JPH0515779B2 - - Google Patents

Info

Publication number
JPH0515779B2
JPH0515779B2 JP6416285A JP6416285A JPH0515779B2 JP H0515779 B2 JPH0515779 B2 JP H0515779B2 JP 6416285 A JP6416285 A JP 6416285A JP 6416285 A JP6416285 A JP 6416285A JP H0515779 B2 JPH0515779 B2 JP H0515779B2
Authority
JP
Japan
Prior art keywords
temperature
alloying
steel sheet
heating
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6416285A
Other languages
Japanese (ja)
Other versions
JPS61223174A (en
Inventor
Toshio Nakamori
Atsuyoshi Shibuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6416285A priority Critical patent/JPS61223174A/en
Publication of JPS61223174A publication Critical patent/JPS61223174A/en
Publication of JPH0515779B2 publication Critical patent/JPH0515779B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、合金化溶融亜鉛めつき鋼板の製造方
法、詳述すれば品質特性、特に加工時にめつき層
の剥離の少ない合金化溶融亜鉛めつき鋼板(以
下、「GA鋼板」と略す)の製造方法に関する。 (従来の技術) GA鋼板は、一般に溶融亜鉛めつき鋼板をめつ
き直後、連続的に熱処理することによつて製造さ
れる。通常、熱処理時のFe−Znの相互拡散によ
り、めつき層は8.5〜13%のFeを含有し、2、3
種の金属間化合物の層状組織より構成される。こ
のようにして得た素材は塗装性、溶接性が一般の
亜鉛鋼板より優れているが、めつき層に全く塑性
変形能がないので、プレス加工時にパウダリング
と呼ばれるめつき層剥離を生じやすい。 従来より、GA鋼板のパウダリング現象を克服
するための様々な試みがある。その1例は、特公
昭49−4134号に記載されるような、表面をη+ζ
の組織とした製品であるがこの種の製品は、η相
が残存しているので塗装性、溶接性が劣る。一般
に、溶接性、塗装性を満足する為には被覆層の表
層の大部分がδ1相である必要がある。 耐パウダリング性改善の別案としては、合金化
時のヒートパターンの面から検討しようとするも
のがある。例えば、特公昭59−14541号では、合
金化熱処理を1次加熱と2次加熱とに分割し、2
次加熱をオフラインで行うことを提案している。
しかし、このオフライン法は、耐パウダリング性
のある程度の改善の効果はみられるが、ポストア
ニーリングの効果を除けば、その不利益について
は改めて述べるまでもない。 更に、特開昭59−173255号は、めつき後520℃
以下に6秒以上保持して合金化することを提案し
ているが、最終温度等の規定がないため、そのよ
うな処理条件は十分条件とは言えず、したがつ
て、耐パウダリング性不良のものもかなり発生
し、いたずらに炉長の増大を招くにすぎない場合
も考えられる。 (発明が解決しようとする問題点) かくして、本発明の目的とするところは、これ
ら従来法の欠点を解消した方法を提供することで
ある。 また、本発明の別の目的は、比較的短い合金化
処理時間で、パウダリングを抑制したGA鋼板の
製造方法を提供することである。 (問題点を解決するための手段) かかる目的を達成すべく、本発明者等は鋭意検
討して、以下のような基本的な事実を知見した。 (i) パウダリング現象は、一般に被膜中に拡散し
たFe量の増大によつて顕著となる。しかも、
これはδ1相が残存するケースでは一般化され
る。 (ii) 合金化時の被めつき鋼板の温度(以下、単に
「材温」という)が影響しており、より低い材
温で合金化すとパウダリングが緩和される。 つまり、低い材温、即ちζ相が該形成できる
520℃以下の温度で過処理にならない程度にゆつ
くり合金化することが必要である。しかし、これ
を達成するためには、いたずらに長い合金化炉が
必要となつてくる。これでは、本発明の目的が達
成されない。 そこで、本発明者らは上述の知見内容をもとに
さらに検討をすすめた。確かに合金化炉の長さを
短縮するためには、基本的に合金化処理時の材温
を高温度側に保持する必要があるが、550℃以上
での合金化では、耐パウダリング性が著しく劣化
する。したがつて、本発明者等は、この550℃以
上の合金化処理条件を、合金化時の1過程とし
て、合金化プロセスの中に組入れることを検討し
た結果、合金化加熱の初期に、550℃以上の材温
に保持しても、パウダリング特性の劣化は生じ
ず、合金化処理時間の短縮効果を認めた。そして
更に検討を加えたところ、この初期高温加熱で合
金化を表面迄完了してしまうと、後の加熱でパウ
ダリング性の改善がかなり困難であることが分か
つた。 したがつて、以上を総合して、550℃以上の初
期加熱で合金化を開始し、表面迄合金化が完了す
る以前に鋼板を急冷し、最終的な合金化処理を
450〜530℃で行うことにより前述の本発明の目的
が効果的に達成されることを知り、本発明を完成
した。 よつて、本発明の要旨とするところは、Znめ
つき層中にAlを有する溶融亜鉛めつき鋼板をめ
つき後、熱処理することよりなる合金化溶融亜鉛
めつき鋼板の製造方法において、鋼板を溶融亜鉛
めつき浴を通過させた後、30℃/S以上の加熱速
度で550〜700℃に急速加熱し、めつき層表面に液
相が残存する状態から530℃以下に30℃/S以上
で急冷し、更に450〜530℃の温度範囲に、保持す
ることを特徴とする、合金化溶融亜鉛めつき鋼板
の製造方法である。 前記の550〜700℃への急速加熱は高周波誘導加
熱により行つてもよく、および/または前記溶融
亜鉛めつき浴を通過後、および/または前記溶融
亜鉛めつき浴を通過後、急速加熱後の急冷開始ま
での時間を10秒以内とすることもよい。特に高周
波誘導加熱の投入周波数を適宜選定することによ
り鋼板表面とめつき層との界面をのみ急速に強加
熱することができるため本発明の目的にとつては
好ましい。また、上述のような530℃以下の温度
範囲へ急冷した後にその温度に保持することによ
り行う低温合金化処理は3〜120秒行うのが好ま
しい。 なお、「めつき層表面に液相が残存する」とは
めつき層内部に相互拡散によりFe−Zn合金層が
形成されるが、まだ表面にまでFeが拡散してき
ていない状態を言い、一般にそのときはめつき層
表面はまだ金属光沢を有している。本発明の規定
する条件下では加熱開始より10秒以内であればそ
のような状態は十分確保されている。 (作用) 次に、本発明においてめつき層組織および合金
化処理条件を上述のように限定した理由を説明す
る。 Znめつき層中のAlの濃度は常法によるもので
ある。一般には0.05%以上含有される。本発明は
合金化の促進ができるので好ましくは0.35wt%を
上限とした。 本発明における初期加熱は可及的に急速に行
う。加速速度が30℃/S未満であれば、最高到達
温度に達する迄の材料が高温下にある時間が長く
なり、耐パウダリング性の劣化を生じると同時
に、炉長が冗長化する。望ましくは50℃/S以上
であり、このような急速加熱を実現する為に誘導
加熱を用いることも望ましい。 かかる初期加熱における到達材温は550℃以上
であつて700℃以下である。550℃未満では合金化
促進に効果が小さいので、本発明の目的に合致せ
ず700℃超では、めつき層のZnの酸化が著しくな
り、表面の特性が劣化する。望ましくは580℃〜
680℃である。必要によりこの加熱において、Zn
めつき層表面が液相であるままで均熱時間を与え
てもよい。しかし、通常、その時間は高々5秒で
ある。一般に、溶融亜鉛めつき浴通過後、初期加
熱終了迄の時間を10秒以下とすることが望まし
い。これより長時間になるとZnめつき層表面を
液相に保持するのが困難になり、耐パウダリング
性が十分確保できない。この初期加熱終了後のめ
つき層中の平均Fe濃度は4〜8重量%である。 次にこのめつき鋼板を530℃以下の温度へ30
℃/S以上の速度で急冷する。30℃/Sより遅い
速度での冷却では、高温に晒される時間が長くな
り、耐パウダリング性が低下する。 本発明においては、合金化処理の最終段階をこ
の急冷後の低温合金化処理で行うのであるが、こ
の合金化温度はインラインで合金化できる程度に
可及的に低い方が良い。しかし、450℃より低い
と合金化速度が遅すぎ、530℃超では、耐パウダ
リング性が劣化するので、この合金処理は450〜
530℃、好ましくは480〜520℃に保持して行う。
温度の低い場合は、ターンロールを通過してか
ら、更に合金化炉が必要であつて、めつき鋼板と
ターンロールの接触によるメタルのピツクアツプ
の問題を生じる。したがつて、通板速度にもよる
が、この450〜530℃での保熱による低温合金化処
理は、3〜120秒で終了することが望ましい。3
秒未満では十分に合金化が行われず、一方120秒
を超えて保持してもそれ以上の合金化は起こら
ず、経済性も低下する。 なお、この最終段階での加熱後の冷却は400℃
まで、可及的に急冷することがパウダリング抑制
のためには好ましい。 以下、本発明を、実施冷に基づき更に詳細に説
明する。 なお、以下の各実施例にあつては、ゼンジマー
方式で連続的に製造された、厚さ0.6mmの片面86
g/m2のZn付着量を有する亜鉛めつき鋼板を供
試材とした。このときの鋼板組成はC:0.035%、
Si<0.01%、Mn:0.22%、P:0.01%、S:
0.009%、sol.Al:0.024%であり、Znめつき層中
の有効Al濃度は0.135%であつた。 実施例 1 本例では上記鋼板を、溶融亜鉛めつき後、第1
表に示す各条件で東洋電熱工業(株)製の商品名
MS5Aのアルカリ金属溶融塩を用いて熱処理し
た。鋼板の昇温速度は150〜250℃/Sであつた。
熱処理温度が1つの条件だけの場合は、所定時間
均熱し、その後水冷、2つの条件の組合せの場合
は、最初の溶融塩浴から、次の二次加熱条件の温
度に保持された溶融塩浴へ、即ち、溶融塩中へク
エンチした。このときの冷却速度は75〜130℃/
Sであつた。第2溶融塩浴からの冷却は水冷とし
た。 このようにして合金化処理の終了した試料は直
径60mm円板状に打抜き、直径25mmの平底、34mmの
張出高さになる条件で、試料が直接金型と摺動す
る状況で円筒絞りを行つた。円筒絞り後摺動部を
テーピング剥離し、試験前後の重量変化がパウダ
リング量を評価した。 その結果を第1図および第2図にグラフにまと
めて示した。図中、数字は第1表の実験No.であ
る。 第1図に示すように本発明方法によれば、実験
No.4、5に示すように、ほぼ500℃の等温処理
(実験No.1参照)に匹敵する性能を有するが、最
終工程の合金化処理温度の高い実験No.6、7の場
合は各々、550℃、600℃の等温処理に近い耐パウ
ダリング性を示しており、性能が著しく劣る。第
2図は、同じく合金化時間とパウダリングの関係
を示すグラフであり、第1表中の実験No.6、7は
性能が、各々同No.2、3と比べて大差がないの
で、除外した。この図で、各々の条件の最少の合
金化処理時間は、これ未満の合金化処理時間で合
金化が終了しない下限時間である。例えば、図中
点線で示すように、15秒以内にパウダリング量
0.02g/個未満のGA鋼板は、本発明方法(実験
No.4、5参照)によつてのみ製造可能なことが分
かる。
[Industrial Field of Application] The present invention relates to a method for producing an alloyed hot-dip galvanized steel sheet, and more specifically, a method for manufacturing an alloyed hot-dip galvanized steel sheet, and more specifically, a method for manufacturing an alloyed hot-dip galvanized steel sheet, in particular, a method for manufacturing an alloyed hot-dip galvanized steel sheet (hereinafter referred to as " GA steel sheet). (Prior Art) GA steel sheets are generally manufactured by continuously heat-treating hot-dip galvanized steel sheets immediately after plating. Usually, due to interdiffusion of Fe-Zn during heat treatment, the plating layer contains 8.5 to 13% Fe,
It is composed of a layered structure of intermetallic compounds. The material obtained in this way has better paintability and weldability than general galvanized steel sheets, but since the plating layer has no plastic deformability at all, it is prone to peeling of the plating layer called powdering during press processing. . Various attempts have been made to overcome the powdering phenomenon of GA steel sheets. One example is the one described in Japanese Patent Publication No. 49-4134, where the surface is η+ζ
However, this type of product has poor paintability and weldability because the η phase remains. Generally, in order to satisfy weldability and paintability, most of the surface layer of the coating layer needs to be δ 1 phase. Another idea for improving powdering resistance is to consider the heat pattern during alloying. For example, in Japanese Patent Publication No. 59-14541, alloying heat treatment is divided into primary heating and secondary heating;
It is proposed that the subsequent heating be performed offline.
However, although this offline method has the effect of improving powdering resistance to some extent, there is no need to mention its disadvantages again, except for the effect of post-annealing. Furthermore, in JP-A No. 59-173255, the temperature is 520℃ after plating.
It is proposed below to hold the alloy for 6 seconds or more, but as there is no regulation on the final temperature, etc., such processing conditions cannot be said to be sufficient conditions, and therefore, the powdering resistance is poor. It is conceivable that a considerable number of such problems will occur, and that this will only unnecessarily increase the length of the reactor. (Problems to be Solved by the Invention) Thus, it is an object of the present invention to provide a method that eliminates the drawbacks of these conventional methods. Another object of the present invention is to provide a method for manufacturing a GA steel sheet that suppresses powdering with a relatively short alloying treatment time. (Means for Solving the Problems) In order to achieve the above object, the present inventors conducted extensive studies and discovered the following basic facts. (i) The powdering phenomenon generally becomes noticeable as the amount of Fe diffused into the coating increases. Moreover,
This is generalized in cases where the δ 1 phase remains. (ii) The temperature of the coated steel sheet during alloying (hereinafter simply referred to as "material temperature") has an effect, and powdering is alleviated when alloying is performed at a lower material temperature. In other words, the material temperature is low, that is, the ζ phase can be formed.
It is necessary to slowly alloy the alloy at a temperature of 520°C or lower without causing overtreatment. However, in order to achieve this, an unnecessarily long alloying furnace is required. In this case, the purpose of the present invention is not achieved. Therefore, the present inventors conducted further studies based on the above-mentioned findings. It is true that in order to shorten the length of the alloying furnace, it is basically necessary to maintain the material temperature during alloying treatment on the high temperature side, but alloying at temperatures above 550°C requires powdering resistance. deteriorates significantly. Therefore, the present inventors considered incorporating the alloying treatment condition of 550°C or higher into the alloying process as one step during alloying, and found that the 550°C or higher temperature Even when the material temperature was maintained at ℃ or higher, no deterioration of powdering properties occurred, and the effect of shortening the alloying treatment time was observed. Further investigation revealed that if alloying is completed to the surface during this initial high-temperature heating, it is quite difficult to improve powdering properties during subsequent heating. Therefore, taking all the above into account, alloying is started with initial heating above 550℃, and the steel plate is rapidly cooled before alloying is completed to the surface, and the final alloying treatment is carried out.
The present invention was completed based on the knowledge that the above-mentioned object of the present invention can be effectively achieved by carrying out the process at 450 to 530°C. Therefore, the gist of the present invention is to provide a method for producing an alloyed hot-dip galvanized steel sheet, which comprises plating a hot-dip galvanized steel sheet having Al in the Zn-plated layer and then heat-treating the steel sheet. After passing through a hot-dip galvanizing bath, it is rapidly heated to 550 to 700°C at a heating rate of 30°C/S or more, and from a state where a liquid phase remains on the surface of the galvanized layer to 530°C or less, it is heated at a heating rate of 30°C/S or more. This is a method for producing an alloyed hot-dip galvanized steel sheet, which is characterized by rapidly cooling the steel sheet at a temperature of 450 to 530° C. Said rapid heating to 550-700°C may be carried out by high frequency induction heating, and/or after passing through said hot dip galvanizing bath, and/or after passing through said hot dip galvanizing bath, after rapid heating. It is also possible to set the time until the start of rapid cooling to within 10 seconds. In particular, by appropriately selecting the application frequency of high-frequency induction heating, only the interface between the surface of the steel sheet and the plating layer can be rapidly and intensely heated, which is preferable for the purpose of the present invention. Further, the low-temperature alloying treatment performed by rapidly cooling to a temperature range of 530° C. or less and then holding at that temperature is preferably performed for 3 to 120 seconds. Note that "liquid phase remains on the surface of the plating layer" refers to a state in which an Fe-Zn alloy layer is formed by mutual diffusion inside the plating layer, but Fe has not yet diffused to the surface, and generally The surface of the plating layer still has a metallic luster. Under the conditions specified by the present invention, such a state is sufficiently ensured within 10 seconds from the start of heating. (Function) Next, the reason why the plating layer structure and alloying treatment conditions are limited as described above in the present invention will be explained. The concentration of Al in the Zn plating layer was determined by a conventional method. It is generally contained at 0.05% or more. Since the present invention can promote alloying, the upper limit is preferably 0.35 wt%. Initial heating in the present invention is performed as rapidly as possible. If the acceleration rate is less than 30° C./S, the time the material remains at high temperature until the maximum temperature is reached will be longer, resulting in deterioration of powdering resistance and at the same time making the furnace length redundant. The temperature is preferably 50° C./S or higher, and it is also desirable to use induction heating to achieve such rapid heating. The material temperature reached during such initial heating is 550°C or higher and 700°C or lower. If the temperature is lower than 550°C, the effect of promoting alloying will be small, and the object of the present invention will not be met. If the temperature is higher than 700°C, the oxidation of Zn in the plating layer will become significant and the surface properties will deteriorate. Preferably 580℃~
The temperature is 680℃. If necessary, Zn
A soaking time may be given while the surface of the plating layer remains in a liquid phase. However, typically the time is no more than 5 seconds. Generally, it is desirable that the time from passing through the hot-dip galvanizing bath to the end of initial heating be 10 seconds or less. If the time is longer than this, it becomes difficult to maintain the surface of the Zn plating layer in a liquid phase, and sufficient powdering resistance cannot be ensured. The average Fe concentration in the plating layer after this initial heating is 4 to 8% by weight. Next, this plated steel plate is heated to a temperature of 530℃ or less for 30 minutes.
Rapid cooling at a rate of ℃/S or higher. Cooling at a rate slower than 30° C./S increases the time of exposure to high temperatures and reduces powdering resistance. In the present invention, the final stage of alloying treatment is performed by low-temperature alloying treatment after this rapid cooling, and it is preferable that this alloying temperature is as low as possible to the extent that alloying can be performed in-line. However, if the alloying rate is lower than 450℃, the alloying rate is too slow, and if it exceeds 530℃, the powdering resistance deteriorates.
The temperature is maintained at 530°C, preferably 480-520°C.
If the temperature is low, an alloying furnace is required after passing through the turn rolls, which causes the problem of metal pick-up due to contact between the plated steel plate and the turn rolls. Therefore, it is desirable that this low-temperature alloying treatment by heat retention at 450 to 530°C be completed in 3 to 120 seconds, although it depends on the sheet passing speed. 3
If it is held for less than 120 seconds, sufficient alloying will not occur, and on the other hand, if it is held for more than 120 seconds, no further alloying will occur and the economical efficiency will also decrease. In addition, cooling after heating at this final stage is 400℃.
In order to suppress powdering, it is preferable to cool down as rapidly as possible. Hereinafter, the present invention will be explained in more detail based on actual cooling. In addition, in each of the following examples, a single-sided 86 mm film with a thickness of 0.6 mm was manufactured continuously using the Sendzimer method.
A galvanized steel sheet with a Zn coating amount of g/m 2 was used as the test material. The steel plate composition at this time was C: 0.035%,
Si<0.01%, Mn: 0.22%, P: 0.01%, S:
0.009%, sol.Al: 0.024%, and the effective Al concentration in the Zn plating layer was 0.135%. Example 1 In this example, the above steel plate was subjected to the first
Product name manufactured by Toyo Dentsu Kogyo Co., Ltd. under each condition shown in the table.
Heat treatment was performed using an alkali metal molten salt of MS5A. The temperature increase rate of the steel plate was 150 to 250°C/S.
When the heat treatment temperature is only one condition, it is soaked for a predetermined time and then cooled with water, and when the two conditions are combined, the molten salt bath is maintained at the temperature of the next secondary heating condition from the first molten salt bath. quenched into the molten salt. The cooling rate at this time is 75 to 130℃/
It was S. Cooling from the second molten salt bath was water cooling. The sample that has been alloyed in this way is punched into a disk shape with a diameter of 60 mm, and a cylindrical drawing is performed under the conditions that the sample slides directly against the mold, with a flat bottom diameter of 25 mm and an overhang height of 34 mm. I went. After drawing the cylinder, the sliding part was taped and peeled off, and the amount of powdering was evaluated by the change in weight before and after the test. The results are summarized in graphs in FIGS. 1 and 2. In the figure, the numbers are the experiment numbers in Table 1. As shown in FIG. 1, according to the method of the present invention, the experiment
As shown in Nos. 4 and 5, the performance is comparable to that of isothermal treatment at approximately 500℃ (see Experiment No. 1), but in the case of Experiments No. 6 and 7, where the final process alloying temperature is high, , the powdering resistance is close to that of isothermal treatment at 550℃ and 600℃, and the performance is significantly inferior. Figure 2 is a graph showing the relationship between alloying time and powdering, and the performance of Experiment Nos. 6 and 7 in Table 1 is not significantly different from that of Experiments Nos. 2 and 3, respectively. Excluded. In this figure, the minimum alloying treatment time for each condition is the lower limit time at which alloying will not be completed within an alloying treatment time shorter than this. For example, as shown by the dotted line in the figure, the amount of powdering increases within 15 seconds.
GA steel sheets with a weight of less than 0.02g/piece are manufactured using the method of the present invention (experimental
(See Nos. 4 and 5).

【表】 実施例 2 実施例1と同様の供試料を用いて、赤外線プロ
グラマブルヒーターで第3図に示す各ヒートパタ
ーンのGA鋼板の試験供試材を作成した。これ
は、実用的な炉長を考慮して、450℃で1秒保持
の後、加熱開始から、最終的な冷却開始迄を16秒
で完了するように計画してある。第3図に示した
各ヒートパターンのうち〔ア〕〜〔ウ〕は、本発
明の範囲に属するものであり、〔エ〕〜〔キ〕は、
比較例として加えたものである。これらのヒート
パターンによつて得られた試験材の概要を第2表
にまとめて示す。 これらの結果のごとく、本発明例は、いずれの
場合も合金化処理も16秒で完了しており、かつ、
パウダリング量も少ないのに対し、比較例は、パ
ウダリング量が多いか、あるいは、16秒の条件で
は、処理不足になつている。 なお、合金化状況はめつき皮膜中のX線回折に
よりη相が検出されないか、検出されるかによつ
て判断した。
[Table] Example 2 Using the same sample as in Example 1, test samples of GA steel plates with each heat pattern shown in FIG. 3 were prepared using an infrared programmable heater. Taking into consideration the practical length of the furnace, it is planned that after holding the temperature at 450°C for 1 second, the process from the start of heating to the final start of cooling will be completed in 16 seconds. Among the heat patterns shown in FIG. 3, [A] to [C] belong to the scope of the present invention, and [D] to [G] are
This was added as a comparative example. Table 2 summarizes the test materials obtained using these heat patterns. As shown in these results, in all cases of the present invention, the alloying process was completed in 16 seconds, and
The amount of powdering was also small, whereas in the comparative example, the amount of powdering was large, or the processing was insufficient under the 16 second condition. The alloying status was determined based on whether the η phase was detected or not detected by X-ray diffraction in the plating film.

【表】【table】

【表】 (発明の効果) このように、本発明は、GA鋼板の高速、つま
り短時間熱処理方法として優れており、特に比較
的付着量の大きい素材や、Zn中のAl濃度の高い
場合に優れた効果を示すもので、今日のように、
Al濃度の高い合金化溶融亜鉛めつきが望まれて
いる状況下において生産性を高める手段として本
発明の意義は大きい。
[Table] (Effects of the invention) As described above, the present invention is excellent as a high-speed, short-time heat treatment method for GA steel sheets, and is particularly suitable for materials with a relatively large amount of adhesion or when the Al concentration in Zn is high. It shows excellent effects, and as it is today,
The present invention has great significance as a means of increasing productivity in a situation where alloyed hot-dip galvanizing with a high Al concentration is desired.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、実施例1の試験結果は
示すグラフ;および第3図は、各種合金化処理熱
処理のヒートパターンを示す線図である。
1 and 2 are graphs showing the test results of Example 1; and FIG. 3 is a diagram showing the heat patterns of various alloying heat treatments.

Claims (1)

【特許請求の範囲】 1 Znめつき層中にAlを有する溶融亜鉛めつき
鋼板をめつき後、熱処理することよりなる合金化
溶融亜鉛めつき鋼板の製造方法において、鋼板を
溶融亜鉛めつき浴を通過させた後、30℃/S以上
の加熱速度で550〜700℃に急速加熱し、めつき層
表面に液相が残存する状態から530℃以下に30
℃/S以上で急冷し、更に450〜530℃の温度範囲
に保持することを特徴とする、合金化溶融亜鉛め
つき鋼板の製造方法。 2 前記の550〜700℃への急速加熱を高周波誘導
加熱により行う、特許請求の範囲第1項記載の方
法。 3 前記溶融亜鉛めつき浴を通過後、急速加熱後
の急冷開始までの時間を10秒以内とするところの
特許請求の範囲第1項または第2項記載の方法。 4 530℃以下への急冷後の保持時間が3〜120秒
である、特許請求の範囲第1項ないし第3項のい
ずれかに記載の方法。
[Claims] 1. A method for producing an alloyed hot-dip galvanized steel sheet, which comprises plating and heat-treating a hot-dip galvanized steel sheet having Al in the Zn-plated layer, wherein the steel sheet is heated in a hot-dip galvanizing bath. After passing through, it is rapidly heated to 550 to 700℃ at a heating rate of 30℃/s or more, and the temperature is reduced to 530℃ or less with a liquid phase remaining on the surface of the plating layer.
A method for producing an alloyed hot-dip galvanized steel sheet, characterized by rapidly cooling at a temperature of ℃/S or higher and further maintaining the temperature in a temperature range of 450 to 530℃. 2. The method according to claim 1, wherein the rapid heating to 550 to 700°C is performed by high-frequency induction heating. 3. The method according to claim 1 or 2, wherein the time from passing through the hot-dip galvanizing bath to the start of rapid cooling after rapid heating is within 10 seconds. 4. The method according to any one of claims 1 to 3, wherein the holding time after rapid cooling to 530°C or less is 3 to 120 seconds.
JP6416285A 1985-03-28 1985-03-28 Production of zinc alloyed and hot dipped steel sheet Granted JPS61223174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6416285A JPS61223174A (en) 1985-03-28 1985-03-28 Production of zinc alloyed and hot dipped steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6416285A JPS61223174A (en) 1985-03-28 1985-03-28 Production of zinc alloyed and hot dipped steel sheet

Publications (2)

Publication Number Publication Date
JPS61223174A JPS61223174A (en) 1986-10-03
JPH0515779B2 true JPH0515779B2 (en) 1993-03-02

Family

ID=13250093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6416285A Granted JPS61223174A (en) 1985-03-28 1985-03-28 Production of zinc alloyed and hot dipped steel sheet

Country Status (1)

Country Link
JP (1) JPS61223174A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2471768A1 (en) 2010-12-29 2012-07-04 Vysoká skola chemicko-technologická v Praze A method for the catalytic reduction of nitrobenzene to aniline in the liquid phase

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279738A (en) * 1988-04-30 1989-11-10 Nippon Steel Corp Production of alloying hot dip galvanized steel sheet
JPH0639680B2 (en) * 1989-01-20 1994-05-25 住友金属工業株式会社 Galvanneale steel sheet excellent in workability, its manufacturing method and apparatus
JP2512147B2 (en) * 1989-05-24 1996-07-03 日本鋼管株式会社 Method for producing galvannealed steel sheet with excellent powdering resistance
JP2512148B2 (en) * 1989-05-24 1996-07-03 日本鋼管株式会社 Method for producing galvannealed steel sheet with excellent powdering resistance
US5049453A (en) * 1990-02-22 1991-09-17 Nippon Steel Corporation Galvannealed steel sheet with distinguished anti-powdering and anti-flaking properties and process for producing the same
JPH04341550A (en) * 1990-12-14 1992-11-27 Nippon Steel Corp Production of galvannealed steel sheet
BE1007793A6 (en) * 1993-12-24 1995-10-24 Centre Rech Metallurgique Method and installation for continuous strip steel galvanized.
FR2726578B1 (en) * 1994-11-04 1996-11-29 Lorraine Laminage PROCESS FOR THE TEMPER COATING OF A STEEL SHEET WITH A METAL LAYER BASED ON ALUMINUM OR ZINC
FR2768157B1 (en) * 1997-09-09 2001-05-11 Lorraine Laminage ALLOYED GALVANIZED STEEL SHEET, METHODS AND PLANT FOR MANUFACTURING SUCH SHEET
NL1022263C2 (en) * 2002-12-24 2004-08-10 Konink Bammens B V Method for improving zinc layers.
JP2012036463A (en) * 2010-08-09 2012-02-23 Sumitomo Metal Ind Ltd Zn-Al-Mg-BASED PLATED HEAT-TREATED STEEL MATERIAL, AND METHOD FOR MANUFACTURING THE SAME

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2471768A1 (en) 2010-12-29 2012-07-04 Vysoká skola chemicko-technologická v Praze A method for the catalytic reduction of nitrobenzene to aniline in the liquid phase

Also Published As

Publication number Publication date
JPS61223174A (en) 1986-10-03

Similar Documents

Publication Publication Date Title
JPH0515779B2 (en)
JP2526320B2 (en) Method for producing high-strength galvannealed steel sheet
JPH0581662B2 (en)
CN108642425B (en) Al-Si-Ti alloy coated steel plate for hot stamping and production method thereof
US5409553A (en) Process for manufacturing galvannealed steel sheets having high press-formability and anti-powdering property
JPH0355542B2 (en)
JPH0238549A (en) Manufacture of alloyed hot-dip galvanized steel sheet
JPH03226550A (en) Manufacture of hot-dipped zinc coating or hot-dipped zinc alloy coating steel sheet having high sliding resistance
JPS6240352A (en) Production of alloyed zinc plated steel sheet
JPH0797670A (en) Galvanizing method for silicon-containing steel sheet
JPH08170160A (en) Production of silicon-containing high tensile strength hot dip galvanized or galvannealed steel sheet
JPH02254145A (en) Production of hot dip metal coated steel sheet
JPS59173255A (en) Preparation of alloying molten zinc plated steel plate
JPS5834168A (en) Treatment for fe-zn alloying of zinc hot dipped steel plate
JPH042759A (en) Production of galvannealed steel sheet and hot-dip galvanizing bath
JPS5842279B2 (en) Manufacturing method for tinplate with different thickness alloy metal
JPH0515780B2 (en)
JPS6240353A (en) Production of alloyed zinc plated steel sheet
JPH07243012A (en) Production of galvannealed steel sheet excellent in external appearance of surface
JP2701737B2 (en) Manufacturing method of alloyed hot-dip galvanized steel sheet
JP2512148B2 (en) Method for producing galvannealed steel sheet with excellent powdering resistance
JPH046258A (en) Galvannealed steel sheet excellent in workability and its production
JPH04346647A (en) Production of hot rolled galvanized steel sheet and galvannealed steel sheet
JPH0641708A (en) Hot dip galvanizing method for silicon-containing steel sheet
JPH01272752A (en) Production of alloyed hot dip galvanized steel sheet having superior powdering resistance

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term