JPH046258A - Galvannealed steel sheet excellent in workability and its production - Google Patents

Galvannealed steel sheet excellent in workability and its production

Info

Publication number
JPH046258A
JPH046258A JP10953390A JP10953390A JPH046258A JP H046258 A JPH046258 A JP H046258A JP 10953390 A JP10953390 A JP 10953390A JP 10953390 A JP10953390 A JP 10953390A JP H046258 A JPH046258 A JP H046258A
Authority
JP
Japan
Prior art keywords
steel sheet
hot
alloy layer
phase
dip galvanizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10953390A
Other languages
Japanese (ja)
Other versions
JPH0713285B2 (en
Inventor
Motoo Kabeya
壁屋 元生
Taketoshi Taira
平 武敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2109533A priority Critical patent/JPH0713285B2/en
Publication of JPH046258A publication Critical patent/JPH046258A/en
Publication of JPH0713285B2 publication Critical patent/JPH0713285B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce a galvannealed steel sheet excellent in workability by specifying Si content in a steel sheet, gas heating reduction sheet temp. in a plating stage, and the components of the plating bath, respectively, at the time of applying hot-dip galvanizing to a low carbon steel sheet and subjecting this steel sheet to diffusion treatment by heating. CONSTITUTION:At the time of producing a galvannealed steel sheet by applying hot-dip galvanizing to a low carbon steel sheet and subjecting this steel sheet to diffusion treatment by heating, Si content in the low carbon steel sheet is regulated to 0.05-1.0% by weight. Moreover, gas heating reduction sheet temp. in a hot-dip galvanizing stage is regulated to 500-900 deg.C, and further, the plating bath has a composition which contains, by weight, 0.01-0.15% Al and 0.05-0.5% Sb and in which 0.01-0.2% Mg, 0.01-0.05% Ti, and 0.001-0.01% B are added, if necessary, and the total content of inevitable impurities, such as Pb, is regulat ed to <0.02%. By this method, the galvannealed steel sheet in which powdering and flaking are prevented and which has high toughness and superior workability can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は亜鉛めっき後加熱拡散処理によって該めっき層
をFe−Zn系合金層にした溶融合金化亜鉛めっぎ鋼板
およびその製造方法に関するものである。特に鋼板の鋼
中Siと溶融亜鉛めっき前の加熱条件を特定することに
より、生じる合金層形態の改頁によりパウダリングやフ
レーキングを防止した高靭性の加工性に優れた溶融合金
化亜鉛めっき鋼板として、市場提供できるものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a hot-fusion galvanized steel sheet in which the plating layer is made into an Fe-Zn alloy layer by heat diffusion treatment after galvanizing, and a method for manufacturing the same. It is. In particular, by specifying the Si in the steel of the steel sheet and the heating conditions before hot-dip galvanizing, we have created a hot-alloyed galvanized steel sheet with high toughness and excellent workability that prevents powdering and flaking by changing the form of the alloy layer. It can be offered to the market as such.

[従来の技術] 溶融合金化亜鉛めっき鋼板(以下、単に合金化豆板とい
う。)は、その適宜な犠牲陽極作用と素地の凹凸からく
る優れた投猫効果から家電や自動車等の塗装下地用防錆
鋼板として現在多用されている表面処理鋼板の一つであ
る。
[Prior art] Melt-alloyed galvanized steel sheets (hereinafter simply referred to as alloyed steel sheets) are used as a base coating for home appliances, automobiles, etc. due to their appropriate sacrificial anode action and excellent casting effect due to the unevenness of the base material. This is one of the surface-treated steel sheets that is currently widely used as a rust-resistant steel sheet.

一方、この合金化豆板の鋼種も、近年、自動車の車体軽
量化を目的として鋼板の高強度化が指向されつつある。
On the other hand, in recent years, there has been a trend toward higher strength steel sheets for the purpose of reducing the weight of automobile bodies in the steel type of this alloyed mini-plate.

この高強度鋼板を基板とした合金化豆板およびその製造
方法も最近は研究が進み、一部市場対応しているところ
も見受けられる。
Research has recently progressed into alloyed miniature plates using this high-strength steel plate as a substrate, and methods for manufacturing the same, and some are now being marketed.

特に、合金化豆板に対する表面特性としては、耐食性、
加工性、溶接性、塗装性などがあるが、このうち最も市
場要求の高い特性の一つに加工によるめっき層の剥離(
フレーキングパウダリング)がある。この改善にあたっ
て、鋼種、めっき前処理、溶融めっき条件、合金化加熱
条件等の適正化が、現在盛んに研究開発されようとして
いる。
In particular, the surface properties of alloyed slabs include corrosion resistance,
There are processability, weldability, paintability, etc., but one of the properties with the highest market demand is peeling of the plating layer due to processing (
flaking powdering). In order to improve this, active research and development is currently underway to optimize the steel type, plating pretreatment, hot-dip plating conditions, alloying heating conditions, etc.

この中で、高強度鋼板を基板とした溶融亜鉛めっき鋼板
又はその製造方法の現状として、数は少ないが、以下の
ような発明が提案されている。
Among these, the following inventions have been proposed, although the number is small, as the current status of hot-dip galvanized steel sheets using high-strength steel sheets as substrates and methods of manufacturing the same.

Siキルド鋼板のZnめっき密層性をゼンジマー式溶融
めっきで製造する方法としては特公昭52−44739
号、高Mn鋼のスラブから特定する熱延、焼鈍条件を付
与し、基板の組織をフェライト組織と低温変態相の複合
組織にすることにより加工性に優れた高張力熱延鋼板の
溶融亜鉛めっき製造方法として特開昭56−13459
号および特開昭80−33318号が提案されている。
A method for producing dense Zn plating on Si-killed steel sheets using Sendzimer hot-dip plating is disclosed in Japanese Patent Publication No. 52-44739.
Hot-dip galvanizing of high-strength hot-rolled steel sheets with excellent workability by applying specific hot-rolling and annealing conditions to high-Mn steel slabs and making the substrate structure a composite structure of ferrite structure and low-temperature transformation phase. As a manufacturing method, JP-A-56-13459
No. 80-33318 and JP-A-80-33318 have been proposed.

又、高Mn−5i 914スラブより熱延−冷延するこ
とを特徴とした加工性に優れた高張力亜鉛めっき鋼板の
製造方法として特開昭56−13437号などが挙げら
れる。
Further, a method for manufacturing a high tensile strength galvanized steel sheet with excellent workability characterized by hot rolling and cold rolling from a high Mn-5i 914 slab is disclosed in JP-A-56-13437.

ところが、これらの方法は鋼板に対して溶融亜鉛めっき
を施す迄のプロセスに終止し、その後の合金化処理にま
では言及されていない。ところが、これらの方法では生
成する熱拡散合金層は、Fe拡散量に応じた総じて階層
状の合金層形態に終止し、このような合金層は、特に圧
縮加工を受けるとFe含有率の比較的高い固くて脆いr
相(地鉄に最も近い合金層)に応力集中を伴ないパウダ
リングやフレーキングとなってめっき剥離を起し易い欠
点がある。
However, these methods end with the process of hot-dip galvanizing the steel sheet, and do not mention the subsequent alloying treatment. However, in these methods, the heat diffusion alloy layer produced generally ends up in a hierarchical alloy layer morphology depending on the amount of Fe diffusion, and such an alloy layer has a relatively low Fe content especially when subjected to compression processing. high hard and brittle r
There is a drawback that the phase (alloy layer closest to the base metal) is prone to powdering and flaking due to stress concentration, resulting in peeling of the plating.

[発明が解決しようとするii!!!!!]以上述べた
従来技術の中では、所詮形成される合金層形態は素地鋼
板に比較的並行にFe拡散率が異なる各相のFe−Zn
拡散層は多層構造的に重なり合って形成される階層構造
でなり、このため加工応力の集中が起り、脆い合金層に
クラックが発生し、応力に耐え切れなくなった際に鉄素
地よりパウダー状に剥離し実用上問題がある。
[The invention tries to solve ii! ! ! ! ! ] In the conventional technology described above, the form of the formed alloy layer is formed by forming Fe-Zn of each phase with different Fe diffusivity relatively parallel to the base steel plate.
The diffusion layer has a hierarchical structure formed by overlapping multiple layers, which causes concentration of processing stress, causing cracks to occur in the brittle alloy layer, and when it can no longer withstand the stress, it peels off from the iron base in a powder form. However, there are practical problems.

本発明では、このような従来技術が抱える合金層の加工
性向上に対し、階層構造でなる合金層の生成形態を応力
分散が可能なζ相が入り混ったδ、相主体の無方向性に
変化させることが必要と考え、種々の検討を行なった結
果、鋼板成分中の特に、Slを特定し、更には、溶融め
っき前の鋼板加熱板温を組み合せ工夫することによって
目的とする合金層の無方向性化を達成させることができ
る知見を得るに至り、本発明を提案するに至ったもので
ある。
In the present invention, in order to improve the workability of the alloy layer that conventional technology has, we have changed the formation form of the alloy layer with a hierarchical structure to δ mixed with ζ phase that can disperse stress, and non-directionality mainly composed of phases. As a result of various studies, we determined that it was necessary to change the steel sheet to The present invention has been proposed based on the discovery that it is possible to achieve non-direction.

[課題を解決するための手段] 本発明は上述した技術思想をもとに成り立ったもので、
その構成を以下に示すと 1tI4成分が重量%でSi:0.05〜1.0%でな
る低炭素鋼板の上層に溶融亜鉛めっき後の加熱拡散によ
って形成されるFe−Zn合金層が、相構造としてはζ
相と61相が混在したδf主体型であって、その61相
の生成が鋼板素地に対して不連続状態にある形態をとり
、且つこの合金層が5〜30Pm形成してなることを特
徴とする加工性に優れた溶融合金化亜鉛めつき鋼板。
[Means for solving the problem] The present invention is based on the above-mentioned technical idea,
Its composition is shown below. An Fe-Zn alloy layer formed by heat diffusion after hot-dip galvanizing is formed on the upper layer of a low carbon steel sheet consisting of 1tI4 component by weight% and Si: 0.05 to 1.0%. The structure is ζ
It is characterized by a δf-based type in which the 61 phase and 61 phase are mixed, the 61 phase is formed in a discontinuous state with respect to the steel sheet base, and the alloy layer is formed in a thickness of 5 to 30 Pm. Melt-alloyed galvanized steel sheet with excellent workability.

低炭素鋼板の鋼成分を重量%でC:0.05〜0.10
%、 Si:0.05〜1.0%、 Mn:0.40〜
0.60%、P・0.020%以下、 S:0.030
%以下、総Ai+0.010%以下としたことを特徴と
する請求項1記載の加工性に優れた溶融合金化亜鉛めっ
き鋼板。
Steel composition of low carbon steel plate in weight% C: 0.05 to 0.10
%, Si: 0.05~1.0%, Mn: 0.40~
0.60%, P・0.020% or less, S: 0.030
% or less, and the total Ai+0.010% or less.

3 低炭素鋼板に溶融亜鉛めっきを施して、該鋼板を加
熱拡散させて溶融合金化亜鉛めっき鋼板を製造する方法
において、低炭素鋼板のSi含有量を重量%で0.05
〜1.0%として、溶融亜鉛めフき工程でのガス加熱還
元板温を500〜900℃にして、めっき浴の成分を重
量%でA又:0.01〜0.15%、 Sb:0.05
〜0.5%。
3. In a method of manufacturing a hot-dip galvanized steel sheet by subjecting a low-carbon steel sheet to hot-dip galvanizing and heating and diffusing the steel sheet, the Si content of the low-carbon steel sheet is set to 0.05% by weight.
~1.0%, the temperature of the gas heating reduction plate in the hot-dip galvanizing process is 500 to 900°C, and the components of the plating bath are A or 0.01 to 0.15% by weight, Sb: 0.05
~0.5%.

必要に応じてMg+0.01〜0,2%、 Ti;0.
01〜0.05%、 B:0.001〜0.01%を添
加して且つpb等の不可避的不純総量が0.02%未満
であるめりき浴を用いてめっきを行うことを特徴とする
加工性に優れた溶融合金化亜鉛めっき鋼板の製造方法。
Mg+0.01-0.2%, Ti;0.
Plating is carried out using a plating bath to which B: 01 to 0.05% and B: 0.001 to 0.01% are added, and the total amount of unavoidable impurities such as PB is less than 0.02%. A method for producing hot-fusion galvanized steel sheets with excellent workability.

であり、その骨子はζ混在のδ1主体型であって、δ1
が不連続状に鋼板界面に生成させるようにした高靭性合
金層形成を促進させるためには(1) m板の鋼成分と
して、特にSiを特定し、かつ(2)溶融亜鉛めっき前
の鋼板加熱板温度を特定する必要のあることにある。
The essence is δ1-dominant type with ζ mixture, and δ1
In order to promote the formation of a high-toughness alloy layer that is discontinuously formed at the steel plate interface, (1) Si should be particularly specified as the steel component of the m-plate, and (2) the steel plate before hot-dip galvanizing should be The problem lies in the need to specify the heating plate temperature.

[作   用] ■ 鋼中Siについて 鋼中Siは本発明にあってFe−Zn合金層の生成或い
は成長過程で少なくとも地鉄界面δ、相及びその表面に
濃化偏析し、この51偏析帯がバリアーとなって61上
層のζ相へのFeの過剰拡散を抑制すると同時に加工応
力の分散し易いこと61の入り乱れ現象を助長促進させ
るためにあり、これが少なくとも従来技術に認められる
と固くて脆いr1相やr相といりたFe過剰拡散合金層
の生成を防ぐと同時にその階層状への成長をも抑制させ
るためにある。該Siの鋼板含有率として0,05重量
%未満にあっては、溶融亜鉛めっき洛中でのFe−Zn
界面反応において、鋼板の結晶粒内に優先して粒界から
のFe過剰拡散が生じ、これがその後の合金化処理にお
いて固くて脆いFe過剰合金層の成長を促し、ひいては
加工応力の集中化を招いてパウダリング性の良くない階
層合金層の生成を促進した第2図の合金層形態と化すた
め好ましくない。一方、該Si含有率が1.0重量%を
越えては溶融亜鉛めっき前の鋼板加熱過程において、鋼
板表面に生成するSi酸化物の形成とそ還元不足があっ
てこれが溶融亜鉛との濡れ性を低下し不めっきを生じか
つ、その後の合金化処理過程においても,SiによるF
e拡散抑制作用が強く、該めっき層の合金化処理完成す
るのに長時間を要し、余り実用的でない。従って、鋼中
Si含有率としては本発明にいう0.05〜0.1重量
%であって好ましくは0.05〜0.5重量%がよい。
[Function] ■ Regarding Si in steel In the present invention, Si in steel is concentrated and segregated at least at the base metal interface δ, phase and its surface during the formation or growth process of the Fe-Zn alloy layer, and this 51 segregation zone is It serves as a barrier to suppress excessive diffusion of Fe into the ζ phase in the upper layer of 61, and at the same time promotes the dispersion phenomenon of 61, which facilitates the dispersion of processing stress. This is to prevent the formation of Fe over-diffused alloy layers such as phase and r-phase, and at the same time to suppress the layered growth thereof. If the Si content in the steel sheet is less than 0.05% by weight, Fe-Zn during hot-dip galvanizing
In the interfacial reaction, excessive Fe diffusion occurs from the grain boundaries preferentially within the grains of the steel sheet, which promotes the growth of a hard and brittle Fe-excess alloy layer in the subsequent alloying process, which in turn leads to concentration of processing stress. This is not preferable because the alloy layer form shown in FIG. 2, which promotes the formation of a hierarchical alloy layer with poor powdering properties, is produced. On the other hand, if the Si content exceeds 1.0% by weight, during the heating process of the steel sheet before hot-dip galvanizing, Si oxides will be formed on the surface of the steel sheet and its reduction will be insufficient, resulting in poor wettability with hot-dip zinc. In addition, during the subsequent alloying process, F due to Si decreases, resulting in non-plating.
It has a strong e-diffusion suppressing effect and requires a long time to complete the alloying treatment of the plating layer, making it not very practical. Therefore, the Si content in the steel is preferably 0.05 to 0.1% by weight, preferably 0.05 to 0.5% by weight.

尚、この適正Si含有率にあって生じる合金層の生成形
態について更に詳述するならば、このめっき浴中反応に
おいて生成する初期合金層は素地面に対して少なくとも
成長方向性がやや無方向状態にはあるが総じて綾状に柱
状の61相が隠間を伴なって生成しその隠間を埋めるよ
うにしてζ相が生成する複雑な合金層となる。ところが
第2図に示すCMAによるSiの分布状況においてこの
61相には鋼中のSiが散在し、かつζ相との境界部に
このSi濃化層が認められる。
In addition, to explain in more detail the formation form of the alloy layer that occurs at this appropriate Si content, the initial alloy layer that is formed in this reaction in the plating bath has at least a slightly non-directional growth direction with respect to the base surface. However, in general, a twill-like columnar 61 phase is formed with hidden spaces, and a ζ phase is formed to fill the hidden spaces, resulting in a complex alloy layer. However, in the Si distribution situation determined by CMA shown in FIG. 2, Si in the steel is scattered in this 61 phase, and this Si-enriched layer is observed at the boundary with the ζ phase.

この合金層におけるSi濃化は、その後の合金化処理に
おいて、更にその傾向を強め、ζが減りδ1が更に支配
的となって肥大化するが、こと61の入り乱れた形態の
変化も更に複雑化する。特徴的なことは、この際初期合
金層において地鉄に接して少なくとも生成していたδ1
のζによる寸断現象が生じ、その寸断された部分にζが
生成するようになる。
This tendency of Si concentration in the alloy layer becomes even stronger in the subsequent alloying process, and ζ decreases and δ1 becomes more dominant, resulting in enlargement, but the disordered morphology of 61 also becomes more complex. do. What is characteristic is that at least the δ1 generated in the initial alloy layer in contact with the base metal
A fragmentation phenomenon occurs due to ζ, and ζ is generated in the fragmented part.

すなわち、鋼中Siは合金層の生成或いは成長過程で、
少なくともδ1に偏析し、このSi偏析帯がバリアーと
なって上層ζおよびηへのFe過剰拡散を抑制する作用
を有しこれが加工応力の分散し易いζおよびδ1の入り
乱れ現象を誘発又は助長し、これが少なくとも従来技術
に認めるr、やr相まで成長する通合金層を含む層状合
金層と形態を異にする大きな原因の一つと推定される。
In other words, Si in steel is formed during the formation or growth process of the alloy layer.
This Si segregation band acts as a barrier to suppress excessive Fe diffusion into the upper layers ζ and η, which induces or promotes the disordering phenomenon of ζ and δ1, which facilitates the dispersion of processing stress; This is presumed to be one of the major causes of the difference in morphology from at least the layered alloy layer containing the r-phase or the through-alloy layer that grows to the r-phase, which is recognized in the prior art.

■ 溶融めっき前の鋼板加熱板温について本発明にあっ
て該鋼板の加熱雰囲気は鋼板の溶融亜鉛めっき浴との均
−濡れ性とFe4n界面合金化反応の均一拡散性を向上
させるにあたり、鋼板表面の過剰酸化を抑制し、かつ表
面ガス還元による清浄化を図る上で無酸化性若しくは水
素還元性の混合ガス雰囲気が好ましく更には露点も一3
0℃以下にした方がよい。
■ Concerning the heating plate temperature of the steel plate before hot-dip galvanizing In the present invention, the heating atmosphere for the steel plate is designed to maintain the temperature of the steel plate surface in order to improve the uniform wettability of the steel plate with the hot-dip galvanizing bath and the uniform diffusivity of the Fe4n interfacial alloying reaction. A non-oxidizing or hydrogen-reducing mixed gas atmosphere is preferable in order to suppress excessive oxidation of the gas and to purify the surface by reducing the surface gas.
It is better to keep the temperature below 0℃.

このような加熱雰囲気において、該鋼板の溶融亜鉛めっ
き前最高加熱板温は鋼板表面に僅かに生成するFeの酸
化物やFe−C炭化物の脱炭還元反応を高生産性の点か
ら短時間で完了し、鋼板の表面清浄化を図るために必要
な条件である。
In such a heating atmosphere, the maximum heating plate temperature before hot-dip galvanizing the steel sheet is such that the decarburization and reduction reaction of Fe oxides and Fe-C carbides that are slightly generated on the surface of the steel sheet can be carried out in a short time from the viewpoint of high productivity. This is a necessary condition to complete the process and clean the surface of the steel plate.

最高加熱板温が500℃未満では雰囲気ガスによる鋼板
表面に析出する炭化物や酸化物の脱炭又は還元は十分で
なくその後の溶融亜鉛めっきにおいて不めっきを生じ、
合金化処理を施したとしでもその不めっきは欠陥として
残り、耐食性や塗装外観といった性能低下は避けられな
い。
If the maximum heating plate temperature is less than 500°C, the decarburization or reduction of carbides and oxides precipitated on the surface of the steel sheet by the atmospheric gas will not be sufficient, resulting in non-plating during subsequent hot-dip galvanizing.
Even if alloying treatment is performed, the unplated parts remain as defects, and deterioration in performance such as corrosion resistance and painted appearance is unavoidable.

一方、該板温か900℃を越えては合金化亜鉛めっき鋼
板としての材買強度の制御が難しくなり余り実用的でな
い。
On the other hand, if the sheet temperature exceeds 900° C., it becomes difficult to control the material strength of the alloyed galvanized steel sheet, which is not very practical.

従って、該鋼板のめっき前最高加熱板温としては 50
0〜900℃がよく、好ましくは650〜850℃がよ
い。
Therefore, the maximum heating plate temperature of the steel plate before plating is 50
The temperature is preferably 0 to 900°C, preferably 650 to 850°C.

■ 溶融亜鉛めっき浴の成分について 1)  AIL濃度 Aj2は鋼板の浴中反応において鋼板界面での過剰なF
e−Zn相互拡散反応をFe−An −Zn 3元合金
層のバリアー効果によって抑制させ、その後の合金化処
理過程で「相の生成を抑え、δ1主体の合金層形態に制
御するために不可欠な成分である。Allが0.01w
t%未満では上記した3元合金層バリアー効果はなく、
加工に脆い過合金が生成し易くなり好ましくない。
■ Regarding the components of the hot-dip galvanizing bath 1) AIL concentration Aj2 is the excess F at the steel plate interface during the reaction of the steel plate in the bath.
The e-Zn interdiffusion reaction is suppressed by the barrier effect of the Fe-An-Zn ternary alloy layer, and in the subsequent alloying process, it is necessary to suppress the formation of phases and control the morphology of the alloy layer mainly consisting of δ1. component.All is 0.01w
If it is less than t%, there is no barrier effect of the ternary alloy layer described above,
This is undesirable because overalloying, which is brittle during processing, is likely to be formed.

一方、Anが0.15wt%を越えては逆に3元合金層
のバリアー効果が過剰に発揮され、その後の合金化処理
過程で未合金化し易くなり、商品価値を損なう。
On the other hand, if the An content exceeds 0.15 wt%, the barrier effect of the ternary alloy layer will be excessively exhibited, and the alloy will be more likely to be unalloyed in the subsequent alloying process, impairing its commercial value.

従って浴中Auとしては001〜0.15wt%がよく
、好ましくは0.08〜0.13wt%がよい。
Therefore, the amount of Au in the bath is preferably 0.001 to 0.15 wt%, preferably 0.08 to 0.13 wt%.

2) Sb濃度 sbは浴中Anと共晶し、1−Sb化合物となって亜鉛
めっき層の地鉄界面や表層に偏析し鋼中Si同様に合金
化過程でのFe拡散をランダム化させ、少なくとも階層
状の合金層の生成を抑制するためにある。Sb 0.0
5wt%未満ではその作用が十分発揮されず、又Sb 
0.5wt%を越えては、めっき浴の粘性が増大し、安
定しためっき付着量制御が難しくなる。
2) The Sb concentration sb eutecticizes with An in the bath, becomes a 1-Sb compound, and segregates at the base metal interface and surface layer of the galvanized layer, randomizing Fe diffusion during the alloying process like Si in steel. This is to at least suppress the formation of hierarchical alloy layers. Sb 0.0
If it is less than 5wt%, its effect will not be fully exhibited, and if Sb
If it exceeds 0.5 wt%, the viscosity of the plating bath will increase, making it difficult to control the amount of plating deposited stably.

従ってsb濃度は0.05〜0.5 wt%がよいが好
ましくは0.1〜0.3 wt%がよい。
Therefore, the sb concentration is preferably 0.05 to 0.5 wt%, preferably 0.1 to 0.3 wt%.

3)  Mg濃度 Mgは合金化亜鉛めっき鋼板としての耐食性や塗装下地
処理としてのリン酸塩処理性を向上させるためにある。
3) Mg concentration Mg is provided to improve corrosion resistance as an alloyed galvanized steel sheet and phosphate treatability as a base treatment for painting.

Mg 0.01wt%未満ではその効果が十分発揮され
ず、又、Mg 0.2wt%を越えては溶融亜鉛めっき
浴面にMg酸化物が頻発し、カス引きドロスとして鋼板
に再付着し、外観上問題が生じ、実用性を損なう。
If the Mg content is less than 0.01wt%, the effect will not be fully exhibited, and if the Mg content exceeds 0.2wt%, Mg oxides will frequently appear on the hot-dip galvanizing bath surface and re-deposit on the steel plate as dross, resulting in poor appearance. This causes problems and impairs practicality.

従って、vg濃度は0.01〜0.2 wt%がよいが
、好ましくは0.05〜0.1 wt%がよい。
Therefore, the vg concentration is preferably 0.01 to 0.2 wt%, preferably 0.05 to 0.1 wt%.

4) Ti濃度 Tiは、合金化亜鉛めっき鋼板の耐食性向上のためにあ
る。Ti0.01wt%未満では高耐食性化は十分でな
く、又、Tiが0.05wt%を越えては塗装下地処理
としてのリン酸塩処理性が十分得られない。
4) Ti concentration Ti is intended to improve the corrosion resistance of the alloyed galvanized steel sheet. If the Ti content is less than 0.01 wt%, high corrosion resistance will not be achieved sufficiently, and if the Ti content exceeds 0.05 wt%, sufficient phosphate treatment properties as a coating base treatment will not be obtained.

従って、Ti濃度は0.01〜0.05wt%がよいが
、好ましくは0.O2N2.03wt%がよい。
Therefore, the Ti concentration is preferably 0.01 to 0.05 wt%, preferably 0.01 to 0.05 wt%. O2N is preferably 2.03 wt%.

5) B濃度 Bは合金化亜鉛めフき鋼板のめフき層の経時による疲労
脆化を防止するためにある。
5) B concentration B is provided to prevent fatigue embrittlement of the plating layer of the alloyed galvanized steel sheet over time.

Bが0.001 wt%未満ではその効果を十分発揮さ
せるに到らず、又、B 0.01wt%を越えては物理
的に該めっき浴中に十分固溶させることが難しくドロス
となって鋼板に再付着するため実用的でない。従って、
B濃度としては0.001〜0.01wt%かよいが、
好ましくは0.003〜0.008wt%がよい。
If B is less than 0.001 wt%, its effect cannot be fully exhibited, and if B exceeds 0.01 wt%, it is physically difficult to dissolve it sufficiently in the plating bath, resulting in dross. It is not practical because it re-adheres to the steel plate. Therefore,
The B concentration may be 0.001 to 0.01 wt%, but
Preferably it is 0.003 to 0.008 wt%.

6)不可避的不純物の総量 本発明にいう不可避的不純物とはPbをはじめCd、 
Snといっためっき層の基本成分であるZnと局部電池
を形成し、耐食性の低下を招くため、可能な限り、系外
に排除されるべき元素をいう。
6) Total amount of unavoidable impurities In the present invention, unavoidable impurities include Pb, Cd,
It is an element that should be excluded from the system as much as possible because it forms a local battery with Zn, which is a basic component of the plating layer, resulting in a decrease in corrosion resistance.

従って該不純物の総量は、0.02wt%末溝で好まし
くは0.01wt%以下が好ましい。
Therefore, the total amount of impurities is preferably 0.02 wt%, preferably 0.01 wt% or less.

■ 溶融合金化亜鉛めっき鋼板のめっき厚について 該めっき厚みは基本的に溶融合金化亜鉛めっき鋼板とし
ての耐食性を支配する因子である。
(2) Regarding the plating thickness of the hot-melt galvanized steel sheet, the plating thickness is basically a factor that controls the corrosion resistance of the hot-melt galvanized steel sheet.

該めっき厚が5μm未満では合金化並板の最大の特性で
ある塗装後の耐食性が極端に低下し、又、30μmを越
えては加工性には何ら支障はないものの厚膜すぎて合金
化処理に時間が要り、生産性を損なうため、余り好まし
くなしλ。
If the plating thickness is less than 5 μm, the corrosion resistance after painting, which is the most important characteristic of alloyed plain sheets, will be extremely reduced, and if it exceeds 30 μm, there will be no problem with workability, but the film will be too thick and will require alloying treatment. λ is not preferred because it takes time and reduces productivity.

従って、適正めっき厚みとしては、5〜30μmがよい
が、好ましくは7〜15μmが実用的である。
Therefore, the appropriate plating thickness is preferably 5 to 30 μm, but preferably 7 to 15 μm is practical.

以下実施例をもとに本発明の効果を更に詳述する。The effects of the present invention will be explained in more detail below based on Examples.

[実 施 例] 表1に特定する成分系の低炭素鋼板にあって板厚0.6
mmで板巾914mmの冷間圧延鋼板又は板厚3.5m
mで板巾1200mmの脱水スケールされた熱間圧延鋼
板を先ず、アルカリ脱脂−水洗−乾燥したのち、表1に
特定するブレめフきを施し直ちにゼンジマー式溶融めっ
きラインにおいて15%H2+N2混合ガス雰囲気中で
溶融めフき前の最高板温が表1に特定する最高板温にな
るよう加熱通板され、溶融めっき侵入板温として480
℃にまで冷却されたのち、浴温460 tの表1に特定
する溶融亜鉛めっき浴に2秒間浸漬される。その後大気
中でガスワイピングされて所定めっき付着量に制御され
たのち、合金化炉で出側最高板温か550℃になるよう
加熱拡散処理され、気水冷却されたのち水冷クエンチし
乾燥される。
[Example] A low carbon steel plate with the composition specified in Table 1 with a plate thickness of 0.6
Cold rolled steel plate with a plate width of 914 mm or a plate thickness of 3.5 m
A dehydrated scaled hot-rolled steel sheet with a width of 1200 mm was first degreased with alkaline, washed with water, and dried, then subjected to the blemishing specified in Table 1 and immediately placed in a 15% H2 + N2 mixed gas atmosphere in a Sendzimer hot-dip plating line. The plate is heated so that the maximum plate temperature before hot-dip coating becomes the maximum plate temperature specified in Table 1, and the plate temperature is 480℃ as the hot-dip plated penetration plate temperature.
After cooling to 0.degree. C., it is immersed for 2 seconds in a hot-dip galvanizing bath specified in Table 1 with a bath temperature of 460 t. After that, it is gas wiped in the atmosphere to control the predetermined coating amount, and then heated and diffused in an alloying furnace so that the highest plate temperature on the outlet side reaches 550°C, cooled with air and water, and then water-quenched and dried.

このようにして成る本発明の溶融合金化亜鉛めっき鋼板
は、表1に示すように他の性能を阻害することなくすぐ
れた加工性を発揮し、従来に例を見ない画期的な製品お
よびその製造方法である。
As shown in Table 1, the hot-melt galvanized steel sheet of the present invention produced in this way exhibits excellent workability without impeding other properties, and is an unprecedented and innovative product. This is the manufacturing method.

■ 鋼中Siの効果 表1の本発明実施例をNo、1〜No、16に、比較例
No、17〜No、18とともに示す。このうち、No
、10の本発明例について断面の合金層生成状態をSE
M観察し、又、その際のEPMA元素分布について第1
図に示す。又、比較例としてNo、f7を同様に解析し
た結果を$2図に示す。
(2) Effect of Si in Steel Examples of the present invention in Table 1 are shown in Nos. 1 to 16, along with comparative examples Nos. 17 to 18. Of these, no
, the state of alloy layer formation in the cross section of 10 examples of the present invention is SE
M observation, and the first EPMA element distribution at that time.
As shown in the figure. Further, as a comparative example, the results of similarly analyzing No. f7 are shown in the $2 chart.

これらの結果から明白なように、鋼中のSiに応じてF
e−Zn合金層形態は階層状からランダム状に変化し、
且つ相形態も加工に脆いr相が抑制され、ζ相と61相
とが入り乱れた形態に変化していることが分る。この合
金層形態を呈する理由は地鉄界面或いはδ、相とζ相と
の界面δ1相側にSiの偏析帯がEPM八元へ分析から
明白にだめらねることから考えると、このS1偏析帯が
地鉄或いはδ1相から供給されるFeのζ相へ向っての
拡散が抑制されたためで合金層が入り乱れる原因はSi
の偏析量に由来するためてあろうと考えられる。
As is clear from these results, F depends on the Si content in the steel.
The e-Zn alloy layer morphology changes from hierarchical to random,
In addition, it can be seen that the phase form changes to a form in which the r phase, which is brittle during processing, is suppressed and the ζ phase and 61 phase are mixed together. The reason for this alloy layer morphology is that the Si segregation zone on the δ1 phase side of the interface between the base metal and the δ phase and the ζ phase is clearly not affected by the EPM octane analysis. The reason why the alloy layer is mixed is because the diffusion of Fe supplied from the base iron or the δ1 phase toward the ζ phase is suppressed.
This is thought to be due to the amount of segregation.

このように鋼中Siによって加工に脆い合金層(「相)
が消失し、かつ、硬さの異なるζ相と61相が入り乱れ
ることによって加工応力の分散化が可能となり、これが
総体的に合金化並板としての加工性を向上させるに至っ
たものと考えられる。
In this way, Si in steel creates an alloy layer (“phase”) that is brittle to process.
disappears, and the ζ phase and 61 phase, which have different hardnesses, are mixed together, making it possible to disperse processing stress, which is thought to have led to overall improvement in the workability of the alloyed plate. It will be done.

■ めフき前の最高加熱板温の効果 本発明の実施例をNo、19〜No、25に比較例No
、26〜No、27と共に示す。これより明らかなよう
に、板温か低いと鋼板表面が未還元状態にあるためかこ
れが合金化の仕上り外観への変色或いは階層合金層のた
めか加工密着性の低下があり余り好ましくない。一方、
板温か高すぎると加工性への影響は小さいものの、Fe
のめっき層への過剰拡散があるためか総体的な耐食性の
低下がある。
■ Effect of maximum heating plate temperature before flaking Example of the present invention is No. 19 to No.
, 26 to No. 27. As is clear from this, a low sheet temperature is not very preferable because the surface of the steel sheet is in an unreduced state, and this may result in discoloration of the finished appearance of alloying or because of the layered alloy layer, resulting in a decrease in processing adhesion. on the other hand,
If the plate temperature is too high, the effect on workability is small, but Fe
There is a decrease in overall corrosion resistance, probably due to excessive diffusion into the plating layer.

このように、溶融亜鉛めフき前最高加熱板温は、合金化
並板の性能を安定して確保する上で重要であり、本発明
の板温範囲はこれに答えんとするものであることが分る
As described above, the maximum heated plate temperature before hot-dip galvanizing is important for stably ensuring the performance of the alloyed plain plate, and the plate temperature range of the present invention is intended to answer this. I understand.

■ 溶融亜鉛めっき浴の各成分の効果 1)  AjZ及びsbは本発明においては基本めっき
浴成分の1つである。
■Effects of each component of the hot-dip galvanizing bath 1) AjZ and sb are one of the basic plating bath components in the present invention.

八1の効果について、本発明実施例を No、28〜No、33に比較例No、34〜No、3
5に示し、又sbに関する本発明実施例をNo、36〜
No、42に、比較例No、43〜No、44と共に示
す。
Regarding the effect of No. 81, the present invention example No., 28 to No. 33, comparative example No. 34 to No. 3,
5, and examples of the present invention regarding sb are shown in Nos. 36 to 36.
No. 42 is shown together with comparative examples No. 43 to No. 44.

いずれの成分系も本発明の濃度範囲を外れては、加工性
や仕上り外観を損なうことになる。
If the concentration of any component system is outside the range of the present invention, processability and finished appearance will be impaired.

2)その他の添加成分であるMg、TiおよびBの効用
についてはMgの本発明実施例をNo、45〜No、5
1に比較例No、52〜No、53に示し、Tiの本発
明実施例はNo、 54 ヘNo、 56に比較例No
、57〜No、58に示す。又、Bについては本発明実
施例をNo、59〜No、62に比較例No、 63〜
No、64に示す。
2) Regarding the effectiveness of other additive components Mg, Ti, and B, the present invention example of Mg is No. 45 to No. 5.
Comparative Example No. 1, No. 52 to No. 53, and No. 53 to Example of Ti according to the present invention, No. 54 No. Comparative Example No. 56, Comparative Example No.
, 57-No., 58. Regarding B, examples of the present invention are No. 59 to No. 62, comparative examples No. 63 to No. 62.
No. 64.

これから明らかなように、これらの各成分は主として合
金化並板としての総体的な耐食性向上および腐食と共に
生じる耐疲労破壊性の向上にその主旨があり、本発明の
範囲を外れてはその期待は薄い。
As is clear from this, the purpose of each of these components is mainly to improve the overall corrosion resistance of the alloyed plate and to improve the fatigue fracture resistance that occurs with corrosion, and if it is outside the scope of the present invention, it is not expected. thin.

3)又、pbをはじめとする不可避的不純物の適正範囲
については、本発明実施例をNo、61およびNo、6
5に比較例No、66と共に示す。
3) Also, regarding the appropriate range of unavoidable impurities such as PB, the present invention example No. 61 and No. 6
5 together with Comparative Example No. 66.

これより明らかなように、該不純物は主として耐食性の
低下を招(ため本発明にあっては、可能な限りめつき浴
系から排除するよう配慮する必要がある。
As is clear from this, these impurities mainly cause a decrease in corrosion resistance (therefore, in the present invention, care must be taken to exclude them from the plating bath system as much as possible.

4)合金化並板の適正付着量範囲 本発明にいう付着量範囲は基本的には、使用環境とコス
トに応じて決められるべきものではあるが、総体的な性
能レベルからもその付着量は、制限が伴なう。
4) Appropriate coating weight range for alloyed plain plate The coating weight range referred to in the present invention should basically be determined depending on the usage environment and cost, but the coating weight should be determined from the overall performance level. , with restrictions.

その付着量範囲について、本発明実施例をNo、87〜
No、70に、比較例No、71〜No、72と共に示
す。
Regarding the coating amount range, Examples of the present invention are No. 87 to 87.
No. 70 is shown together with comparative examples No. 71 to No. 72.

これより明らかなように本発明の適正付着量を外れては
耐食性や加工性等を損なうことになり実用的でない。
As is clear from this, if the coating amount is outside the appropriate coating amount of the present invention, corrosion resistance, workability, etc. will be impaired and this is not practical.

[発明の効果] 以上、実施例をもとに本発明の内容を詳述してきたよう
に、本発明は鋼板成分中、特にSiに着目しこれによる
合金層形態の改質が合金化皿板の加工性を大きく改善せ
しめたものとして従来に例を見ない画期的な技術として
、ここに提示するものである。
[Effects of the Invention] As mentioned above, the contents of the present invention have been explained in detail based on the examples.The present invention focuses on Si among the steel sheet components, and the modification of the alloy layer morphology by this is effective in producing an alloyed plate sheet. This is presented here as an unprecedented, groundbreaking technology that has significantly improved the processability of.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明実施例の代表例として、表1のN
o、10に記載する溶融合金化亜鉛めっき鋼板のめっき
断面組織を示す顕微鏡写真、また、(b)は該めっ鰺断
面の元素分布状態をEPMA線分析したパターン図であ
る。更に、(cl は(a)および(b)の結果をもと
に、その断面における合金層生成イメージを示した概略
図である。 同様にして、第2図(a)は従来技術の比較代表例とし
て表1のNo、17に記載する溶融合金化亜鉛めっき鋼
板のめっき断面組織を示す顕微鏡写真で、(b)は該め
っき断面の元素分布状態をEPMA線分析したパターン
図である。又、(C)は(a)および(b)の結果をも
とに、その断面における合金層生成イメージを示した概
略図である。 イ也4名 第1図 第2図 、7コ・、。 イ・ イ キ ×1ρO0 (b)
FIG. 1(a) shows N of Table 1 as a representative example of the embodiment of the present invention.
A micrograph showing the plating cross-sectional structure of the hot-fusion galvanized steel sheet described in 3.o and 10, and (b) is a pattern diagram obtained by EPMA line analysis of the element distribution state of the cross section of the galvanized mackerel. Furthermore, (cl) is a schematic diagram showing an image of alloy layer formation in the cross section based on the results of (a) and (b). Similarly, Fig. 2 (a) is a comparative representative diagram of the conventional technology. As an example, it is a micrograph showing the plating cross-sectional structure of the galvanized steel sheet No. 17 in Table 1, and (b) is a pattern diagram obtained by EPMA line analysis of the element distribution state of the plating cross section. (C) is a schematic diagram showing an image of alloy layer formation in the cross section based on the results of (a) and (b).・ Iki x 1ρO0 (b)

Claims (1)

【特許請求の範囲】 1 鋼成分が重量%でSi:0.05〜1.0%でなる
低炭素鋼板の上層に溶融亜鉛めっき後の加熱拡散によっ
て形成されるFe−Zn合金層が、相構造としてはζ相
とδ_1相が混在したδ_1主体型であって、そのδ_
1相の生成が鋼板素地に対して不連続状態にある形態を
とり、且つこの合金層が5〜30μm形成してなること
を特徴とする加工性に優れた溶融合金化亜鉛めっき鋼板
。 2 低炭素鋼板の鋼成分を重量%でC:0.05〜0.
10%,Si:0.05〜1.0%,Mn:0.40〜
0.60%,P:0.020%以下,S:0.030%
以下,総Al:0.010%以下としたことを特徴とす
る請求項1記載の加工性に優れた溶融合金化亜鉛 めっき鋼板。 3 低炭素鋼板に溶融亜鉛めっきを施して、該鋼板を加
熱拡散させて溶融合金化亜鉛めっき鋼板を製造する方法
において、低炭素鋼板のSi含有量を重量%で0.05
〜1.0%として、溶融亜鉛めっき工程でのガス加熱還
元板温を 500〜900℃にして、めっき浴の成分を重量%でA
l:0.01〜0.15%,Sb:0.05〜0.5%
,必要に応じてMg:0.01〜0.2%,Ti:0.
01〜0.05%,B:0.001〜0.01%を添加
して且つPb等の不可避的不純総量が0.02%未満で
あるめつき浴を用いてめっきを行うことを特徴とする加
工性に優れた溶融合金化亜鉛めっき鋼板の製造方法。
[Scope of Claims] 1. An Fe-Zn alloy layer formed by heating diffusion after hot-dip galvanizing on the upper layer of a low carbon steel sheet whose steel composition is Si: 0.05 to 1.0% by weight. The structure is a δ_1-dominant type with a mixture of ζ phase and δ_1 phase, and the δ_
A melt-alloyed galvanized steel sheet with excellent workability, characterized in that the formation of one phase is discontinuous with respect to the steel sheet base, and the alloy layer is formed in a thickness of 5 to 30 μm. 2 The steel composition of the low carbon steel plate is C: 0.05 to 0.05% by weight.
10%, Si: 0.05~1.0%, Mn: 0.40~
0.60%, P: 0.020% or less, S: 0.030%
The melt-alloyed galvanized steel sheet with excellent workability according to claim 1, wherein the total Al content is 0.010% or less. 3. In a method of manufacturing a hot-dip galvanized steel sheet by subjecting a low-carbon steel sheet to hot-dip galvanizing and heating and diffusing the steel sheet, the Si content of the low-carbon steel sheet is set to 0.05% by weight.
~1.0%, the temperature of the gas heating reduction plate in the hot dip galvanizing process is 500 to 900°C, and the components of the plating bath are A in weight%.
l: 0.01-0.15%, Sb: 0.05-0.5%
, Mg: 0.01 to 0.2%, Ti: 0.0% as necessary.
Plating is performed using a plating bath to which B: 01 to 0.05% and B: 0.001 to 0.01% are added, and the total amount of unavoidable impurities such as Pb is less than 0.02%. A method for producing hot-fusion galvanized steel sheets with excellent workability.
JP2109533A 1990-04-25 1990-04-25 Hot-dip galvanized steel sheet with excellent workability Expired - Lifetime JPH0713285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2109533A JPH0713285B2 (en) 1990-04-25 1990-04-25 Hot-dip galvanized steel sheet with excellent workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2109533A JPH0713285B2 (en) 1990-04-25 1990-04-25 Hot-dip galvanized steel sheet with excellent workability

Publications (2)

Publication Number Publication Date
JPH046258A true JPH046258A (en) 1992-01-10
JPH0713285B2 JPH0713285B2 (en) 1995-02-15

Family

ID=14512665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2109533A Expired - Lifetime JPH0713285B2 (en) 1990-04-25 1990-04-25 Hot-dip galvanized steel sheet with excellent workability

Country Status (1)

Country Link
JP (1) JPH0713285B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056284A (en) * 2005-08-22 2007-03-08 Nippon Steel Corp Steel formed part, and galvanized steel member
US8852753B2 (en) 2010-07-09 2014-10-07 Nippon Steel & Sumitomo Metal Corporation Galvanized steel sheet
JPWO2015029404A1 (en) * 2013-08-26 2017-03-02 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119663A (en) * 1984-11-15 1986-06-06 Nisshin Steel Co Ltd General-purpose bath for hot dip galvanizing
JPH02145757A (en) * 1988-11-24 1990-06-05 Kobe Steel Ltd Alloying galvanized steel sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119663A (en) * 1984-11-15 1986-06-06 Nisshin Steel Co Ltd General-purpose bath for hot dip galvanizing
JPH02145757A (en) * 1988-11-24 1990-06-05 Kobe Steel Ltd Alloying galvanized steel sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056284A (en) * 2005-08-22 2007-03-08 Nippon Steel Corp Steel formed part, and galvanized steel member
US8852753B2 (en) 2010-07-09 2014-10-07 Nippon Steel & Sumitomo Metal Corporation Galvanized steel sheet
JPWO2015029404A1 (en) * 2013-08-26 2017-03-02 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
US9895863B2 (en) 2013-08-26 2018-02-20 Jfe Steel Corporation High-strength galvanized steel sheet and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0713285B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
JP6025867B2 (en) High-strength hot-dip galvanized steel sheet excellent in plating surface quality and plating adhesion and method for producing the same
CN108929991B (en) Hot-dip plated high manganese steel and manufacturing method thereof
JPH0463259A (en) Galvannealed steel sheet excellent in workability and its production
KR101428151B1 (en) Zn-coated hot rolled steel sheet having high mn and method for manufacturing the same
JP2964911B2 (en) Alloying hot-dip galvanizing method for P-added high-strength steel
KR101115741B1 (en) Method for manufacturing high manganese hot dip galvanized steel sheet with superior weldability
JPH046259A (en) Galvannealed steel sheet excellent in workability and its production
JP3480357B2 (en) Method for producing high strength galvanized steel sheet containing Si and high strength galvannealed steel sheet
JPH0645853B2 (en) Method for producing galvannealed steel sheet
JPH046258A (en) Galvannealed steel sheet excellent in workability and its production
JP3382697B2 (en) Manufacturing method of galvannealed steel sheet
KR20140008723A (en) High strength galvanealed steel sheet with good coatability and coating adhesion and method for manufacturing the same
JPH03111546A (en) Production of highly corrosion resistant aluminized cr-containing steel sheet excellent in adhesive strength of plating
JP2993404B2 (en) Alloyed hot-dip galvanized steel sheet excellent in film adhesion and method for producing the same
JP2005048254A (en) Galvanized steel having excellent film peeling resistance for hot forming
JP3114609B2 (en) Method for producing galvannealed steel sheet with excellent surface properties
JP3631584B2 (en) Method for producing alloyed hot-dip galvanized steel sheet
JP2005154857A (en) Alloyed hot dip galvanized steel sheet, and method for manufacturing the same
JPH05279829A (en) Production of high tensile strength galvannealed steel sheet
KR980009498A (en) Manufacturing method of galvanized steel sheet
JPH0713284B2 (en) Method for producing hot-dip galvanized steel sheet with excellent workability
JPH04235266A (en) Manufacture of alloying galvannealed steel sheet excellent in workability and corrosion resistance
JPH0413856A (en) Production of galvannealed steel sheet having superior corrosion resistance
JPH09143659A (en) Galvannealed steel sheet excellent in initial white rust resistance
JP2971244B2 (en) Method for producing high-P content high-strength alloyed hot-dip galvanized steel sheet with good low-temperature chipping resistance, perforation corrosion resistance and weldability

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080215

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 16