steel strip is kept at a temperature higher than the recrystallization temperature for 30 seconds or more before the immersion treatment is to ensure that the steel strip has a uniform temperature.
This is to ensure complete recrystallization. It is then cooled to a temperature that is not lower than the temperature of the metal bath; if the temperature is lower than the metal bath, local solidification of the molten metal may occur when the steel strip is introduced into the bath and immersion may occur, resulting in loss of smoothness. This is to avoid In addition, the time between the moment when the steel strip starts to be cooled at a temperature above the recrystallization temperature mentioned above and the moment when quenching starts is kept to 20 seconds or less, as this is necessary to obtain the desired softening of the steel. In addition, the time should not be longer than 100 seconds because in this method, taking longer time will not bring any further advantage to the properties of the obtained steel strip, and it will be difficult to shorten the process time. I found that it was a good idea to do so. According to one aspect of the invention, in the case of a strip made of mild steel for embossing, intense and rapid cooling is
C. to a temperature between 375.degree. C. and 475.degree. C., the strip is then held at the temperature at the end of the cooling for more than 30 seconds and then subjected to a second, less rapid cooling to room temperature in a known manner. When processing extremely soft steel strips, the final temperature of intensive cooling is below 350℃, and the strip steel is then
It is subjected to a reheating operation in a suitable oven to a temperature of the order of 400°C to 500°C and held at this temperature for at least 30 seconds before being slowly cooled to room temperature. Furthermore, according to another variant of the invention, in the case of thin steel plates with high strength, intensive rapid cooling is carried out to a certain temperature below 300 °C, preferably below 250 °C, and immediately to room temperature, no faster. A second cooling is performed in a known manner. According to the invention, the bath in which the steel strip to be coated is immersed is composed of several metals or alloys having a melting point below 700°C. Among these metals, light metals such as aluminum and their alloys are especially praised. One particularly advantageous application is a bath consisting of aluminum and zinc. Also according to the invention, intense rapid cooling of the strip at the outlet of the coating bath is carried out by quenching in a water bath maintained at a temperature above 75° C., preferably at its boiling point. The applicant has already been able to show the benefits of such quenching in an aqueous medium in other applications, such as for example continuous annealing of steel sheets, electroplated or not. In other words, it was possible to provide these steel sheets with an excellent combination of elastic limit and elongation. It was therefore possible to provide them with a great suitability for embossing and a great uniformity of properties over all their widths. The water bath in which the steel plate is immersed may consist solely of water in order to rapidly cool the steel plate. or substances capable of modifying the conductivity of heat as suspensions and/or solutions, for example salts (especially calcium chloride or borax) or surface tension-active substances such as sodium or potassium salts of palmitic, stearic, oleic acids. It may also optionally contain corrosion inhibitors. According to one variant of the invention, the intense rapid cooling of the steel strip at the outlet of the coating bath is achieved by injecting a fluid consisting of a homogeneous mist of water suspended in a gas, preferably air. It is carried out with The inventor has completed a spray tube capable of providing such cooling as described in Belgian Patent No. 853,821. This spray tube consists of a central conduit having the shape of a Laval tube and at least one conduit extending from the central conduit at an angle of 30° or more, preferably about 45°, to the exit area of the part that widens from the central conduit. The central duct is
At the inlet end of the converging section, it is supplied with a comminution gas (preferably air, but optionally nitrogen, etc.), and the side tube is supplied with water to be comminuted. Such spray tubes have a specific cooling power which can exceed 3 MW per m 2 and which can vary over a very wide range (of the order of 1 to 10) without loss of uniform cooling. These spray tubes furthermore exhibit the advantage of very good efficiency and therefore low water consumption for the same cooling power. The following examples are provided by way of illustration and not by way of limitation. Example 1 Steel strip made of mild steel of normal quality Cold rolled steel strip 0.8 mm thick was processed in a continuous coating process line by immersion in a bath consisting mainly of aluminum and zinc. The treatment is carried out in a non-oxidizing open flame oven for 700 min.
It consists of heating the strip to a temperature of 0.degree. C. and then holding it at this temperature for a short period of about 35 seconds. The strip was then cooled to 600°C for 10 seconds and then immediately immersed in an Al-Zn bath at a temperature of 590°C. From the outlet of the bath, the strip was rapidly cooled for about 5 seconds to a temperature of 510°C to harden the coating, then very quickly cooled to 425°C and held at this temperature for 45 seconds. This final cooling was accomplished by immersing the strip in a water bath containing a passivating element such as potassium dichromate or chromic anhydride. The bath was maintained at 95°C. The process was terminated by gradual cooling to 80°C for 45 seconds. For comparison, the same strip was treated with the conventional method of coating by hot dipping and a single cooling step at the exit of the bath, where the strip was brought to 590 °C (temperature of the coating bath) for 1 minute or once to 80 °C. . The results obtained are as follows.

【表】 本発明により処理された帯鋼の伸度は明らかに
改良されたことが認められる。このことはエンボ
ス処理に対し著しく好都合である。 実施例 2 高強度の被覆された薄い鋼板 次の組成(c=0.06%、Mn=0.8%、Si=0.1
%、Si=0.01%、Al=0.05%、残りは普通の不純
物を含有する鉄)を有する薄い鋼板は主としてア
ルミニウムと亜鉛よりなる浴の中に浸漬すること
により連続被覆工程路線中で同様に処理された。 この処理は同様に、800℃の温度まで鋼板を非
酸化性の裸炎の炉の中で加熱し、次いでこれを約
30秒の短時間この温度に保つことよりなる。それ
から鋼板は650℃まで20秒かかつて冷却され、そ
の直後620℃の温度のAl−Zn浴の中へ浸漬され
た。 浴の出口から、被覆を硬化するため530℃の温
度まで帯鋼は10秒かかつて急速に冷され、それか
らベルギー特許第853821号に記載されたような空
気中に懸濁された水の霧を射出する噴霧管によつ
て20℃まで2.5秒かかつて非常に急速に冷却され
た。 比較のため、同じ鋼板を熱間浸漬による被覆処
理の従来方法と、浴の出口において1分間かかつ
て20℃まで冷却する方法に従つて処理した。 得られた結果は次の如くである。
[Table] It can be seen that the elongation of the steel strip treated according to the present invention was clearly improved. This is a significant advantage for embossing. Example 2 High strength coated thin steel plate The following composition (c=0.06%, Mn=0.8%, Si=0.1
%, Si = 0.01%, Al = 0.05%, the rest iron containing ordinary impurities) was similarly treated in a continuous coating process line by immersion in a bath consisting mainly of aluminum and zinc. It was done. The process similarly involves heating the steel plate in a non-oxidizing open-flame furnace to a temperature of 800°C, which is then heated to a temperature of approx.
It consists of keeping at this temperature for a short period of 30 seconds. The steel plate was then cooled to 650°C for 20 seconds and then immediately immersed into an Al-Zn bath at a temperature of 620°C. From the outlet of the bath, the strip is rapidly cooled for 10 seconds or more to a temperature of 530°C to harden the coating, and then exposed to a mist of water suspended in the air as described in Belgian Patent No. 853,821. It was once very rapidly cooled down to 20°C in 2.5 seconds by the injecting spray tube. For comparison, the same steel sheets were treated according to the conventional method of coating by hot dipping and cooling to 20° C. for 1 minute or more at the exit of the bath. The results obtained are as follows.

【表】 本発明によつて処理された鋼板の破壊荷重は従
来方法によつて処理された同じ鋼板のそれよりも
明らかに優れていることが認められる。 実施例 3 深いエンボス用の超軟鋼の鋼板 被覆浴の性質:亜鉛−アルミニウム合金、 浴の温度:600℃。 (被覆の硬化度)急速冷却の始めの温度:530℃ 急速冷却の方法:沸騰水浴中に浸漬処理された鋼
は次の組成(%)の超軟鋼よりなるものであ
る:C=0.067、Mn=0.29、Si=−−、Al−
−、S=0.015、P=0.010、N2=0.0045 鋼板は2.5mmの厚さまで熱間圧延された。(圧延
の最終温度は880℃、巻き取り温度700℃)次いで
0.8mmの厚さまで冷間圧延された。 鋼板は被覆工程路線において第1図に示された
種々な熱処理工程を受けた:即ち、 ●700℃への急速加熱、 ●この温度における30秒以上の維持、 ●610℃程度の温度まで大気ガスを吹きつけるこ
とにより冷却、冷却の期間は種々、 ●浴の出口において被覆を脱水し530℃まで冷
却、冷却の期間は種々、 ●沸騰水浴中に浸漬、その浴より鋼板は150℃〜
350℃の温度で出される、 ●450℃へ急速に再加熱、この温度に種々な期間
維持、 ●80℃まで45秒かかつて空気中で最終冷却。 比較として同じ鋼が、被覆浴の出口で一分間か
かつて80℃まで連続冷却する従来の方法によつて
処理された。 結果: (1)
It can be seen that the failure load of the steel plate treated according to the invention is clearly superior to that of the same steel plate treated according to the conventional method. Example 3 Ultra-mild steel plate coating bath properties for deep embossing: Zinc-aluminum alloy, Bath temperature: 600°C. (Hardening degree of coating) Temperature at the beginning of rapid cooling: 530°C Method of rapid cooling: The steel immersed in a boiling water bath is made of ultra-mild steel with the following composition (%): C = 0.067, Mn =0.29, Si=−−, Al−
-, S = 0.015, P = 0.010, N 2 = 0.0045 The steel plate was hot rolled to a thickness of 2.5 mm. (The final rolling temperature is 880℃, the winding temperature is 700℃)
Cold rolled to a thickness of 0.8mm. The steel plate was subjected to various heat treatment steps shown in Figure 1 during the coating process, namely: - rapid heating to 700°C, - maintenance at this temperature for more than 30 seconds, and - atmospheric gas up to a temperature of around 610°C. - The coating is dehydrated at the exit of the bath and cooled to 530℃, the cooling period varies; ● Immersed in a boiling water bath, the steel plate is heated to 150℃ or more from the bath.
Served at a temperature of 350°C, ● Rapid reheating to 450°C, maintained at this temperature for various periods, ● Final cooling in air to 80°C for 45 seconds or more. As a comparison, the same steel was treated by conventional methods with continuous cooling to 80° C. for one minute or one time at the exit of the coating bath. Result: (1)

【表】 (2) 本発明方法 (a) 焼きもどしと被覆後の急冷の始めとの間の
徐冷の全期間の効果。この効果はこの唯一の
パラメータだけしか変化させず他は次のよう
に固定した第2図によつて示されている: ●急冷のために用いられた水浴の出口におけ
る鋼板の温度:150℃ ●450℃に維持した期間:45秒 20秒以上の徐冷の全期間については鋼は明
らかに軟化したことが認められる。 (b) (450℃に再加熱する前)急冷の出口にお
ける温度の効果。他のパラメータを次のよう
に固定して次の結果が得られた: ●徐冷の全期間:27秒 ●450℃に維持の期間:45秒
[Table] (2) Method of the invention (a) Effect of the entire period of slow cooling between tempering and the beginning of the rapid cooling after coating. This effect is illustrated by Figure 2, where only this one parameter is varied and the others are fixed as follows: Temperature of the steel plate at the outlet of the water bath used for quenching: 150°C Period maintained at 450°C: 45 seconds During the entire slow cooling period of 20 seconds or more, it is recognized that the steel clearly softened. (b) Effect of temperature at the exit of the quench (before reheating to 450 °C). The following results were obtained with other parameters fixed as follows: ● Total duration of slow cooling: 27 seconds ● Duration of holding at 450 °C: 45 seconds

【表】 深いエンボス用の品質は、急冷の出口温度
が350℃以下かまたはこれに等しいときに達
成されることが認められる。同様に時効化の
傾向はこの温度以下では著しく減少する。 (c) 450℃に維持する期間即ち過時効化期間の
効果。このパラメータは他のものを次の如く
固定して研究した。 ●徐冷の全期間:30秒 ●急冷の終りの温度:150秒
[Table] It is observed that the quality for deep embossing is achieved when the exit temperature of the quench is below or equal to 350°C. Similarly, the aging tendency is significantly reduced below this temperature. (c) Effect of holding period at 450°C, ie overaging period. This parameter was studied with other parameters fixed as follows. ● Total period of gradual cooling: 30 seconds ● Temperature at the end of rapid cooling: 150 seconds

【表】 最も良好な延性と時効化強力は少なくとも
30秒の過時効期間について得られることが見
られる。 本発明において普通の軟質鋼なる表現はドイツ
規格DIN.U.St.12に相当するものであり、超軟鋼
(エンボス加工用)なる表現はドイツ規格DIN.U.
St.13に相当するものと理解すべきである。
[Table] The best ductility and aging strength are the least
It can be seen that what is obtained for an overage period of 30 seconds. In the present invention, the expression "ordinary soft steel" corresponds to German standard DIN.U.St.12, and the expression "ultra mild steel (for embossing)" corresponds to German standard DIN.U.St.12.
It should be understood as equivalent to St.13.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法において帯鋼が受ける種々
な熱処理工程の一例を示す図である。第2図は第
1図における本発明の効果を示す図である。
FIG. 1 is a diagram showing an example of the various heat treatment steps that a steel strip undergoes in the method of the present invention. FIG. 2 is a diagram showing the effect of the present invention in FIG. 1.

Claims (1)

【特許請求の範囲】 1 500℃以上のある温度に保たれた適当な金属
浴中への浸漬による被覆された帯鋼の製造法にお
いて、上記浸漬に先立ち、帯鋼をその再結晶温度
以上のある温度に加熱し、この温度に30秒以上の
期間保ち、次いで金属浴の温度より低くないある
温度まで冷却し、帯鋼はそれを被覆する金属層が
硬化せしめられる温度まで浴の出口において第一
次の冷却を受け、次いで475℃より低いある温度
まで強力でかつ急速であるが帯鋼の平面性を害し
ない冷却を受け、上記再結晶温度以上の温度にお
ける帯鋼が冷却され始める瞬間と、金属浴を出た
後、被覆金属の層が硬化せしめられ急冷が始まる
瞬間との間に含まれる期間が20秒以下でもなく
100秒以上でもないことを特徴とする被覆された
帯鋼の製造法。 2 軟鋼の帯鋼の場合、強力で急速な冷却は375
℃と475℃の間のある温度で行なわれ、次いで冷
却の最後の温度に帯鋼を少なくとも30秒間保つこ
と、そしてそれから公知の方法で室温まで帯鋼は
前よりも急速でない第二の冷却を受けることを特
徴とする特許請求の範囲第1項記載の方法。 3 帯鋼は超軟質の鋼よりなり、強力で急速な冷
却の最後の温度は350℃以上であること、そして
次いで帯鋼は400℃〜500℃程度のある温度まで適
当な炉の中で再加熱され、この帯鋼は少なくとも
30秒間この温度において保たれ、それから室温ま
で徐々に冷却せしめられることを特徴とする特許
請求の範囲第1項記載の方法。 4 帯鋼は薄く高強力を有し、300℃以下好まし
くは250℃以下のある温度まで強力で急速な冷却
を受け、それからその直後、公知の方法によつて
室温まで前より速くない第二の冷却を受けること
を特徴とする特許請求の範囲第1項記載の方法。 5 被覆すべき帯鋼を浸漬する浴は800℃以下の
融点を有する数種の金属または合金で構成されて
いることを特徴とする特許請求の範囲第1項から
第4項までのうちいずれか一つに記載の方法。 6 被覆浴はアルミニウムと亜鉛の合金で構成さ
れていることを特徴とする特許請求の範囲第5項
に記載された方法。 7 被覆浴の出口における帯鋼の強力で急速な冷
却は、75℃以上の温度、好ましくはその沸点に保
たれた水浴の中のクエンチによつて行なわれるこ
とを特徴とする特許請求の範囲第1項から第6項
までのうちいずれか一つに記載の方法。 8 被覆浴の出口における強力で急速な冷却は気
体、好ましくは空気の中に懸濁された水の均一な
霧によつて構成された流体を噴射することによつ
て行なわれることを特徴とする特許請求の範囲第
1項から第6項までのうちいずれか一つに記載の
方法。
[Claims] 1. In a method for manufacturing a coated steel strip by immersion in a suitable metal bath maintained at a temperature of 500°C or higher, prior to the immersion, the steel strip is heated to a temperature higher than its recrystallization temperature. Heating to a temperature, holding at this temperature for a period of not less than 30 seconds, and then cooling to a temperature not lower than that of the metal bath, the strip is heated at the outlet of the bath to a temperature at which the metal layer covering it is hardened. The moment when the steel strip at a temperature above the recrystallization temperature starts to cool, it undergoes primary cooling and then strong and rapid cooling to a certain temperature below 475°C, but does not impair the flatness of the steel strip. , the period between leaving the metal bath and the moment when the coated metal layer hardens and quenching begins is not less than 20 seconds.
A method for producing coated steel strip, characterized in that the process takes no more than 100 seconds. 2 In the case of mild steel strip, strong and rapid cooling is 375
℃ and 475℃, then keeping the strip at the last temperature of cooling for at least 30 seconds, and then in a known manner to room temperature the strip undergoes a second cooling, less rapid than the previous one. A method according to claim 1, characterized in that the method comprises: 3. The steel strip is made of ultra-soft steel, the final temperature of intense rapid cooling is above 350°C, and then the steel strip is reheated in a suitable furnace to a temperature of about 400°C to 500°C. Heated, this strip steel has at least
A method according to claim 1, characterized in that it is held at this temperature for 30 seconds and then allowed to cool gradually to room temperature. 4. The steel strip is thin and has high strength and is subjected to intense and rapid cooling to a temperature below 300°C, preferably below 250°C, and then immediately thereafter subjected to a second, no faster cooling than before, to room temperature by known methods. A method according to claim 1, characterized in that it is subjected to cooling. 5. Any one of claims 1 to 4, characterized in that the bath in which the steel strip to be coated is immersed is composed of several metals or alloys having a melting point of 800°C or less. The method described in one. 6. The method according to claim 5, characterized in that the coating bath is composed of an alloy of aluminum and zinc. 7. The strong and rapid cooling of the strip at the outlet of the coating bath is carried out by quenching in a water bath maintained at a temperature above 75° C., preferably at its boiling point. The method described in any one of Items 1 to 6. 8. The strong and rapid cooling at the outlet of the coating bath is characterized in that it is carried out by injecting a fluid constituted by a homogeneous mist of water suspended in a gas, preferably air. A method according to any one of claims 1 to 6.
JP2607780A 1979-03-02 1980-02-29 Production of coated steel band Granted JPS55145160A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BE6/46771A BE874599A (en) 1979-03-02 1979-03-02 METHOD FOR MANUFACTURING A COATED STEEL STRIP

Publications (2)

Publication Number Publication Date
JPS55145160A JPS55145160A (en) 1980-11-12
JPS6157374B2 true JPS6157374B2 (en) 1986-12-06

Family

ID=3874815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2607780A Granted JPS55145160A (en) 1979-03-02 1980-02-29 Production of coated steel band

Country Status (3)

Country Link
JP (1) JPS55145160A (en)
DE (1) DE3007906A1 (en)
SE (2) SE445470B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8701837D0 (en) * 1987-05-05 1987-05-05 Ssab Svenskt Stal Ab COATING PLANT AND WAY TO COVER A STEEL PRODUCT
DE4134108C1 (en) * 1991-10-15 1993-05-06 Linde Ag, 6200 Wiesbaden, De Steel strip metal coating - by passing through melt container, then up between two slot nozzles fed with e.g. liq. nitrogen@ to accelerate cooling
DE102004052482A1 (en) * 2004-10-28 2006-05-11 Thyssenkrupp Steel Ag Method for producing a corrosion-protected steel sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1521405A1 (en) * 1951-01-28 1969-08-21 Nat Steel Corp Process for the production of coatings
US3148081A (en) * 1962-01-02 1964-09-08 Nat Steel Corp Galvanized flat rolled product and its manufacture
GB1148319A (en) * 1965-03-25 1969-04-10 Nippon Kokan Kk Apparatus for continuously manufacturing steel sheets coated with protecting metal layer

Also Published As

Publication number Publication date
JPS55145160A (en) 1980-11-12
SE8501669D0 (en) 1985-04-03
SE8001565L (en) 1980-09-03
DE3007906A1 (en) 1980-09-11
SE445470B (en) 1986-06-23
SE8501669L (en) 1985-04-03
DE3007906C2 (en) 1988-08-11

Similar Documents

Publication Publication Date Title
JP4918044B2 (en) Method of melt dip coating high strength steel strip
JP2022513740A (en) Manufacturing method and equipment for corrosion-resistant hot stamping parts
JPS5849619B2 (en) Method for manufacturing high-strength cold-rolled steel sheet with excellent chemical conversion treatment properties
JPH08333665A (en) Method for melt-coating chromium-containing steel
US3959035A (en) Heat treatment for minimizing crazing of hot-dip aluminum coatings
JPH04202631A (en) Production of galvannealed p-containing high tensile strength steel sheet
JPS6157374B2 (en)
US4144379A (en) Drawing quality hot-dip coated steel strip
CA2076964C (en) Process for manufacturing galvannealed steel sheets having excellent press-formability and anti-powdering property
JPS6356291B2 (en)
JPH10176253A (en) Production of unrecrystallized hot dip galvanized steel sheet in continuous type hot dip galvanizing line
US4297398A (en) Manufacturing coated steel strip
JP4976942B2 (en) Method for producing hot-dip galvanized steel sheet
JPS608289B2 (en) Method for manufacturing hot-dip galvanized steel sheets with excellent workability
US6231695B1 (en) Method of heat-treating a thin sheet coated with ZnAL by hot dip galvanization
JPS58164733A (en) Annealing method of band steel
SU1303623A1 (en) Method for producing thin high-strength steel strip with iron-zinc alloy coating
JP4131577B2 (en) Manufacturing method of plated steel sheet
JP3248431B2 (en) Manufacturing method of hot-dip coated steel sheet
JPH07316764A (en) Production of galvannealed steel sheet
JPH01123058A (en) Alloying hot dip galvanized steel sheet for superdrawing excellent in resistance to secondary working brittleness and its production
JPS60251226A (en) Production of galvanized cold-rolled steel sheet having excellent workability
JPS62146300A (en) Method for degreasing cold rolled stainless steel strip
JPH10176254A (en) Production of hot dip galvanized steel plate excellent in plating adhesion
JP2701737B2 (en) Manufacturing method of alloyed hot-dip galvanized steel sheet