JP2701737B2 - Manufacturing method of alloyed hot-dip galvanized steel sheet - Google Patents

Manufacturing method of alloyed hot-dip galvanized steel sheet

Info

Publication number
JP2701737B2
JP2701737B2 JP10054294A JP10054294A JP2701737B2 JP 2701737 B2 JP2701737 B2 JP 2701737B2 JP 10054294 A JP10054294 A JP 10054294A JP 10054294 A JP10054294 A JP 10054294A JP 2701737 B2 JP2701737 B2 JP 2701737B2
Authority
JP
Japan
Prior art keywords
steel sheet
alloying
plating
unevenness
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10054294A
Other languages
Japanese (ja)
Other versions
JPH07278774A (en
Inventor
保 土岐
富男 近藤
孝次 谷田
澄隆 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10054294A priority Critical patent/JP2701737B2/en
Publication of JPH07278774A publication Critical patent/JPH07278774A/en
Application granted granted Critical
Publication of JP2701737B2 publication Critical patent/JP2701737B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、めっき母材に高P鋼板
を使用した合金化Zn溶融めっき鋼板の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a galvannealed steel sheet using a high-P steel sheet as a base metal.

【0002】[0002]

【従来の技術】近年、排ガス規制や燃費向上のために、
自動車の車体の軽量化が進められており、これに伴い高
張力鋼板の採用が増加している。
2. Description of the Related Art In recent years, in order to control exhaust gas and improve fuel efficiency,
As the body weight of automobiles is being reduced, the use of high-tensile steel sheets is increasing.

【0003】高張力鋼板としては、製鋼段階で十分に脱
炭処理して炭素量を0.01%以下にしてからTiを添加
した極低炭素Ti添加鋼とか、低炭素アルミキルド鋼を
ベースにしてP,Si,Mn,Crの添加により強度を
上げたものが代表的である。特に、Pは他の強化元素よ
りコストが低いため、Pを添加した高張力鋼板がめっき
母材として使用される場合が多い。
[0003] High-strength steel sheets are based on ultra-low carbon Ti-added steel or Ti-added steel, which is sufficiently decarburized in the steelmaking stage to reduce the carbon content to 0.01% or less, and then to Ti. Typically, the strength is increased by adding P, Si, Mn, and Cr. In particular, since P is lower in cost than other strengthening elements, a high-tensile steel sheet to which P is added is often used as a plating base material.

【0004】ところが、鋼中P量が多い鋼板では、しば
しばフルハード段階で既にその鋼板表面にPの不均一分
布が認められる。Pの不均一分布の形成原因としては、
製鋼での不均一分布や熱延加熱時のデスケーリング不良
等が考えられる。いずれが原因であるにしても、このよ
うなPの不均一分布が表面に存在した鋼板を通常条件で
Znめっきして合金化処理すると、合金化ムラが発生す
る。
However, in a steel sheet having a large amount of P in steel, a non-uniform distribution of P is already recognized on the surface of the steel sheet often at the full hard stage. The causes of the non-uniform distribution of P include:
Non-uniform distribution in steel making, poor descaling during hot rolling, etc. are considered. Regardless of the cause, when a steel sheet having such a non-uniform distribution of P on the surface is Zn-plated and alloyed under normal conditions, alloying unevenness occurs.

【0005】これは、図1に示すように、Pが合金化遅
延元素であるため、Pの偏析部ではめっき皮膜が凹状欠
陥になり、逆にPの負偏析部ではめっき皮膜が凸状欠陥
になる現象である。その詳細な理由としては、Pの偏析
部は周囲に較べてFe−Zn合金層の成長が遅く、偏析
部上層の液体Znが周囲のFe−Zn合金層の成長に消
費されるために凹状皮膜となり、Pの負偏析部について
はその逆の現象が生じていることが考えられる。
This is because, as shown in FIG. 1, since P is an alloying retarding element, the plating film becomes a concave defect in the segregated portion of P, and conversely, the plated film becomes a convex defect in the negative segregated portion of P. It is a phenomenon that becomes. The detailed reason is that the growth of the Fe-Zn alloy layer is slower in the segregated portion of P than in the surroundings, and the liquid Zn in the upper layer of the segregated portion is consumed for the growth of the surrounding Fe-Zn alloy layer. It can be considered that the opposite phenomenon occurs in the negatively segregated portion of P.

【0006】そして、この皮膜の凹凸は、調質圧延後あ
るいはプレス成形後に、顕著な合金化ムラとして表面に
現れ、自動車の外板等では特に大きな問題になる。
[0006] The unevenness of the coating appears on the surface as remarkable alloying unevenness after temper rolling or press forming, and this is a particularly serious problem in the case of an outer panel of an automobile.

【0007】鋼板表面のP濃度の不均一分布に起因する
合金化ムラを防止するための直接的な対策は、出願人の
知る限り存在しない。ただし、この合金化ムラは、前述
したように、Pによる合金化遅延が原因であるので、高
P鋼板に対する一般的な合金化促進方法が、一応は合金
化ムラの防止策として期待できる。そして、そのような
合金化促進方法としては、例えば次の3つが周知であ
る。
[0007] As far as the applicant knows, there is no direct measure for preventing alloying unevenness due to non-uniform distribution of P concentration on the steel sheet surface. However, as described above, since the alloying unevenness is caused by alloying delay due to P, a general alloying promoting method for a high-P steel sheet can be expected as a measure for preventing the alloying unevenness. For example, the following three methods are well known as such alloying promoting methods.

【0008】 鋼板表面をCu,Ni,Fe等により
プレめっきする方法(特開昭55−12286号公
報)。 鋼板表面を急速酸化した後、還元してポーラスな鋼
板表面にする方法(特開昭55−12286号公報およ
び特開平4−202631号公報)。 鋼板表面を強酸洗する方法(特開平3−24375
1号公報および特開平3−243752号公報)。
[0008] A method of pre-plating the surface of a steel sheet with Cu, Ni, Fe or the like (Japanese Patent Laid-Open No. 55-12286). A method in which the surface of a steel sheet is rapidly oxidized and then reduced to obtain a porous steel sheet surface (JP-A-55-12286 and JP-A-4-202631). A method of strongly pickling the surface of a steel sheet (JP-A-3-24375)
No. 1 and JP-A-3-243752).

【0009】[0009]

【発明が解決しようとする課題】これらの合金化促進方
法のうち、鋼板表面をプレめっきする方法は、鋼板表面
のP濃度不均一に起因する合金化ムラの防止にも有効で
ある。しかし、電気めっき設備を別途必要とするため、
設備コスト、製造コストの増大を招く。
Among these alloying promoting methods, the method of pre-plating the surface of the steel sheet is also effective in preventing the alloying unevenness caused by the non-uniform P concentration on the steel sheet surface. However, since electroplating equipment is required separately,
This leads to an increase in equipment costs and manufacturing costs.

【0010】一方、鋼板表面を急速酸化する方法では、
その急速酸化により鋼板表層へのPの濃化が防止され、
合金化処理での合金化が促進されるが、酸化前から鋼板
表面に存在しているP濃度の不均一分布は解消されない
ので、その不均一分布に起因する合金化ムラは防止され
ない。
On the other hand, in the method of rapidly oxidizing a steel sheet surface,
The rapid oxidation prevents the concentration of P on the surface layer of the steel sheet,
Although the alloying in the alloying process is promoted, the non-uniform distribution of the P concentration existing on the steel sheet surface before the oxidation is not eliminated, so that the non-uniform alloying caused by the non-uniform distribution is not prevented.

【0011】同様に、鋼板表面の強酸洗する方法では、
結晶粒界に濃化したPが除去されることにより、全体的
な合金化は促進されるが、鋼板表面のP濃度不均一に起
因する合金化ムラは防止されない。
[0011] Similarly, in the method of strongly pickling the steel sheet surface,
The removal of P concentrated at the crystal grain boundaries promotes overall alloying, but does not prevent alloying unevenness caused by uneven P concentration on the steel sheet surface.

【0012】本発明の目的は、高P鋼板に特有な鋼板表
面のP濃度不均一に起因する合金化ムラを経済的に防止
することができる合金化溶融Znめっき鋼板の製造方法
を提供することにある。
An object of the present invention is to provide a method for producing an alloyed hot-dip galvanized steel sheet which can economically prevent uneven alloying due to non-uniform P concentration on the surface of the steel sheet, which is peculiar to high-P steel sheets. It is in.

【0013】[0013]

【課題を解決するための手段】高P鋼板に特有な鋼板表
面のP濃度不均一に起因する合金化ムラを防止するため
には、鋼板表面のP濃度不均一を解消するか、さもなけ
れば、合金化処理においてP濃度不均一に起因するめっ
き皮膜の凹凸化を阻止する必要がある。本発明者らは後
者の観点から、合金化処理でのZnの液相存在時間に着
目した。
In order to prevent non-uniform alloying caused by non-uniform P concentration on the surface of the steel sheet, which is peculiar to the high-P steel sheet, it is necessary to eliminate the non-uniform P concentration on the surface of the steel sheet. In addition, it is necessary to prevent the plating film from becoming uneven due to the non-uniform P concentration in the alloying treatment. From the latter viewpoint, the present inventors focused on the liquid phase existence time of Zn in the alloying treatment.

【0014】すなわち、鋼板表面のP濃度不均一に起因
する合金ムラは、前述したように、Pの偏析部ではその
表層の液体Znが周囲のFe−Zn合金層の成長に消費
されてめっき皮膜が凹状となり、Pの負偏析部ではその
Fe−Zn合金層の成長に周囲の液体Znが消費されて
めっき皮膜が凸状となることが原因と考えられる。その
ため、ここでもしZnの液相存在時間が短ければ、鋼板
表面のP濃度不均一に起因する液体Znのアンバランス
な消費が抑えられるので、その不均一分布が存在してい
ても、めっき皮膜表面の凹凸化が回避されることが予測
される。
That is, as described above, in the alloy unevenness caused by the non-uniform P concentration on the steel sheet surface, the liquid Zn of the surface layer is consumed in the growth of the surrounding Fe—Zn alloy layer at the P segregation portion, and the plating film is formed. This is considered to be because the surrounding liquid Zn is consumed in the growth of the Fe-Zn alloy layer in the negatively segregated portion of P, and the plating film becomes convex. Therefore, if the liquid phase existence time of Zn is short, the unbalanced consumption of liquid Zn due to the non-uniform P concentration on the surface of the steel sheet is suppressed. It is expected that surface irregularities will be avoided.

【0015】本発明者らは、この考えに立って種々の実
験を行ったところ、合金化処理の昇温過程、特にZnが
液相となる420℃から比較的高温域まで、20℃/s
以上の急速加熱を行えば、本来の合金化が阻害されるこ
となくZnの液相存在時間が短くなり、その結果、鋼板
表面に高P鋼特有の顕著なP濃度不均一が存在していて
も、その不均一に起因する液体Znのアンバランスな消
費が抑えられて、めっき皮膜表面の凹凸化が防止される
ことを知見した。
Based on this idea, the present inventors conducted various experiments. As a result, the temperature rise process of the alloying treatment, in particular, from 420 ° C. in which Zn becomes a liquid phase to a relatively high temperature range, 20 ° C./s.
If the above rapid heating is performed, the liquid phase existence time of Zn is shortened without hindering the original alloying, and as a result, a remarkable P concentration non-uniformity peculiar to the high P steel exists on the steel sheet surface. It was also found that the unbalanced consumption of liquid Zn caused by the non-uniformity was suppressed, and the unevenness of the plating film surface was prevented.

【0016】本発明は上記知見に基づきなされたもの
で、鋼中P量が0.025wt%以上である高P鋼板を
溶融Znめっきした後、合金化処理する際に、材温が4
20℃から最高到達温度に至るまでを20℃/s以上の
昇温速度で急速加熱し、且つ、その最高到達温度を52
0〜600℃としたことを特徴とする合金化溶融Znめ
っき鋼板の製造方法を要旨とする。
The present invention has been made on the basis of the above-mentioned findings. When a high-P steel sheet having a P content of 0.025 wt% or more in steel is hot-dip Zn-plated and then subjected to alloying treatment, the material temperature is reduced to 4%.
Rapid heating from 20 ° C. to the highest temperature at a rate of 20 ° C./s or more is performed, and the highest temperature is 52
A method for producing an alloyed hot-dip galvanized steel sheet at a temperature of 0 to 600 ° C. is provided.

【0017】なお、合金化処理での高速加熱自体は、特
開昭50−13229号公報により公知である。しか
し、その合金化処理では、母材組成が不明である上、高
速加熱の目的が明確でなく、その昇温速度も特定できな
い。従って、高P鋼板をめっき母材とする場合のP濃度
不均一による合金化ムラの防止に、Zn液相域での20
℃以上の高速加熱が有効であるという考えは、ここには
示されていない。
The high-speed heating itself in the alloying treatment is known from Japanese Patent Application Laid-Open No. Sho 50-13229. However, in the alloying treatment, the composition of the base material is unknown, the purpose of high-speed heating is not clear, and the rate of temperature rise cannot be specified. Therefore, in order to prevent non-uniform alloying due to non-uniform P concentration when a high-P steel sheet is used as a plating base material, it is necessary to use 20% in the Zn liquid phase region.
The idea that rapid heating above ℃ is effective is not shown here.

【0018】[0018]

【作用】以下に本発明法における製造条件を詳述する。The production conditions in the method of the present invention will be described below in detail.

【0019】本発明法はめっき母材として高P鋼板を使
用する。その鋼中P量を0.025%以上に限定したの
は、0.025%未満では鋼板表面のP濃度の不均一が軽
度なため、その不均一分布が存在していても、合金ムラ
が生じないからである。この合金ムラは鋼中P量が増大
するほど顕著になるので、Pが0.05%以上の鋼板に対
して本発明法は特に有効である。
The method of the present invention uses a high-P steel sheet as a plating base material. The reason why the amount of P in the steel is limited to 0.025% or more is that if the P content is less than 0.025%, the non-uniformity of the P concentration on the steel sheet surface is mild, so that even if the non-uniform distribution exists, the alloy unevenness is reduced. This is because it does not occur. Since the alloy unevenness becomes more remarkable as the amount of P in steel increases, the method of the present invention is particularly effective for steel sheets having P of 0.05% or more.

【0020】P以外の成分は高張力鋼の範疇であれば特
に限定しない。C,Mn,S,SolAl,Ti等が一
般に用いられる範囲で含有されていてもよい。また、そ
の母材は熱延材、冷延材のいずれでもよい。
The components other than P are not particularly limited as long as they are in the category of high-tensile steel. C, Mn, S, SolAl, Ti and the like may be contained in a range generally used. The base material may be either a hot-rolled material or a cold-rolled material.

【0021】めっき母材は、前処理後、例えば還元雰囲
気で600〜900℃に昇温されて、還元と同時に焼鈍
を受け、更に、冷却を経て溶融Znめっき処理を受け
る。
After the pretreatment, the plating base material is heated to, for example, 600 to 900 ° C. in a reducing atmosphere, subjected to annealing at the same time as reduction, and further subjected to hot-dip Zn plating after cooling.

【0022】Znめっき浴中のAl濃度は、一般に採用
されている範囲でよく、通常0.05〜0.5%である。A
lの他にPb,Sh,Si、Fe,Sn,Mg,Mn,
Ni,Cr,Ca,Li,Ti、ミッシュメタル等の1
種または2種以上がめっき浴に少量含有されてもよい。
The concentration of Al in the Zn plating bath may be in a generally employed range, and is usually 0.05 to 0.5%. A
l, Pb, Sh, Si, Fe, Sn, Mg, Mn,
1 of Ni, Cr, Ca, Li, Ti, misch metal, etc.
A seed or two or more kinds may be contained in a small amount in the plating bath.

【0023】めっきが終わると、引き続きワイピング処
理によりめっき付着量を調整して、合金化処理を行う。
そして、合金化処理では、材温が420℃から最高到達
温度(520〜600℃)に至るまでを20℃/s以上
の昇温速度で高速加熱する。
After the plating, the amount of plating is adjusted by a wiping process, and an alloying process is performed.
Then, in the alloying treatment, the material is heated at high speed at a rate of 20 ° C./s or more from 420 ° C. to the highest temperature (520 to 600 ° C.).

【0024】高速昇温の開始温度については、Znが溶
融状態になって初めて皮膜の凹凸形成に寄与するため、
Znの融点である420℃をその開始温度とした。
With respect to the starting temperature of the high-speed heating, Zn contributes to the formation of unevenness of the film only after Zn is in a molten state.
420 ° C., the melting point of Zn, was used as the starting temperature.

【0025】昇温速度を20℃/s以上としたのは、2
0℃/s未満ではめっき表層のZnが液相で存在する時
間が長くなり、この間にPの偏析部ではその液体Znが
周囲のFe−Zn合金層の成長に消費され、Pの負偏析
部ではそのFe−Zn合金層の成長に周囲の液体Znが
消費されることにより、めっき皮膜の表面が凹凸化する
からである。特に望ましい昇温速度は30℃以上であ
る。
The reason why the heating rate is set to 20 ° C./s or more is that 2
If the temperature is less than 0 ° C./s, the time during which Zn in the plating surface layer exists in the liquid phase becomes longer, and during this time, in the segregation portion of P, the liquid Zn is consumed for the growth of the surrounding Fe—Zn alloy layer, and the negative segregation portion of P This is because the surrounding liquid Zn is consumed for the growth of the Fe—Zn alloy layer, so that the surface of the plating film becomes uneven. A particularly desirable heating rate is 30 ° C. or higher.

【0026】昇温速度の上限については、めっき品質の
点からは限定の必要はないが、極端な高速加熱は合金化
炉能力の大幅な増強を必要とするので、60℃/s以下
が望ましく、40℃/s以下が更に望ましい。
The upper limit of the heating rate is not limited from the viewpoint of plating quality, but it is preferably 60 ° C./s or less because extremely high-speed heating requires a large increase in the capacity of the alloying furnace. , 40 ° C./s or less is more desirable.

【0027】最高到達温度を520〜600℃に限定し
たのは、次の理由による。520℃未満では材料が最高
到達温度に達しても合金化が完了せず、昇温後の温度保
持期間やその後の冷却過程では十分な合金化速度を期待
できないため、合金化が不足したり、めっき表層が長時
間溶融状態に保持されて凹凸化を招く。一方、600℃
を超えると、昇温過程で合金化が過度に進行して、耐パ
ウダリング性が著しく低下する。特に望ましい最高到達
温度は、下限については530℃以上であり、上限につ
いては550℃以下である。
The maximum temperature was limited to 520 to 600 ° C. for the following reason. If the temperature is lower than 520 ° C., the alloying is not completed even if the material reaches the maximum temperature, and a sufficient alloying rate cannot be expected in the temperature holding period after the temperature is raised or in the subsequent cooling process. The plating surface layer is kept in a molten state for a long time, causing unevenness. On the other hand, 600 ° C
If it exceeds 300, the alloying proceeds excessively in the process of raising the temperature, and the powdering resistance is significantly reduced. Particularly desirable maximum attainment temperature is 530 ° C. or higher for the lower limit and 550 ° C. or lower for the upper limit.

【0028】本発明法での合金化処理は、初期の昇温過
程が上記の条件を満足すればよく、その後のヒートパタ
ーンについては通常の条件でよく、その条件を特に限定
するものではない。
In the alloying treatment in the method of the present invention, it is sufficient that the initial heating process satisfies the above condition, and the subsequent heat pattern may be a normal condition, and the condition is not particularly limited.

【0029】加熱手段としては燃焼ガス直火加熱、燃焼
ガス輻射式加熱、直接通電加熱、誘導加熱等のいずれを
採用してもよい。
As the heating means, any of combustion gas direct heating, combustion gas radiation heating, direct current heating, induction heating and the like may be employed.

【0030】[0030]

【実施例】以下に本発明法の実施例を説明する。表1に
示す各組成の鋼を溶製し、熱間圧延を行って3.2mmの
鋼板とした。巻取温度は500〜650℃とした。次い
で、その熱延鋼板を15%HClの酸洗液により脱スケ
ールし水洗した後、冷間圧延を行って0.8mmの薄板と
した。更に、その冷延鋼板を酸洗・水洗後、めっきし
た。
EXAMPLES Examples of the method of the present invention will be described below. Steels having the respective compositions shown in Table 1 were melted and hot-rolled to obtain 3.2 mm steel sheets. The winding temperature was 500 to 650 ° C. Next, the hot-rolled steel sheet was descaled with a pickling solution of 15% HCl, washed with water, and then cold-rolled to obtain a 0.8 mm thin sheet. Further, the cold-rolled steel sheet was plated after pickling and washing with water.

【0031】[0031]

【表1】 [Table 1]

【0032】めっきでは、前処理として溶剤脱脂、水
洗、乾燥を行った後、溶融めっきシミュレーターを用い
て、N2 100ppm O2 中で550℃×30s の予熱処
理を行い、更に25%H2 −露点−30℃の雰囲気中で
760℃×60s の還元焼鈍を行った後、460℃のZ
n−0.15%AlのZnめっき浴により浸漬めっきを行
った。そして、めっき後、ワイピングにより付着量を6
0g/m2 に調整し、引合金化処理を行った。
In the plating, after performing solvent degreasing, water washing and drying as pretreatments, a pre-heat treatment is performed at 550 ° C. × 30 s in N 2 100 ppm O 2 using a hot-dip plating simulator, and further, 25% H 2 − After performing reduction annealing at 760 ° C. × 60 s in an atmosphere with a dew point of −30 ° C., the Z at 460 ° C.
Immersion plating was performed in a Zn plating bath of n-0.15% Al. Then, after plating, the adhesion amount is 6 by wiping.
It was adjusted to 0 g / m 2 and subjected to a draw alloying treatment.

【0033】合金化処理では、熱電対をスポット溶接し
ためっき試料を誘導加熱炉(50kw,100kHz)
内に静置し、そのめっき試料を測温しながら種々の条件
で昇温させた。昇温が終了した時点で合金化が完了して
いる場合はそのまま空冷し、合金化が完了していない場
合は最高到達温度に保持し、合金化の完了を確認してか
ら空冷した。
In the alloying treatment, a plating sample obtained by spot welding a thermocouple is placed in an induction heating furnace (50 kW, 100 kHz).
The plating sample was heated under various conditions while measuring the temperature. When alloying was completed at the time when the temperature increase was completed, air cooling was performed as it was. When alloying was not completed, the temperature was maintained at the maximum temperature, and after completion of alloying was confirmed, air cooling was performed.

【0034】なお、めっき母材である冷延鋼板として
は、めっき後、昇温速度10℃/s、到達温度480℃
で合金化処理を行い、その合金化溶融Znめっき鋼板の
表面ムラを調査して、表面ムラが発現したものを選び出
して使用した。
The cold-rolled steel sheet, which is the base metal for plating, has a heating rate of 10 ° C./s and an ultimate temperature of 480 ° C. after plating.
The alloyed hot-dip galvanized steel sheet was examined for surface unevenness, and those having surface unevenness were selected and used.

【0035】製造された各種の合金化溶融Znめっき鋼
板の表面を砥石で研摩し、発現したムラを目視により4
段階評価した。結果を表2〜表4に示す。◎は表面ムラ
なし、○は一部軽度な表面ムラあり、△は一部表面ムラ
あり、×は全面表面ムラである。
The surfaces of the various alloyed hot-dip galvanized steel sheets produced were polished with a grindstone, and the developed unevenness was visually observed.
It was rated on a scale. The results are shown in Tables 2 to 4. ◎ indicates no surface unevenness, は indicates some slight surface unevenness, △ indicates some surface unevenness, and × indicates the entire surface unevenness.

【0036】また、製造された各種の合金化溶融Znめ
っき鋼板から直径60mmの円盤試片を打ち抜き、その
試片に対してポンチ直径30mm、ダイス肩半径3Rの
円筒絞り加工を行い、その外側円筒部に対してテープ剥
離試験を行った。その剥離程度を目視により4段階評価
して耐パウダリング性を調査した結果を表2〜表4に合
わせて示す。◎はほとんど剥離が認められない。○は一
部わずかな剥離が認められる。△は全面にわずかな剥離
が認められる。×は全面に著しい剥離が認められる、で
ある。
A disc specimen having a diameter of 60 mm was punched from each of the manufactured alloyed hot-dip galvanized steel sheets, and the specimen was subjected to a cylindrical drawing with a punch diameter of 30 mm and a die shoulder radius of 3R. A tape peeling test was performed on the portion. Tables 2 to 4 also show the results of examining the powdering resistance by visually evaluating the degree of the peeling in four stages. ◎ shows almost no peeling. In the case of ○, slight peeling was observed. Δ indicates that slight peeling was observed on the entire surface. × indicates that significant peeling was observed on the entire surface.

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【表4】 [Table 4]

【0040】表2〜表4から分かるように、昇温速度が
20℃/s未満では他の条件が適正でも合金化ムラが顕
著になる。また、昇温速度が20℃/s以上でも、最高
到達速度が520℃未満の場合は合金化ムラが顕著にな
り、最高到達温度が600℃を超えると、合金化ムラは
防止されるものの、耐パウダリング性が低下する。
As can be seen from Tables 2 to 4, when the heating rate is less than 20 ° C./s, the alloying unevenness becomes remarkable even if other conditions are appropriate. Further, even when the heating rate is 20 ° C./s or more, when the maximum attainment rate is less than 520 ° C., the alloying unevenness becomes remarkable. When the maximum attainment temperature exceeds 600 ° C., the alloying unevenness is prevented. Powdering resistance decreases.

【0041】[0041]

【発明の効果】以上に説明した通り、本発明の合金化溶
融Znめっき鋼板の製造方法は、合金化処理の昇温過程
で適正な高速加熱を行うことにより、鋼板表面に高P鋼
特有のP濃度不均一が存在していても、その不均一によ
る合金化ムラを防止できる。従って、高強度で高品質な
合金化溶融Znめっき鋼板を経済的に製造することがで
きる。
As described above, the method for producing an alloyed hot-dip galvanized steel sheet according to the present invention performs a proper high-speed heating in the process of increasing the temperature of the alloying treatment, so that the surface of the steel sheet has a characteristic characteristic of high-P steel. Even if there is non-uniform P concentration, uneven alloying due to the non-uniformity can be prevented. Therefore, a high-strength, high-quality alloyed hot-dip galvanized steel sheet can be economically manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】合金化ムラの発生メカニズムを示す模式図であ
る。
FIG. 1 is a schematic view showing the mechanism of occurrence of alloying unevenness.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鋼中P量が0.025wt%以上である
高P鋼板を溶融Znめっきした後、合金化処理する際
に、材温が420℃から最高到達温度に至るまでを20
℃/s以上の昇温速度で急速加熱し、且つ、その最高到
達温度を520〜600℃としたことを特徴とする合金
化溶融Znめっき鋼板の製造方法。
1. A high-P steel sheet having a P content of 0.025 wt% or more in steel is hot-dip Zn-plated and then subjected to an alloying treatment.
A method for producing an alloyed hot-dip galvanized steel sheet, wherein the steel sheet is rapidly heated at a heating rate of at least ℃ / s, and the maximum temperature thereof is set to 520 to 600 ° C.
JP10054294A 1994-04-13 1994-04-13 Manufacturing method of alloyed hot-dip galvanized steel sheet Expired - Lifetime JP2701737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10054294A JP2701737B2 (en) 1994-04-13 1994-04-13 Manufacturing method of alloyed hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10054294A JP2701737B2 (en) 1994-04-13 1994-04-13 Manufacturing method of alloyed hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JPH07278774A JPH07278774A (en) 1995-10-24
JP2701737B2 true JP2701737B2 (en) 1998-01-21

Family

ID=14276847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10054294A Expired - Lifetime JP2701737B2 (en) 1994-04-13 1994-04-13 Manufacturing method of alloyed hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP2701737B2 (en)

Also Published As

Publication number Publication date
JPH07278774A (en) 1995-10-24

Similar Documents

Publication Publication Date Title
CN104271789B (en) Drop stamping alloy galvanized steel plate and its manufacture method and hot stamping part
JP2024020359A (en) High-strength galvanized steel sheet having excellent electrical resistance spot weldability and method for manufacturing the same
JP5020526B2 (en) Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, workability, and paintability and method for producing the same
JP7241283B2 (en) Aluminum-iron plated steel sheet for hot press with excellent corrosion resistance and weldability and its manufacturing method
JP2023507960A (en) High-strength hot-dip galvanized steel sheet with excellent surface quality and electric resistance spot weldability and its manufacturing method
JP3885763B2 (en) Hot-dip galvanized steel sheet for quenching, its manufacturing method and use
JP2019167576A (en) Method for manufacturing hot-dip galvanized steel sheet
JP3444007B2 (en) Manufacturing method of high workability, high strength galvanized steel sheet
JP2023505444A (en) Galvanized steel sheet with excellent surface quality and spot weldability, and its manufacturing method
JPH02285057A (en) Method for continuously annealing steel sheet to be galvanized
JP3698049B2 (en) Alloy hot-dip galvanized steel sheet
JP2701737B2 (en) Manufacturing method of alloyed hot-dip galvanized steel sheet
JP2555821B2 (en) Method for producing hot dip galvanized steel sheet
JPH06212383A (en) Hot dip galvanizing method for silicon-containing steel sheet
JPH0748662A (en) Production of galvanized steel sheet excellent in plating adhesion and appearance
JP3257301B2 (en) Manufacturing method of hot-dip galvanized steel sheet from hot-rolled steel sheet
JPH0230738A (en) Steel plate for direct one treatment enameling having excellent resistance to fault of bubble and black spot
JP4655432B2 (en) Ferritic stainless steel sheet excellent in adhesion and corrosion resistance of paint film and method for producing the same
JPH10158784A (en) High strength hot rolled steel sheet
JP3580541B2 (en) Surface-treated steel sheet excellent in workability and corrosion resistance of processed part and method for producing the same
JP4131577B2 (en) Manufacturing method of plated steel sheet
JP2576329B2 (en) Method for producing high-strength alloyed hot-dip galvanized steel sheet with excellent coating uniformity and powdering resistance
JP2001192795A (en) High tensile strength hot dip plated steel plate and producing method therefor
JPH0741923A (en) Production of hot dip galvanized steel sheet excellent in adhension of zinc layer and appearance
JPS60110845A (en) Cold rolled steel sheet for enamel and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20081003

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20101003

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20111003

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20121003

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 16

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20131003

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term