JP2964911B2 - Alloying hot-dip galvanizing method for P-added high-strength steel - Google Patents

Alloying hot-dip galvanizing method for P-added high-strength steel

Info

Publication number
JP2964911B2
JP2964911B2 JP9693395A JP9693395A JP2964911B2 JP 2964911 B2 JP2964911 B2 JP 2964911B2 JP 9693395 A JP9693395 A JP 9693395A JP 9693395 A JP9693395 A JP 9693395A JP 2964911 B2 JP2964911 B2 JP 2964911B2
Authority
JP
Japan
Prior art keywords
temperature
alloying
plating
steel sheet
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9693395A
Other languages
Japanese (ja)
Other versions
JPH08291379A (en
Inventor
雅彦 堀
俊夫 中森
啓司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9693395A priority Critical patent/JP2964911B2/en
Publication of JPH08291379A publication Critical patent/JPH08291379A/en
Application granted granted Critical
Publication of JP2964911B2 publication Critical patent/JP2964911B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はP添加高張力鋼材の改善
された溶融亜鉛めっき方法に関し、特に自動車用鋼板と
して好適な合金化溶融亜鉛めっき鋼板の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved hot-dip galvanizing method for a P-added high-tensile steel material, and more particularly to a method for producing an alloyed hot-dip galvanized steel sheet suitable as a steel sheet for automobiles.

【0002】[0002]

【従来の技術】近年、家電、建材、自動車などの産業分
野においては、防錆鋼板として比較的安価に製造できる
溶融亜鉛めっき鋼板が大量に使用されており、とりわけ
経済性とその防錆機能、塗装後の性能の点で、合金化溶
融亜鉛めっき鋼板が広く用いられている。
2. Description of the Related Art In recent years, in the industrial fields such as home appliances, building materials, and automobiles, hot-dip galvanized steel sheets that can be produced at relatively low cost have been used in large quantities as rust-preventive steel sheets. In terms of performance after painting, galvannealed steel sheets are widely used.

【0003】溶融亜鉛めっき鋼板は、適当な脱脂洗浄工
程を経た後、または脱脂洗浄を行うことなく、鋼板を弱
酸化性雰囲気もしくは還元性雰囲気で予熱し、次いで水
素+窒素の還元性雰囲気(還元炉)で鋼板を焼鈍還元
し、鋼板をめっき温度付近まで冷却した後、溶融亜鉛に
浸漬し、めっき浴出口で付着量を制御する(例、ガスワ
イピングノズルで)という連続溶融亜鉛めっき法により
一般に製造される。めっき付着量は、片面当たり20〜15
0 g/m2の範囲内が普通である。20 g/m2 以下の付着量の
めっき層は通常の溶融亜鉛めっき法では製造が困難であ
る。
[0003] A hot-dip galvanized steel sheet is preheated in a weakly oxidizing atmosphere or a reducing atmosphere after a suitable degreasing and washing step or without degreasing, and then a reducing atmosphere of hydrogen and nitrogen (reducing atmosphere). In a continuous hot-dip galvanizing method, the steel sheet is annealed in a furnace, cooled to near the plating temperature, immersed in molten zinc, and the amount of coating is controlled at the exit of the plating bath (eg, with a gas wiping nozzle). Manufactured. The coating weight is 20-15 per side
A range of 0 g / m 2 is common. It is difficult to produce a plated layer having an adhesion amount of 20 g / m 2 or less by a normal hot-dip galvanizing method.

【0004】溶融亜鉛めっきにおいては、予熱時に鋼板
表面に 80 nm程度の薄い酸化皮膜、即ち、酸化鉄の皮膜
が形成される方が、溶融亜鉛との濡れ性の点で望ましい
とされている。この厚みは、酸化鉄付着量に換算する
と、Fe量として約0.04 g/m2 に相当する。しかし、それ
以上の厚さの酸化皮膜の形成は、ドロス発生や溶融めっ
きの密着性の点で悪影響があると考えられてきた。
[0004] In hot-dip galvanizing, it is considered that a thin oxide film of about 80 nm, that is, a film of iron oxide is formed on the steel sheet surface during preheating in terms of wettability with hot-dip zinc. This thickness corresponds to about 0.04 g / m 2 in terms of Fe when converted to the amount of iron oxide attached. However, it has been considered that the formation of an oxide film having a thickness larger than that has an adverse effect on dross generation and adhesion of hot-dip plating.

【0005】溶融亜鉛めっき層は、めっき/鋼界面での
Fe−Zn合金層の形成によって鉄素地に密着するが、この
合金層は金属間化合物であるため硬くて脆い。従って、
この合金層の形成を抑制して、合金層が必要以上に厚く
なるのを阻止するために、めっき浴中に0.08〜0.14wt%
のAlを存在させる。それにより、皮膜加工性が保持され
ると共に、めっき皮膜の耐パウダリング性が確保され、
製造時のドロスの発生が抑制される。
[0005] The hot-dip galvanized layer is formed at the plating / steel interface.
The Fe-Zn alloy layer adheres to the iron substrate by forming, but this alloy layer is hard and brittle because it is an intermetallic compound. Therefore,
To suppress the formation of this alloy layer and prevent the alloy layer from becoming unnecessarily thick, 0.08 to 0.14 wt%
Al is present. As a result, the film processability is maintained, and the powdering resistance of the plating film is secured.
Generation of dross during production is suppressed.

【0006】合金化溶融亜鉛めっき鋼板は、上記方法で
連続的に溶融亜鉛めっきされた鋼板を、めっき浴から出
た直後に、熱処理炉で 500〜600 ℃程度の材料温度に3
〜60秒加熱することにより、亜鉛めっき層と鋼素地との
間の相互拡散によってめっき層全体をFe−Zn合金化した
ものである。めっき層はFe−Zn金属間化合物となり、一
般にその平均Fe濃度は8〜12wt%である。
[0006] The alloyed hot-dip galvanized steel sheet is prepared by heating a steel sheet continuously hot-dip galvanized by the above-mentioned method to a material temperature of about 500 to 600 ° C in a heat treatment furnace immediately after leaving the plating bath.
By heating for up to 60 seconds, the entire plating layer is made into an Fe-Zn alloy by mutual diffusion between the zinc plating layer and the steel base. The plating layer becomes an Fe-Zn intermetallic compound, and its average Fe concentration is generally 8 to 12 wt%.

【0007】合金化溶融亜鉛めっき鋼板のめっき付着量
は、通常は片面当たり25〜70 g/m2程度である。付着量
が70g/m2を上回るものは、合金化しためっき層の耐パウ
ダリング性を確保することが困難なため、合金化溶融亜
鉛めっき鋼板においては一般に供給されていない。合金
化溶融亜鉛めっき鋼板の場合も、上記と同様の目的でめ
っき浴にAlを存在させるが、Alは溶融めっき後の合金化
反応についても抑制効果を発揮するので、めっき浴中の
Al濃度は0.08〜0.11wt%と、溶融亜鉛めっきの場合に比
べて低めに抑えるのが普通である。
[0007] The coating weight of the galvannealed steel sheet is usually about 25 to 70 g / m 2 per side. When the adhesion amount exceeds 70 g / m 2 , it is difficult to secure the powdering resistance of the alloyed plating layer, and therefore, it is not generally supplied to the galvannealed steel sheet. In the case of an alloyed hot-dip galvanized steel sheet, Al is also present in the plating bath for the same purpose as above, but since Al exerts an inhibitory effect on the alloying reaction after hot-dip coating,
Usually, the Al concentration is 0.08 to 0.11 wt%, which is generally lower than that of hot-dip galvanizing.

【0008】これらの溶融めっき鋼板の母材は、従来は
低炭素Alキルド鋼板、極低炭素Ti添加鋼板等が主流であ
ったが、自動車材料の高強度化の要求に伴い、延性およ
び靱性に優れた材料を得るため、P添加鋼が用いられる
ようとしている。
Conventionally, low-carbon Al-killed steel sheets, ultra-low-carbon Ti-added steel sheets, etc. have been mainly used as the base material of these hot-dip coated steel sheets. However, with the demand for higher strength of automotive materials, ductility and toughness have been increased. In order to obtain superior materials, P-added steel is being used.

【0009】しかし、Pを添加した鋼材では、P含有量
が0.02wt%を越えると、溶融亜鉛めっき後の合金化の速
度が著しく遅延し、製造効率が低下することが知られて
いる。同時に、P含有量が0.02wt%を超えると、めっき
皮膜の密着性が低下することも問題となっており、その
結果、自動車車体に寒冷期に石はねなどが起こると、皮
膜が剥離して、剥離点を起点に錆が発生する原因となっ
ている。
However, it is known that, in a steel material to which P is added, if the P content exceeds 0.02 wt%, the alloying speed after hot-dip galvanizing is significantly delayed, and the production efficiency is reduced. At the same time, if the P content exceeds 0.02 wt%, the adhesion of the plating film is also a problem, and as a result, the film peels off when the vehicle body undergoes stone splashing in the cold season. This causes rust to occur starting from the peeling point.

【0010】合金化促進に関しては、プレFeめっきを行
う方法 (特開昭57−79160 号公報)がある。しかし、電
気めっきが加わるため、設備コストおよび生産コストが
大幅に増大するなどの問題があり、実用的ではない。
[0010] Regarding the promotion of alloying, there is a method of performing pre-Fe plating (JP-A-57-79160). However, since electroplating is added, there are problems such as a large increase in equipment cost and production cost, which is not practical.

【0011】また、同じ問題をかかえるSi添加鋼につい
て、合金化促進のために、無酸化炉で鋼板表面に厚膜の
酸化皮膜を形成するように前酸化した後、還元炉で焼鈍
する方法 (特開昭55−122865号公報) が提案されてい
る。これは、前酸化で生成した鉄酸化物を還元すると、
生成した還元鉄は表面積が著しく大きくなり、反応面積
の増大により合金化時のFe−Zn反応が促進されるという
現象を利用している。
Further, in order to promote alloying, a Si-added steel having the same problem is pre-oxidized in a non-oxidizing furnace so as to form a thick oxide film on the surface of the steel sheet, and then annealed in a reducing furnace. JP-A-55-122865) has been proposed. This is because reducing the iron oxide generated by pre-oxidation
The generated reduced iron has a large surface area, and utilizes the phenomenon that the Fe-Zn reaction at the time of alloying is promoted by the increase in the reaction area.

【0012】特開平5−306448号公報には、無酸化炉を
経由していないP≧0.03wt%以上の鋼板を、露点の異な
る2ゾーン以上に分割された還元炉内で、酸化皮膜厚み
を第1ゾーンで 100〜1000Åに、第2ゾーンで 200Å以
下に制御するように還元を行う方法が提案されている。
しかし、この方法は制御が難しい。
Japanese Patent Application Laid-Open No. 5-306448 discloses that a steel sheet having P ≧ 0.03 wt% or more, which does not pass through a non-oxidizing furnace, has an oxide film thickness reduced in a reducing furnace divided into two or more zones having different dew points. A method has been proposed in which reduction is carried out so as to control the temperature in the first zone to 100 to 1000 ° and in the second zone to 200 ° or less.
However, this method is difficult to control.

【0013】また、以上のいずれの方法も、めっき皮膜
の密着性に関しては改善効果がない。皮膜密着性の改善
は、合金化処理時の条件制御により対処しようと試みら
れているが、十分な効果を上げるには至っていない。
Also, none of the above methods has an effect of improving the adhesion of the plating film. Attempts have been made to improve the film adhesion by controlling the conditions during the alloying treatment, but it has not been able to achieve a sufficient effect.

【0014】[0014]

【発明が解決しようとする課題】P添加鋼の合金化溶融
亜鉛めっきにおいては、合金化を促進して製造を経済的
かつ効率的にすると同時に、めっき皮膜の密着性を高め
ることのできる製造方法が求められている。本発明の目
的は、この要請に応えて、P添加高張力鋼材の合金化溶
融亜鉛めっき方法を確立することである。具体的には、
P>0.02wt%の高張力鋼材の合金化速度を促進させ、同
時に密着性の良好なめっき皮膜を形成することができ
る、P添加高張力鋼材の合金化溶融亜鉛めっき方法を提
供することである。
In the galvannealing of P-added steel, a manufacturing method capable of promoting alloying to make the production economical and efficient and at the same time improving the adhesion of the plating film. Is required. An object of the present invention is to establish a method for galvannealing a P-added high-strength steel material in response to this demand. In particular,
An object of the present invention is to provide a galvannealing method for a P-added high-strength steel material capable of accelerating the alloying speed of a high-strength steel material with P> 0.02 wt% and simultaneously forming a plating film having good adhesion. .

【0015】[0015]

【課題を解決するための手段】本発明者らは、P>0.02
wt%のP添加鋼のめっき前の熱処理が合金化速度に及ぼ
す影響について検討した。
Means for Solving the Problems The present inventors have established that P> 0.02
The effect of heat treatment before plating of wt% P-added steel on alloying rate was examined.

【0016】その結果、Fe換算で1g/m2を越える厚膜の
酸化皮膜を形成するように前酸化を行った後、750 ℃以
上で還元すると、合金化速度は促進されることを確認し
た。しかし、このような厚膜の酸化皮膜の形成には還元
炉内での酸化皮膜の剥離という問題がある。一方、前酸
化での酸化鉄量をFe換算で1g/m2未満と小さくして、そ
の後に750 ℃以上で還元を行った場合、合金化速度の促
進効果は小さかった。
As a result, it was confirmed that the alloying rate was accelerated when preoxidation was performed so as to form a thick oxide film exceeding 1 g / m 2 in terms of Fe and then reduced at 750 ° C. or more. . However, formation of such a thick oxide film has a problem of peeling of the oxide film in a reduction furnace. On the other hand, when the amount of iron oxide in the pre-oxidation was reduced to less than 1 g / m 2 in terms of Fe and then reduced at 750 ° C. or higher, the effect of accelerating the alloying rate was small.

【0017】酸化鉄量を1g/m2未満に抑えたまま、合金
化速度を促進させることができる方法を検討した結果、
前酸化後の還元温度を550 ℃以上、750 ℃未満と、焼鈍
に必要な再結晶温度より低くすることにより、合金化速
度が促進されることを見出した。しかし、この場合には
再結晶が起こらないため、延性、靱性などの材料特性が
不良となった。予め焼鈍した材料を使用すればこの問題
は解決するが、別に焼鈍工程が必要となり、工程増加に
よるコスト高のため実用的ではない。
As a result of studying a method capable of accelerating the alloying speed while keeping the amount of iron oxide at less than 1 g / m 2 ,
It has been found that the alloying speed is enhanced by setting the reduction temperature after pre-oxidation at 550 ° C. or higher and lower than 750 ° C., which is lower than the recrystallization temperature required for annealing. However, in this case, since recrystallization did not occur, material properties such as ductility and toughness were poor. This problem can be solved by using a material that has been annealed in advance. However, a separate annealing step is required, which is not practical because of an increase in cost due to an increase in the number of steps.

【0018】そこで、溶融めっき設備内での焼鈍を検討
した結果、Fe換算で1g/m2未満の前酸化を行った後、酸
化鉄を還元させない雰囲気で再結晶温度に加熱して焼鈍
を行い、この雰囲気中で750 ℃以下に冷却し、550 ℃以
上、750 ℃未満で酸化鉄を還元させると、合金化が促進
されることを究明した。また、めっき皮膜の密着性につ
いては、Al添加量が0.12wt%以上と比較的高い溶融亜鉛
めっき浴を用いることで改善できることを見出した。
Then, as a result of examining the annealing in the hot-dip plating equipment, the pre-oxidation of less than 1 g / m 2 in terms of Fe was performed, followed by heating to the recrystallization temperature in an atmosphere in which iron oxide was not reduced to perform annealing. It has been found that alloying is promoted when the iron oxide is cooled to 750 ° C. or lower in this atmosphere and reduced at 550 ° C. or higher and lower than 750 ° C. Further, it has been found that the adhesion of the plating film can be improved by using a hot-dip galvanizing bath having a relatively high Al content of 0.12 wt% or more.

【0019】ここに、本発明は、P>0.020 wt%の高張
力鋼材を、非還元性雰囲気中で再結晶温度以上、900 ℃
以下の温度範囲に加熱した後、750 ℃以下まで冷却し、
この間に鋼板表面にFe換算で0.05 g/m2 以上、1.0 g/m2
以下の酸化皮膜を形成し、次いで750 ℃未満、550 ℃以
上の還元性雰囲気中で還元した後、溶融亜鉛めっきを施
し、合金化熱処理を行うことを特徴とする、P添加高張
力鋼材の合金化溶融亜鉛めっき方法である。
Here, the present invention relates to a method in which a high-strength steel material of P> 0.020 wt% is heated to 900 ° C. in a non-reducing atmosphere at a temperature not lower than the recrystallization temperature.
After heating to the following temperature range, cool down to 750 ° C or less,
During this time, 0.05 g / m 2 or more, 1.0 g / m 2
An alloy of a P-added high-strength steel material characterized by forming the following oxide film, reducing it in a reducing atmosphere of less than 750 ° C and at least 550 ° C, applying galvanizing, and performing an alloying heat treatment. This is a chemical galvanizing method.

【0020】この方法によれば、合金化時間を従来より
短縮することができる。好適態様にあっては、溶融亜鉛
めっきを、浴中Al濃度が0.12〜0.20wt%のめっき浴で行
う。それにより、上記のようにめっき密着性が改善され
る。
According to this method, the alloying time can be reduced as compared with the conventional method. In a preferred embodiment, the hot-dip galvanizing is performed in a plating bath having an Al concentration in the bath of 0.12 to 0.20 wt%. Thereby, the plating adhesion is improved as described above.

【0021】[0021]

【作用】以下、本発明についてさらに詳しく説明する。
なお、以下の説明において、%は特に指定のない限りwt
%であるが、ガス組成に関する%は vol%である。ま
た、以下の説明では、めっき母材が鋼板である場合につ
いて説明するが、本発明の方法は原理的には鋼板の合金
化溶融亜鉛めっきに限定されるものではなく、管、棒、
異形材などの他の鋼材についても適用可能であることは
いうまでもない。
Hereinafter, the present invention will be described in more detail.
In the following description,% is wt% unless otherwise specified.
%, But the percentage with respect to the gas composition is vol%. Further, in the following description, a case where the plating base material is a steel plate will be described. However, the method of the present invention is not limited in principle to alloyed hot-dip galvanizing of a steel plate.
It goes without saying that other steel materials such as deformed materials can be applied.

【0022】本発明の方法に従ってP添加鋼板の溶融め
っき前の熱処理を行うと、めっき後の合金化が促進され
る理由は完全には解明されていないが、次のように推測
される。
The reason why the heat treatment before hot-dip plating of a P-added steel sheet according to the method of the present invention promotes alloying after plating has not been completely elucidated, but is presumed as follows.

【0023】P添加鋼を前酸化すると、Pも同時に酸化
され、生成した酸化皮膜は鉄酸化物とともに微量のP酸
化物を含有する。その後、従来のように750 ℃以上で還
元焼鈍を施すと、鉄酸化物が還元されて還元鉄になると
同時に、共存する微量のP酸化物も一緒に還元される。
還元されたPは合金化時のFe−Zn反応に関与し、この反
応を著しく遅延させる。従って、この場合、還元鉄の生
成に伴う有効表面積の増加によるFe−Zn反応の活性化は
得られるものの、この活性化が還元Pによる反応阻害に
よって相殺されることになり、合金化促進効果が小さく
なる。
When the P-added steel is pre-oxidized, P is simultaneously oxidized, and the resulting oxide film contains a trace amount of P oxide together with iron oxide. Thereafter, when reduction annealing is performed at 750 ° C. or higher as in the conventional case, the iron oxide is reduced to reduced iron, and at the same time, a small amount of coexisting P oxide is also reduced.
The reduced P participates in the Fe-Zn reaction during alloying and significantly delays this reaction. Therefore, in this case, although the activation of the Fe-Zn reaction is obtained by the increase in the effective surface area due to the generation of reduced iron, this activation is offset by the inhibition of the reaction by the reduced P, and the alloying promotion effect is reduced. Become smaller.

【0024】これに対して、本発明の方法のように還元
を750 ℃未満の比較的低温で行うと、鉄酸化物は還元さ
れて還元鉄になるが、P酸化物は還元されない。従っ
て、還元鉄の組成は、鉄と微量のP酸化物とを含有する
ことになる。P酸化物は、還元Pとは異なり、合金化時
のFe−Zn反応に関与しないため、鋼板表面は純鉄に近い
ような高い反応性を有する。そのため、還元鉄による有
効表面積の増大の効果が十分に発揮され、合金化速度が
飛躍的に向上するものと考えられる。しかし、酸化鉄量
が1g/m2を超えると、比較的低温での還元であるため酸
化物が残る、または酸化物が炉内で剥離するといった問
題が起こる。
On the other hand, when the reduction is performed at a relatively low temperature of less than 750 ° C. as in the method of the present invention, the iron oxide is reduced to reduced iron, but the P oxide is not reduced. Therefore, the composition of reduced iron contains iron and a trace amount of P oxide. Unlike reduced P, P oxide does not participate in the Fe-Zn reaction at the time of alloying, so that the steel sheet surface has a high reactivity close to that of pure iron. Therefore, it is considered that the effect of increasing the effective surface area by the reduced iron is sufficiently exhibited, and the alloying speed is dramatically improved. However, when the amount of iron oxide exceeds 1 g / m 2 , there is a problem that the oxide remains because the reduction is performed at a relatively low temperature or the oxide is separated in a furnace.

【0025】浴中Al濃度を高くすることによってめっき
皮膜の密着性が向上する理由も完全には解明されていな
いが、現状では次のように推測される。還元鉄からなる
被めっき表面は活性が高く、浴中Al濃度が高いと、めっ
き時には界面にFe−Al合金層が多量に生産される。この
Fe−Al合金層は、合金化時のFe−Zn反応を抑制するた
め、合金化熱処理の昇温時にはFe−Zn反応が起こり難
く、高温でFe−Al合金層が破壊されて合金化が進行す
る。高温での反応は、Fe−Al合金層を不均一に破壊する
ため、皮膜界面に凹凸を形成する。この凹凸が密着性向
上につながっているものと考えられる。
Although the reason why the adhesion of the plating film is improved by increasing the Al concentration in the bath has not been completely elucidated, it is presumed as follows at present. The surface to be plated made of reduced iron has a high activity, and if the Al concentration in the bath is high, a large amount of an Fe-Al alloy layer is produced at the interface during plating. this
Since the Fe-Al alloy layer suppresses the Fe-Zn reaction during alloying, the Fe-Zn reaction is unlikely to occur when the temperature of the alloying heat treatment is increased, and the Fe-Al alloy layer is destroyed at a high temperature and alloying proceeds. I do. The reaction at a high temperature causes the Fe—Al alloy layer to break unevenly, so that irregularities are formed at the film interface. It is considered that these irregularities have led to an improvement in adhesion.

【0026】本発明のめっき方法におけるめっき母材
は、主として連続溶融亜鉛めっき装置においてライン内
還元焼鈍を必要とする鋼板 (例、冷延鋼板) であるが、
本発明方法の熱処理過程での機械的特性の変化を特に問
題としなければ、熱延鋼板等のライン外焼鈍を行う鋼板
についても適用可能である。
The plating base material in the plating method of the present invention is mainly a steel sheet (eg, a cold-rolled steel sheet) that requires in-line reduction annealing in a continuous galvanizing apparatus.
As long as the change in mechanical properties during the heat treatment process of the present invention is not particularly problematic, the present invention can be applied to a steel sheet which is subjected to out-of-line annealing, such as a hot rolled steel sheet.

【0027】本発明方法で対象とする鋼種はP添加高張
力鋼である。P含有量が0.020 %より大の時に合金化速
度の遅延とめっき密着性の低下が問題となるので、P含
有量が0.020 %超の鋼に本発明方法を適用する。P添加
量の上限は特に限定されないが、熱間および冷間圧延で
鋼板に割れなどが入らない領域として0.2 %程度が上限
となる。
The steel type to be used in the method of the present invention is a P-added high-strength steel. When the P content is more than 0.020%, there is a problem in that the alloying speed is delayed and the plating adhesion is lowered. Therefore, the method of the present invention is applied to steel having a P content of more than 0.020%. The upper limit of the amount of P added is not particularly limited, but the upper limit is about 0.2% as a region where cracks and the like do not enter the steel sheet in hot and cold rolling.

【0028】母材鋼板のその他の成分は特に制限され
ず、Feと不可避不純物以外に、C、S、Si、Mn、Ti、M
g、Cr、Ni、Cu、Nb、Ta、Alなどの1種もしくは2種以
上の元素を含有することができる。高張力鋼板の機械的
特性を低下させないため、これらの元素は、次に示す鋼
中濃度とすることが好ましい。Si<0.05%、C<0.2
%、S<0.03%、Mn<2.0 %、Ti<0.1 %、Mg<1.0
%、Cr<2.0 %、Ni<2.0 %、Cu<2.0 %、Nb<0.1
%、Ta<0.1 %、Al<0.1 %。その他の元素について
は、各元素につき0.01%未満で、合計で2.0 %以下まで
とすることが好ましい。
The other components of the base steel sheet are not particularly limited. In addition to Fe and inevitable impurities, C, S, Si, Mn, Ti, M
One or more elements such as g, Cr, Ni, Cu, Nb, Ta, and Al can be contained. In order not to lower the mechanical properties of the high-strength steel sheet, it is preferable that these elements have the following steel concentrations. Si <0.05%, C <0.2
%, S <0.03%, Mn <2.0%, Ti <0.1%, Mg <1.0
%, Cr <2.0%, Ni <2.0%, Cu <2.0%, Nb <0.1
%, Ta <0.1%, Al <0.1%. Other elements are preferably less than 0.01% for each element and up to 2.0% or less in total.

【0029】図1に、本発明の方法を連続的に実施する
のに利用できる合金化溶融亜鉛めっき鋼板製造装置 (合
金化熱処理炉を備えた連続溶融亜鉛めっきライン) の1
例を示す。この図を参照しながら、以下、本発明方法を
工程順に説明する。
FIG. 1 shows an apparatus for manufacturing an alloyed hot-dip galvanized steel sheet (a continuous hot-dip galvanizing line equipped with an alloying heat treatment furnace) that can be used to continuously carry out the method of the present invention.
Here is an example. The method of the present invention will be described below in the order of steps with reference to FIG.

【0030】脱脂工程 冷延または熱延を受けた母材鋼板は、まず、必要に応じ
て脱脂される。脱脂は、例えば、約60℃の2〜3%水酸
化ナトリウム水溶液中に10〜300 秒間浸漬することによ
り行われる。或いは、トリクレン、シンナーなどの有機
溶剤脱脂、オルソ珪酸ソーダ水溶液中での電解脱脂など
も可能である。
Degreasing Step The base steel sheet subjected to cold rolling or hot rolling is first degreased as required. Degreasing is performed, for example, by immersing in a 2-3% aqueous sodium hydroxide solution at about 60 ° C. for 10 to 300 seconds. Alternatively, degreasing with an organic solvent such as trichlene or thinner, electrolytic degreasing in an aqueous sodium orthosilicate solution, and the like are also possible.

【0031】前酸化および焼鈍工程 必要により脱脂された鋼板は、十分水洗され、ドライヤ
ーにおいて熱風などで乾燥した後、加熱炉に送って、非
還元性雰囲気中で再結晶温度以上、900 ℃以下の温度範
囲に加熱した後、750 ℃以下まで冷却することによっ
て、前酸化と焼鈍を行う。
The steel sheet which has been degreased as required in the pre-oxidation and annealing steps is sufficiently washed with water, dried with hot air in a drier, sent to a heating furnace, and heated in a non-reducing atmosphere to a temperature not lower than the recrystallization temperature and not higher than 900 ° C. After heating to the temperature range, the pre-oxidation and annealing are performed by cooling to 750 ° C or lower.

【0032】この前酸化により鋼板表面に形成される酸
化皮膜は、上記の加熱と冷却を行った後のFe換算での酸
化鉄量が、0.05 g/m2 以上、1.0 g/m2以下となるように
する。酸化鉄量が0.05 g/m2 より少ないと、酸化物の被
覆が少なく、次の還元工程で還元鉄が生成しても、合金
化促進効果が十分に得られない。また、1.0 g/m2より酸
化鉄量が多いと、炉内に酸化鉄のピックアップなどが起
こり、表面欠陥の原因となる。
The oxide film formed on the steel sheet surface by the pre-oxidation has an iron oxide content of 0.05 g / m 2 or more and 1.0 g / m 2 or less in terms of Fe after the above-mentioned heating and cooling. To be. If the amount of iron oxide is less than 0.05 g / m 2 , the coating of the oxide is small, and even if reduced iron is generated in the next reduction step, the alloying promoting effect cannot be sufficiently obtained. If the amount of iron oxide is more than 1.0 g / m 2 , iron oxide is picked up in the furnace, causing surface defects.

【0033】前酸化は、鋼板を常温から上記温度範囲ま
で加熱する間のどの温度領域で行ってもよいが、酸化鉄
量が1.0 g/m2以下と少ないので、酸化反応の速度や制御
の容易さを考慮すると、酸化初期の 500〜750 ℃の温度
領域で酸化を主に進行させることが好ましい。750 ℃以
上の高温では、酸化反応が速いので、酸化鉄量の制御が
より困難となる。
The pre-oxidation may be carried out in any temperature range while the steel sheet is heated from room temperature to the above temperature range. However, since the amount of iron oxide is as small as 1.0 g / m 2 or less, the speed and control of the oxidation reaction are controlled. In consideration of easiness, it is preferable that the oxidation mainly proceeds in the temperature range of 500 to 750 ° C. at the beginning of the oxidation. At a high temperature of 750 ° C. or higher, the oxidation reaction is so fast that it becomes more difficult to control the amount of iron oxide.

【0034】その場合、図示のように、非還元性雰囲気
の加熱炉内を、予備加熱炉と焼鈍炉に区分し、最初の予
備加熱炉で 500〜750 ℃の温度領域の加熱を行う間に、
必要な酸化の大半を行う。次の焼鈍炉を通過する間に、
再結晶温度 (約750 ℃) 以上、900 ℃以下に昇温させ、
再結晶させる。この焼鈍炉内の非還元性雰囲気は、予備
加熱炉内の雰囲気より酸化性を弱くし、酸化皮膜の還元
を生じないが、それ以上の酸化もあまり起こらないよう
にする。その後、還元炉の前に設けた冷却帯において非
還元性雰囲気中で750 ℃以下まで冷却する。それによ
り、酸化鉄量をほとんど増大させずに焼鈍を行うことが
できる。このように酸化を主に 500〜750℃の温度領域
で行うことで、焼鈍後 (冷却後) の酸化鉄量を0.05〜1.
0 g/m2の範囲内に容易に制御することができる。
In this case, as shown in the figure, the inside of the heating furnace in the non-reducing atmosphere is divided into a preheating furnace and an annealing furnace, and heating is performed in the temperature range of 500 to 750 ° C. in the first preheating furnace. ,
Perform most of the necessary oxidation. While passing through the next annealing furnace,
The temperature is raised above the recrystallization temperature (about 750 ° C) to 900 ° C,
Recrystallize. The non-reducing atmosphere in the annealing furnace has a lower oxidizing property than the atmosphere in the preheating furnace, and does not cause reduction of the oxide film, but does not cause much oxidation. Then, it is cooled to 750 ° C. or lower in a non-reducing atmosphere in a cooling zone provided before the reduction furnace. Thereby, annealing can be performed without increasing the amount of iron oxide. By performing the oxidation mainly in the temperature range of 500 to 750 ° C, the amount of iron oxide after annealing (after cooling) is reduced to 0.05 to 1.
It can be easily controlled within the range of 0 g / m 2 .

【0035】予備加熱炉では、バーナー加熱、通電加
熱、誘導加熱、赤外加熱などの加熱方式によって、酸化
に必要な 500〜750 ℃の温度領域まで昇温させる。炉内
雰囲気は、1.0 g/m2以下の必要な前酸化が起こるような
弱酸化性雰囲気とする。好ましいう雰囲気は、酸素(O2)
を5〜20,000 ppm含み、残りが不活性ガス (N2が安価で
好ましい) からなる酸化性雰囲気である。O2のかわりに
H2O(露点0〜+40℃) を、N2の代わりにAr、He等の希ガ
スを使用してもよい。バーナー加熱方式の場合には、空
気と燃料ガスの混合比 (空燃比) を1.0 以上とすること
により、酸化させることも可能である。
In the preheating furnace, the temperature is raised to a temperature range of 500 to 750 ° C. necessary for oxidation by a heating method such as burner heating, electric heating, induction heating, or infrared heating. The atmosphere in the furnace is a weakly oxidizing atmosphere in which necessary pre-oxidation of 1.0 g / m 2 or less occurs. The preferred atmosphere is oxygen (O 2 )
Is an oxidizing atmosphere containing 5 to 20,000 ppm, with the balance being an inert gas (N 2 is cheap and preferred). Instead of O 2
H 2 O (dew point 0 to + 40 ° C.) and a rare gas such as Ar or He may be used instead of N 2 . In the case of the burner heating method, it is possible to oxidize by setting the mixture ratio (air-fuel ratio) of air and fuel gas to 1.0 or more.

【0036】予備加熱炉で酸化した鋼板を、次いで焼鈍
炉内で 750〜900 ℃の温度領域内の到達温度まで昇温さ
せ、この温度に短時間保持した後、冷却帯にて冷却し、
焼鈍を行う。焼鈍は、圧延、特に冷間圧延中に生じた歪
みを除去し、適正な材料特性(延性、靱性など) を得る
ために必要である。P添加鋼の再結晶には750 ℃以上の
温度が一般に必要となる。900 ℃が上限となるのは、そ
れより高い温度で焼鈍すると、母材結晶粒が粗大とな
り、材料特性が劣化するばかりでなく、鋼板が軟化して
板の形状が保持できず、破断の危険性もあるからであ
る。
The steel sheet oxidized in the preheating furnace is then heated in an annealing furnace to a temperature within a temperature range of 750 to 900 ° C., kept at this temperature for a short time, and cooled in a cooling zone.
Perform annealing. Annealing is necessary to remove strain generated during rolling, particularly during cold rolling, and to obtain appropriate material properties (such as ductility and toughness). Recrystallization of P-added steel generally requires temperatures above 750 ° C. The upper limit of 900 ° C is that annealing at a higher temperature not only causes the base material crystal grains to become coarse and deteriorates the material properties, but also causes the steel sheet to soften and lose its shape, resulting in a risk of fracture. Because there is also the nature.

【0037】この焼鈍は、焼鈍中に還元を生じさせない
ように、非還元性雰囲気中で行う。焼鈍中に還元が起こ
ると、前述したように酸化皮膜中に含まれる微量のP酸
化物の還元が起こり、合金化速度の促進効果が著しく低
下する。また、焼鈍は高温で行うため、雰囲気の酸化性
が強いと酸化がさらに著しく進行し、焼鈍炉内で酸化鉄
のピックアップが起こるだけでなく、次の還元工程で酸
化鉄を還元しきれず、不めっきが発生することもある。
そのため、焼鈍雰囲気は、予備加熱炉の雰囲気より酸化
性が著しく弱い、微酸化性または実質的に不活性の雰囲
気とすることが好ましい。
This annealing is performed in a non-reducing atmosphere so as not to cause reduction during annealing. When reduction occurs during annealing, a small amount of P oxide contained in the oxide film is reduced as described above, and the effect of accelerating the alloying rate is significantly reduced. Also, since the annealing is performed at a high temperature, if the oxidizing property of the atmosphere is strong, the oxidation proceeds more remarkably, and not only pick-up of the iron oxide occurs in the annealing furnace, but also the iron oxide cannot be completely reduced in the next reduction step. Plating may occur.
For this reason, it is preferable that the annealing atmosphere be a slightly oxidizing or substantially inert atmosphere having significantly lower oxidizing property than the atmosphere of the preheating furnace.

【0038】焼鈍に適した実質的に不活性または微酸化
性の雰囲気ガスガスとしては、(a)O2を1〜500 ppm 含
み、残りがN2からなるN2-02 ガス、及び(b) 0.4 ≦P(H
2O)/P(H2)≦ 1.0程度のH2O-H2-N2 ガスが挙げられる。
前酸化の雰囲気と同様に、N2の代わりにAr、He等の希ガ
スを使用してもよい。これらのガスのO2またはH2O 濃度
の下限は、Feの還元を生じさせない最小濃度であり、上
限は高温の焼鈍炉内での鉄の酸化を著しく促進しないよ
うな濃度である。
As the substantially inert or slightly oxidizing atmosphere gas gas suitable for annealing, (a) an N 2 -O 2 gas containing 1 to 500 ppm of O 2 and the balance consisting of N 2 , and (b) ) 0.4 ≦ P (H
H 2 OH 2 —N 2 gas of about 2 O) / P (H 2 ) ≦ 1.0.
As in the pre-oxidation atmosphere, a rare gas such as Ar or He may be used instead of N 2 . The lower limit of the O 2 or H 2 O concentration of these gases is a minimum concentration that does not cause reduction of Fe, and the upper limit is a concentration that does not significantly promote iron oxidation in a high-temperature annealing furnace.

【0039】焼鈍炉内のガス雰囲気を上記のように保持
するには、予備加熱炉と焼鈍炉の間の雰囲気を遮断する
ことが好ましい。この雰囲気の遮断は、予備加熱炉と焼
鈍炉の間に、シールロールやスロートを設けるか、また
はエアーカーテンなどのガスシールドにより達成され
る。予備加熱炉内の酸化性がより高いガスが、より高温
の焼鈍炉に侵入すると、焼鈍炉内で酸化が促進されす
ぎ、上記のような問題が起こることがある。
In order to maintain the gas atmosphere in the annealing furnace as described above, it is preferable to shut off the atmosphere between the preheating furnace and the annealing furnace. This interruption of the atmosphere is achieved by providing a seal roll or throat between the preheating furnace and the annealing furnace, or by using a gas shield such as an air curtain. If the more oxidizing gas in the preheating furnace enters the higher temperature annealing furnace, the oxidation may be promoted too much in the annealing furnace, and the above-mentioned problem may occur.

【0040】焼鈍炉での鋼板の昇温は、誘導加熱、通電
加熱、ラジアントチューブ、赤外加熱などの加熱方式で
達成することができる。焼鈍が目的であるため、焼鈍炉
内での昇温速度は特に制限されないが、生産効率から急
速加熱が好ましい。実際には、上記のガス雰囲気であれ
ば、10℃/s以上、特に10〜100 ℃/sの昇温速度で十分で
ある。また、焼鈍温度 (到達温度) での保持時間は、再
結晶に必要な時間であるが、材料特性が良好であれば1
秒程度で十分である。加熱方式やその制御方法にも依存
するが、実際の保持時間は10〜100 秒程度となろう。
The heating of the steel sheet in the annealing furnace can be achieved by a heating method such as induction heating, electric heating, radiant tube, infrared heating, and the like. Since the purpose is annealing, the rate of temperature rise in the annealing furnace is not particularly limited, but rapid heating is preferable in terms of production efficiency. Actually, in the above gas atmosphere, a temperature rising rate of 10 ° C./s or more, particularly 10 to 100 ° C./s, is sufficient. The holding time at the annealing temperature (attained temperature) is the time required for recrystallization.
Seconds are sufficient. The actual holding time will be about 10 to 100 seconds, depending on the heating method and its control method.

【0041】焼鈍温度の鋼板を次の還元炉に直ちに送る
と、750 ℃以上の高温で鋼板表面の酸化鉄皮膜が還元を
受け、P酸化物の還元が起こるため、還元炉に送る前に
鋼板温度が750 ℃以下に下がるように、焼鈍炉内または
還元炉への移送中の冷却帯において、鋼板を焼鈍と同様
の雰囲気中で冷却する。この時の冷却速度は特に制限さ
れないが、5〜20℃/sが好ましい。
When the steel sheet at the annealing temperature is immediately sent to the next reduction furnace, the iron oxide film on the steel sheet surface is reduced at a high temperature of 750 ° C. or more, and the P oxide is reduced. The steel sheet is cooled in an atmosphere similar to that of the annealing in the annealing furnace or in a cooling zone during transfer to the reduction furnace so that the temperature falls to 750 ° C. or less. The cooling rate at this time is not particularly limited, but is preferably 5 to 20 ° C / s.

【0042】なお、上記のように予備加熱炉と焼鈍炉に
分けて加熱を行うことが、酸化鉄量の制御が容易で好ま
しいが、これは必ずしも必須ではない。酸化鉄量の制御
はより難しくなるが、焼鈍炉の酸化性をやや高くして、
焼鈍炉内での 750〜900 ℃への加熱だけで前酸化と焼鈍
の両方の目的を達成することができる。要は、焼鈍が終
了して750 ℃以下に冷却された鋼板が、酸化後に実質的
に還元を受けておらず、かつ酸化鉄量が0.05〜1.0 g/m2
の範囲内にあればよい。
It should be noted that it is preferable to perform heating separately in the preheating furnace and the annealing furnace as described above because the amount of iron oxide can be easily controlled, but this is not always essential. Although it becomes more difficult to control the amount of iron oxide, the oxidizing property of the annealing furnace is slightly increased,
Only heating to 750-900 ° C in an annealing furnace can achieve both pre-oxidation and annealing purposes. In short, the steel sheet that has been annealed and cooled to 750 ° C. or less has not been substantially reduced after oxidation and has an iron oxide content of 0.05 to 1.0 g / m 2.
It should just be in the range of.

【0043】還元工程 上記のように、還元を伴わずに焼鈍した鋼板を次いで還
元炉内に送る。この還元炉を通過する間に、鋼板を750
℃未満、550 ℃以上の温度で還元して、鋼板表面の鉄酸
化物を還元鉄にする。しかし、還元温度が750 ℃未満で
あるため、鉄酸化物中に存在する微量のP酸化物は還元
を受けず、酸化物の状態にとどまる。そして、このP酸
化物は、前述したように、めっき後の合金化工程におい
て不活性であり、Fe−Zn反応の遅延を生じないため、還
元鉄による合金化促進効果が十分に発揮され、合金化速
度が著しく高くなる。
Reduction Step As described above, the steel sheet annealed without reduction is then sent into a reduction furnace. While passing through the reduction furnace, 750
Reduces iron oxide on the steel sheet surface to reduced iron at a temperature lower than ℃ and higher than 550 ℃. However, since the reduction temperature is lower than 750 ° C., a small amount of the P oxide present in the iron oxide is not reduced and remains in the oxide state. As described above, this P oxide is inactive in the alloying step after plating, and does not cause a delay in the Fe-Zn reaction. The conversion speed is significantly increased.

【0044】還元温度が550 ℃未満では還元速度が遅
く、鋼板表面に鉄酸化物が残存して、不めっきの原因と
なる恐れがある。還元温度が750 ℃以上になると、酸化
鉄中のP酸化物も一緒に還元され、還元鉄は母材と同等
の濃度で還元Pを含むことになり、これがFe−Zn反応に
関与して、反応を遅延させるため、合金化促進効果が低
くなる。
If the reduction temperature is lower than 550 ° C., the reduction rate is low, and iron oxide may remain on the steel sheet surface, which may cause non-plating. When the reduction temperature exceeds 750 ° C., the P oxide in the iron oxide is reduced together, and the reduced iron contains reduced P at a concentration equivalent to that of the base material, which participates in the Fe-Zn reaction, Since the reaction is delayed, the effect of promoting alloying is reduced.

【0045】還元は鋼板表面の鉄酸化物が還元鉄に還元
されるまで行う。好ましい還元時間は30〜120 秒の範囲
内である。30秒未満では鉄酸化物を完全に還元すること
ができず、不めっきが生じる。また、120 秒以上では、
ライン長を長くする、またはライン速度を低下させるな
どの処置が必要となり、設備または生産などのコストが
かかる。温度保持を行うため、還元炉内でも加熱設備が
一般に必要となる。加熱方式は、誘導加熱、通電加熱、
ラジアントチューブ方式、赤外加熱方式などが可能であ
る。
The reduction is performed until the iron oxide on the steel sheet surface is reduced to reduced iron. Preferred reduction times are in the range of 30 to 120 seconds. If the time is less than 30 seconds, the iron oxide cannot be completely reduced, and non-plating occurs. Also, over 120 seconds,
Measures such as lengthening the line length or decreasing the line speed are required, and cost for equipment or production is required. In order to maintain the temperature, heating equipment is generally required even in the reduction furnace. Heating method is induction heating, electric heating,
Radiant tube method, infrared heating method, etc. are possible.

【0046】前工程が鉄酸化が起こりうる非還元性雰囲
気であるので、前工程と還元工程との間の雰囲気の遮断
が必要である。この遮断には、シールロール、スロー
ト、エアーシールドなどを使用することができる。
Since the pre-process is a non-reducing atmosphere in which iron oxidation can occur, it is necessary to shut off the atmosphere between the pre-process and the reduction process. For this blocking, a seal roll, a throat, an air shield, or the like can be used.

【0047】還元雰囲気は、上記温度範囲で鉄酸化物は
還元されるが、P酸化物は還元されないように設定す
る。具体的には、水素濃度が2〜25%で、露点が−60℃
〜0℃であれば、このような条件となる。露点が低く、
水素濃度が高いほど酸化鉄を還元し易いので、ライン速
度を速くすることができ、生産性が向上する。しかし、
還元温度が 700℃以上、750 ℃未満と本発明の範囲内で
比較的高い場合には、還元雰囲気のO2(H2O) ポテンシャ
ルの低い状態で還元すると、先に述べたP酸化物の還元
が起こって改善効果が小さくなる可能性があるので、露
点を−30℃以上とし、還元時間を30〜90秒とすることが
好ましい。
The reducing atmosphere is set so that iron oxide is reduced in the above temperature range, but P oxide is not reduced. Specifically, the hydrogen concentration is 2 to 25% and the dew point is -60 ° C.
If it is 0 ° C., such a condition is satisfied. Low dew point,
The higher the hydrogen concentration, the easier the iron oxide is to reduce, so that the line speed can be increased and the productivity is improved. But,
When the reduction temperature is relatively high within the range of the present invention, that is, 700 ° C. or higher and lower than 750 ° C., when the reduction is performed in a reducing atmosphere having a low O 2 (H 2 O) potential, the above-described P oxide Since reduction may occur and the improvement effect may be reduced, it is preferable to set the dew point to -30 ° C or higher and the reduction time to 30 to 90 seconds.

【0048】溶融亜鉛めっき工程 以上の条件下で酸化焼鈍工程、および還元工程を経た
後、鋼板を通常はめっき浴温度まで冷却してから、めっ
き浴中の溶融亜鉛に浸漬して溶融亜鉛めっきを行う。こ
のめっき工程自体は、従来と同様の条件下で行えばよ
く、本発明においては特に条件を設定しない。
The oxidation annealing step under the conditions described above molten zinc plating step, and after a reduction step, the steel sheet was cooled usually to a plating bath temperature, immersed in a galvanizing in the molten zinc plating bath Do. This plating step itself may be performed under the same conditions as in the past, and no particular conditions are set in the present invention.

【0049】めっき浴は主としてZnとAlで構成されてい
る。Al濃度は0.03〜0.2 %の範囲内が好ましく、Al濃度
がこの範囲内であれば、本発明のよる合金化促進効果が
十分に期待できる。即ち、本発明では、合金化溶融亜鉛
めっきに従来用いられてきた0.08〜0.11%のAl濃度に比
べて、Al濃度の幅を広くすることができる。これは、従
来はAlが合金化の抑制効果を示すため、濃度を制限して
きたのに対し、本発明では上記のように合金化促進効果
が発揮されるため、Al濃度が高くなっても、合金化の遅
延が起こらないためである。
The plating bath is mainly composed of Zn and Al. The Al concentration is preferably in the range of 0.03 to 0.2%, and if the Al concentration is within this range, the alloying promoting effect of the present invention can be sufficiently expected. That is, in the present invention, the range of the Al concentration can be made wider than the Al concentration of 0.08 to 0.11% conventionally used for galvannealing. This is because Al conventionally shows an effect of suppressing alloying, so that the concentration has been limited, whereas in the present invention, since the alloying promoting effect is exerted as described above, even if the Al concentration is high, This is because there is no delay in alloying.

【0050】Al濃度の下限はドロス生成によるもので、
0.03%未満ではドロス発生が多く、操業が困難である。
Al濃度の上限は、本発明の対象製品が主に自動車用鋼板
であって、Zn−Al合金めっき鋼板は対象外であるためで
ある。従って、0.2 %以上のAl濃度でめっきすることは
ほとんどない。
The lower limit of the Al concentration is due to dross formation.
If it is less than 0.03%, dross is generated frequently and operation is difficult.
The upper limit of the Al concentration is because the target product of the present invention is mainly a steel plate for an automobile, and a Zn-Al alloy plated steel plate is not a target. Therefore, there is almost no plating at an Al concentration of 0.2% or more.

【0051】前述したように、めっき浴中のAl濃度が0.
12〜0.2 %と、上記範囲内で高めの場合には、合金化後
のめっき密着性の向上が顕著に起こる。従って、合金化
溶融亜鉛めっき製品のうち、外板に使用するものなど特
に密着性を必要とするものについては、0.12〜0.2 %の
Alを含有するめっき浴中でめっきを行うことが好まし
い。
As described above, the concentration of Al in the plating bath is set to 0.1.
If it is 12 to 0.2%, which is higher than the above range, the adhesion of plating after alloying is remarkably improved. Therefore, among alloyed hot-dip galvanized products that require special adhesion, such as those used for outer plates, 0.12-0.2%
It is preferable to perform plating in a plating bath containing Al.

【0052】めっき浴成分としては、他に鋼板の溶出に
よるFeの混入などがあるが、Fe濃度が0.05%以下 (ドロ
スを含まない) であれば影響はない。その他、不可避不
純物としてNi、Co、Cr、Cu、Si、Ti、Li、Nb、Mo、Ta、
Ca、Mg、Mn、K、Na、Pb、Sn、Wなどの金属が1種以上
混入していても、各元素当たりの濃度が0.02%以下で合
計の濃度が0.5 %以下であれば、影響はほとんどない。
Other components of the plating bath include the inclusion of Fe due to elution of the steel sheet, but there is no effect if the Fe concentration is 0.05% or less (does not include dross). In addition, Ni, Co, Cr, Cu, Si, Ti, Li, Nb, Mo, Ta,
Even if one or more metals such as Ca, Mg, Mn, K, Na, Pb, Sn, and W are mixed, if the concentration per each element is 0.02% or less and the total concentration is 0.5% or less, the influence is obtained. Almost no.

【0053】めっき浴の温度は、通常は 420〜520 ℃の
範囲である。420 ℃未満では凝固点近傍であるため浴が
凝固することがあり操業が困難となり、520 ℃より高温
ではFe溶出量が増加し、ドロス発生が顕著になる。めっ
き浴の温度上昇を避けるため、めっき浴侵入時の鋼板温
度も 420〜520 ℃の範囲内のめっき浴温度になるべく近
い温度にする。
[0053] The temperature of the plating bath is usually in the range of 420 to 520 ° C. If the temperature is lower than 420 ° C., the bath may be solidified because the temperature is near the freezing point, making the operation difficult. If the temperature is higher than 520 ° C., the amount of Fe eluted increases and dross generation becomes remarkable. In order to avoid a rise in the temperature of the plating bath, the temperature of the steel sheet when entering the plating bath is also set as close as possible to a plating bath temperature in the range of 420 to 520 ° C.

【0054】めっき付着量は、従来と同様、片面当たり
25〜70 g/m2 程度が普通である。このめっき付着量は、
めっき浴の上部に設けた付着量制御手段 (例、ガスワイ
ピングノズル) によって行われる。
The plating adhesion amount is the same as the conventional one
About 25-70 g / m 2 is common. This plating weight is
This is performed by means for controlling the amount of deposition provided on the plating bath (eg, a gas wiping nozzle).

【0055】合金化熱処理工程 めっき浴を出た溶融亜鉛めっき鋼板を、めっき浴のすぐ
下流に設けた熱処理炉で加熱して、Znめっき層をZn−Fe
合金層に変える。この合金化熱処理も従来と同様に実施
すればよく、本発明では特に条件を設定しない。
Alloying heat treatment step The hot-dip galvanized steel sheet that has exited the plating bath is heated in a heat treatment furnace provided immediately downstream of the plating bath to form a Zn-plated layer of Zn-Fe.
Change to alloy layer. This alloying heat treatment may be performed in the same manner as in the prior art, and no particular conditions are set in the present invention.

【0056】通常は、温度 480〜600 ℃程度で3〜60秒
間程度の加熱を行うことで、皮膜中Fe濃度を8〜12%程
度に調整したZn−Fe合金層を形成する。加熱方法につい
ては、誘導加熱、直接通電、バーナー、赤外線による加
熱などが可能である。加熱雰囲気は大気中が普通であ
る。熱処理炉を出た合金化溶融亜鉛めっき鋼板は、適当
な冷却手段 (例、水冷および/または空冷) で冷却し、
通常は歪取りのためにスキンパス圧延を受けてから、巻
き取られる。
Usually, by heating at a temperature of about 480 to 600 ° C. for about 3 to 60 seconds, a Zn—Fe alloy layer in which the Fe concentration in the film is adjusted to about 8 to 12% is formed. As for the heating method, induction heating, direct energization, burner, heating by infrared rays, etc. are possible. The heating atmosphere is usually in the air. The galvannealed steel sheet exiting the heat treatment furnace is cooled by a suitable cooling means (eg, water cooling and / or air cooling),
Usually, the sheet is rolled after being subjected to skin pass rolling to remove distortion.

【0057】[0057]

【実施例】実施例1 めっき母材として、表1に示す組成を持った、P添加量
の異なる下記A〜Fの6種類の炭素鋼冷延鋼板の未焼鈍
材 (板厚0.8 mm) を、 250×100 mmに裁断して使用し
た。
EXAMPLES Example 1 As a plating base material, unannealed materials (sheet thickness 0.8 mm) of the following six types of carbon steel cold-rolled steel sheets A to F having the compositions shown in Table 1 and differing in the amount of P added were used. , 250 x 100 mm.

【0058】[0058]

【表1】 [Table 1]

【0059】上記の各鋼板を、予め10%NaOH水溶液で脱
脂した後、所定雰囲気での熱処理が可能で、かつ還元雰
囲気から直接溶融めっきすることが可能な、実験用竪型
溶融めっき装置 (レスカ社製) を用いて、次に述べるよ
うにして(1) 前酸化、(2) 焼鈍、(3) 還元の各工程と
(4) 溶融めっきを行った。装置内での各加熱時の絶対圧
はいずれも1気圧であった。
Each of the above steel sheets is degreased with a 10% NaOH aqueous solution in advance, and then can be subjected to a heat treatment in a predetermined atmosphere and can be directly hot-dipped from a reducing atmosphere. Using the following steps: (1) pre-oxidation, (2) annealing, and (3) reduction
(4) Hot-dip plating was performed. The absolute pressure at the time of each heating in the apparatus was 1 atm.

【0060】(1) 前酸化 脱脂した鋼板は、上記めっき装置の熱処理炉内で、表2
のa〜eに示す、O2濃度5〜5000 ppmのO2-N2 混合ガス
中または大気中で、表2に示す条件下で、 500〜700 ℃
の温度に予備加熱して鋼板表面を酸化し、酸化皮膜を形
成した。鋼板表面の酸化鉄量を溶液分析法により測定し
た。測定結果をFe換算量として表4に示す。
(1) Pre-oxidation The degreased steel sheet was placed in the heat treatment furnace of the above plating apparatus, as shown in Table 2.
A to e, in an O 2 -N 2 mixed gas having an O 2 concentration of 5 to 5000 ppm or in the air under the conditions shown in Table 2 at 500 to 700 ° C.
, And the surface of the steel sheet was oxidized to form an oxide film. The amount of iron oxide on the steel sheet surface was measured by a solution analysis method. Table 4 shows the measurement results as Fe conversion amounts.

【0061】[0061]

【表2】 [Table 2]

【0062】(2) 焼鈍 上記のように予備加熱して前酸化した後、鋼板を上記雰
囲気中で一旦200 ℃まで冷却し、次いで雰囲気ガスを表
3に示す〜のいずれかの非還元性 (微酸化性または
実質的に不活性) ガスに置換し、このガス雰囲気中で、
昇温速度20℃/sで750 ℃以上、900 ℃以下の到達温度ま
で昇温させ、この温度に10〜90秒間保持した後、冷却速
度10℃/sで、750 ℃未満の還元温度まで冷却することに
よって、焼鈍を行った。この焼鈍後の酸化鉄量も上記と
同様に測定した。焼鈍工程での到達温度と保持時間およ
び還元温度、ならびに焼鈍後の酸化鉄量は表4に示す。
(2) Annealing After preheating and pre-oxidation as described above, the steel sheet is once cooled to 200 ° C. in the above atmosphere, and then the atmosphere gas is subjected to any of the non-reducing (Slightly oxidizing or substantially inert) gas, and in this gas atmosphere,
At a heating rate of 20 ° C / s, the temperature is raised to a temperature not lower than 750 ° C and not higher than 900 ° C, maintained at this temperature for 10 to 90 seconds, and then cooled at a cooling rate of 10 ° C / s to a reduction temperature of less than 750 ° C. By doing so, annealing was performed. The amount of iron oxide after this annealing was also measured in the same manner as above. Table 4 shows the attained temperature, the holding time, the reduction temperature, and the amount of iron oxide after annealing in the annealing step.

【0063】[0063]

【表3】 [Table 3]

【0064】(3) 還元 焼鈍雰囲気中で還元温度まで冷却した後、雰囲気ガスを
露点が−60℃〜0℃、H2濃度が5〜30%のN2-H2 混合ガ
スに置換し、この鉄還元性雰囲気中で 550℃以上、750
℃未満の表4に示す還元温度に20〜90秒保持して還元を
行った。還元温度と保持時間は表4に示す。比較のため
に、還元温度が本発明の範囲外 (550 ℃未満か、750 ℃
以上) であるか、或いは雰囲気ガスが還元性雰囲気では
ない (即ち、露点が0℃超) 条件下で同様に還元を行っ
た。この時の条件も表4に示す。
(3) Reduction After cooling to a reduction temperature in an annealing atmosphere, the atmosphere gas is replaced with an N 2 -H 2 mixed gas having a dew point of −60 ° C. to 0 ° C. and an H 2 concentration of 5 to 30%, 550 ° C or more, 750 in this iron reducing atmosphere
The reduction was carried out at a reduction temperature shown in Table 4 below 20C for 20 to 90 seconds. Table 4 shows the reduction temperature and the retention time. For comparison, reduction temperatures outside the range of the present invention (less than 550 ° C or 750 ° C)
) Or the atmosphere gas is not a reducing atmosphere (ie, the dew point is more than 0 ° C.), and the same reduction was performed. Table 4 also shows the conditions at this time.

【0065】(4) 溶融亜鉛めっき 還元工程での温度保持が終了した後、この還元性雰囲気
で鋼板温度が約460 ℃になるまで冷却した。冷却した鋼
板を、次いでAl濃度0.03%以上、0.2 %以下、残部Znか
らなる、浴温460 ℃の溶融亜鉛浴中に浸漬して両面溶融
めっきを行った。めっき浴浸漬時間は2秒であり、ガス
ワイパーによりZn付着量を約60 g/m2(片面当たり) に調
整した。
(4) Hot-dip galvanizing After the temperature holding in the reduction step was completed, the steel sheet was cooled in this reducing atmosphere until the temperature of the steel sheet reached about 460 ° C. The cooled steel sheet was then immersed in a hot-dip zinc bath having an Al concentration of 0.03% or more and 0.2% or less and the balance being Zn and having a bath temperature of 460 ° C. to perform hot-dip coating on both sides. The plating bath immersion time was 2 seconds, and the amount of Zn deposited was adjusted to about 60 g / m 2 (per one side) with a gas wiper.

【0066】(5) 合金化熱処理 めっき後、500 ℃の塩浴で合金化熱処理し、皮膜中Fe濃
度が9〜11%になった時間を合金化完了時間として測定
した。合金化時間が20秒以下を○、20〜40秒を△、40秒
以上を×と判定した。この合金化の評価も表4に併せて
示す。
(5) Heat treatment for alloying After the plating, the alloy was heat-treated for alloying in a salt bath at 500 ° C., and the time when the Fe concentration in the film became 9 to 11% was measured as the alloying completion time. The alloying time was determined to be を for 20 seconds or less, Δ for 20 to 40 seconds, and × for 40 seconds or more. The evaluation of this alloying is also shown in Table 4.

【0067】[0067]

【表4】 [Table 4]

【0068】表4からわかるように、本発明に従って、
前酸化でFe換算量で0.05〜1.0 g/mとなるよう
に鋼板表面を酸化した後、非還元性雰囲気中で酸化鉄量
が1.0 g/mを超えないように焼鈍し、次いで75
0 ℃未満で還元するという工程順でめっき前処理を行う
ことにより、P添加鋼の溶融亜鉛めっき後の合金化が促
進され、短時間で合金化処理を完了することができた。
一方、比較例のように、還元条件が本発明の範囲外で
は、合金化促進効果は得られなかった。
As can be seen from Table 4, according to the present invention,
After oxidizing the steel sheet surface by pre-oxidation so as to be 0.05 to 1.0 g / m 2 in terms of Fe, annealing in a non-reducing atmosphere so that the iron oxide amount does not exceed 1.0 g / m 2. And then 75
By performing the plating pretreatment in the order of reduction at a temperature lower than 0 ° C., alloying of the P-added steel after hot-dip galvanizing was promoted, and the alloying treatment could be completed in a short time.
On the other hand, when the reducing conditions were out of the range of the present invention as in the comparative example, no alloying promoting effect was obtained.

【0069】実施例2 実施例1と同様に合金化溶融亜鉛めっき鋼板を作製し
た。ただし、溶融亜鉛めっき時の浴中Al濃度を0.12%以
上とし、次の合金化熱処理を皮膜中のFe濃度が9〜11%
になるまで行った。得られた合金化溶融亜鉛めっき鋼板
について、次の2種類の試験方法でめっき皮膜の密着性
を評価した。
Example 2 An alloyed hot-dip galvanized steel sheet was produced in the same manner as in Example 1. However, the Al concentration in the bath at the time of hot-dip galvanizing was set to 0.12% or more, and the Fe concentration in the coating was changed to 9 to 11% by the next alloying heat treatment.
I went until it became. With respect to the obtained galvannealed steel sheet, the adhesion of the plating film was evaluated by the following two types of test methods.

【0070】カップ絞り後の皮膜剥離試験:直径60 m
m の円板状に打ち抜いた合金化溶融亜鉛めっき鋼板の試
験片を、常温でポンチ直径30 mm 、ダイス肩半径3Rの
円筒絞りにより剪断を付与した後、外側円筒部のテープ
剥離を行い、剥離重量を測定し、次の基準で評価した。 ○:25mg未満 (良好) 、 △:25mg以上、35mg未満 (通常) 、 ×:35mg以上 (不良) 。
Film peeling test after cup squeezing: diameter 60 m
A test piece of a galvannealed steel sheet punched out into a disc shape with a diameter of 30 m was subjected to shearing at room temperature by a cylindrical drawing with a punch diameter of 30 mm and a die shoulder radius of 3R. The weight was measured and evaluated according to the following criteria. :: Less than 25 mg (good), Δ: 25 mg or more, less than 35 mg (normal), ×: 35 mg or more (bad).

【0071】塗装後の低温衝撃試験: 150×70mmの寸
法に切り出した合金化溶融亜鉛めっき鋼板の試験片を、
市販の浸漬式リン酸塩処理液で化成処理した後、カチオ
ン型電着塗料による下塗り→中塗り→上塗りの3コート
塗装 (合計膜厚:100 μm)を施した。得られた塗装鋼
板を−20℃に冷却保持し、グラベロ試験機において直径
4〜6mmの砂利石 (玄武岩) 10個を空気圧2.0 kg/cm2
衝突速度100 〜150km/hrの条件で衝突させ、各衝突点で
の塗装の剥離径を測定した。この剥離径の平均(平均剥
離径) により、次の基準で評価した。 ○:4.0mm 以下 (良好) 、 ×:4.0mm 超 (不良) 。
Low-temperature impact test after painting: A test piece of an alloyed hot-dip galvanized steel sheet cut out to a size of 150 × 70 mm was
After a chemical conversion treatment with a commercially available immersion phosphating solution, a three-coat coating (total film thickness: 100 μm) of a base coat → intermediate coat → top coat with a cationic electrodeposition paint was applied. The obtained coated steel sheet was cooled and kept at −20 ° C., and 10 gravel stones (basalt) having a diameter of 4 to 6 mm were air-pressed at a pressure of 2.0 kg / cm 2 in a Gravelo testing machine.
Collision was performed at a collision speed of 100 to 150 km / hr, and the peeling diameter of the coating at each collision point was measured. The average of the peel diameters (average peel diameter) was evaluated according to the following criteria. ○: 4.0 mm or less (good), ×: more than 4.0 mm (bad).

【0072】この密着性試験の結果を、母材の鋼種およ
び各処理条件と一緒に表5にまとめて示す。表5におい
て、各記号の意味は実施例1と同じである。比較のため
に、浴中Al濃度が0.12%未満の例、ならびにその他の条
件が本発明の範囲外の例の結果も、比較例として示す。
The results of the adhesion test are shown together in Table 5 together with the steel type of the base material and each processing condition. In Table 5, the meaning of each symbol is the same as in Example 1. For comparison, the results of examples in which the Al concentration in the bath is less than 0.12%, and examples in which other conditions are outside the scope of the present invention are also shown as comparative examples.

【0073】[0073]

【表5】 [Table 5]

【0074】表5からわかるように、めっき浴中のAl濃
度が0.12%以上と高いと、合金化処理後のめっき皮膜の
密着性が向上し、密着性試験で剪断付与後の剥離が少
なく、密着性試験の低温衝撃にも十分に耐える、密着
性に優れためっき皮膜が得られるので、自動車外板など
の用途に特に好適となる。しかし、浴中Al濃度が0.12%
以上であっても、還元条件が本発明の範囲外になると、
めっき密着性の改善は得られない。即ち、このめっき密
着性改善効果は、めっき前の処理条件が本発明の範囲内
であって、かつ浴中Al濃度が0.12%以上の時に得られる
のである。
As can be seen from Table 5, when the Al concentration in the plating bath is as high as 0.12% or more, the adhesion of the plated film after the alloying treatment is improved, and the peeling after applying shear in the adhesion test is small. Since a plating film having excellent adhesion that can sufficiently withstand the low-temperature impact of the adhesion test can be obtained, it is particularly suitable for applications such as automobile outer panels. However, the Al concentration in the bath was 0.12%
Even above, if the reduction conditions are out of the range of the present invention,
No improvement in plating adhesion can be obtained. That is, the effect of improving the plating adhesion is obtained when the processing conditions before plating are within the range of the present invention and the Al concentration in the bath is 0.12% or more.

【0075】[0075]

【発明の効果】以上に説明した通り、本発明によれば、
P添加高張力鋼板の合金化溶融亜鉛めっきにおいて、従
来に比べて合金化速度を著しく高めることができ、合金
化溶融亜鉛めっき鋼板を効率的かつ経済的に製造するこ
とができる。また、めっき浴のAl濃度を調整すること
で、合金化後のめっき皮膜の密着性を高めることができ
る。本発明の方法で製造されためっき鋼板は、自動車用
材料、特に外板材料として使用可能な高性能を示すが、
比較的安価に製造できるため、家電製品や建材などの他
の用途にも有用である。
As described above, according to the present invention,
In alloying hot-dip galvanizing of a P-added high-strength steel sheet, the alloying speed can be significantly increased as compared with the conventional method, and an alloyed hot-dip galvanized steel sheet can be manufactured efficiently and economically. Further, by adjusting the Al concentration in the plating bath, the adhesion of the plated film after alloying can be enhanced. Although the plated steel sheet produced by the method of the present invention exhibits high performance that can be used as a material for automobiles, particularly as an outer plate material,
Because it can be manufactured relatively inexpensively, it is also useful for other uses such as home appliances and building materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を実施するのに適した溶融亜鉛め
っきラインの模式図である。
FIG. 1 is a schematic diagram of a hot dip galvanizing line suitable for carrying out the method of the present invention.

フロントページの続き (56)参考文献 特開 平6−306561(JP,A) 特開 平4−232241(JP,A) (58)調査した分野(Int.Cl.6,DB名) C23C 2/00 - 2/40 Continuation of the front page (56) References JP-A-6-306561 (JP, A) JP-A-4-232241 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C23C 2 / 00-2/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 P>0.020 wt%の高張力鋼材を、非還元
性雰囲気中で再結晶温度以上、900 ℃以下の温度範囲に
加熱した後、750 ℃以下まで冷却し、この間に鋼板表面
にFe換算で0.05 g/m2 以上、1.0 g/m2以下の酸化皮膜を
形成し、次いで750 ℃未満、550 ℃以上の還元性雰囲気
中で還元した後、溶融亜鉛めっきを施し、合金化熱処理
を行うことを特徴とする、P添加高張力鋼材の合金化溶
融亜鉛めっき方法。
1. A high-tensile steel material of P> 0.020 wt% is heated in a non-reducing atmosphere to a temperature range of not lower than a recrystallization temperature and not higher than 900 ° C., and then cooled to 750 ° C. or lower, during which time the steel sheet surface An oxide film of 0.05 g / m 2 or more and 1.0 g / m 2 or less in terms of Fe is formed, then reduced in a reducing atmosphere of less than 750 ° C and 550 ° C or more, then hot-dip galvanized, and heat treated for alloying. A galvannealing method for alloying a P-added high-tensile steel material.
【請求項2】 前記溶融亜鉛めっきを、浴中Al濃度が0.
12〜0.20wt%のめっき浴で行う、請求項1記載の方法。
2. The hot-dip galvanizing method according to claim 1, wherein the Al concentration in the bath is 0.
The method according to claim 1, wherein the plating is performed in a plating bath of 12 to 0.20 wt%.
JP9693395A 1995-04-21 1995-04-21 Alloying hot-dip galvanizing method for P-added high-strength steel Expired - Lifetime JP2964911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9693395A JP2964911B2 (en) 1995-04-21 1995-04-21 Alloying hot-dip galvanizing method for P-added high-strength steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9693395A JP2964911B2 (en) 1995-04-21 1995-04-21 Alloying hot-dip galvanizing method for P-added high-strength steel

Publications (2)

Publication Number Publication Date
JPH08291379A JPH08291379A (en) 1996-11-05
JP2964911B2 true JP2964911B2 (en) 1999-10-18

Family

ID=14178149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9693395A Expired - Lifetime JP2964911B2 (en) 1995-04-21 1995-04-21 Alloying hot-dip galvanizing method for P-added high-strength steel

Country Status (1)

Country Link
JP (1) JP2964911B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4610272B2 (en) * 2004-09-22 2011-01-12 日新製鋼株式会社 Method for producing Zn-Al-Mg alloy-plated steel sheet excellent in resistance to molten metal embrittlement cracking
JP4882432B2 (en) * 2006-03-07 2012-02-22 Jfeスチール株式会社 Hot-dip galvanized steel sheet and apparatus for manufacturing the same, surface treatment control method, surface treatment control apparatus
JP4882447B2 (en) * 2006-03-28 2012-02-22 Jfeスチール株式会社 Method for producing hot-dip galvanized steel sheet
JP5000361B2 (en) * 2007-04-05 2012-08-15 新日本製鐵株式会社 Method, apparatus, and computer program for controlling plate temperature in continuous processing line
KR20100076744A (en) * 2008-12-26 2010-07-06 주식회사 포스코 Annealing apparatus of steel sheet, manufacturing apparatus and method for hot-dip galvanized steel with excellent coating quality
RU2510423C2 (en) * 2009-08-31 2014-03-27 Ниппон Стил Корпорейшн High-strength electroplated sheet steel
CN103849825B (en) * 2014-03-05 2016-03-02 首钢总公司 The flexible preoxidation device and method of a kind of continuous hot galvanizing line
JP6748375B2 (en) * 2016-10-19 2020-09-02 Jfeスチール株式会社 Descaling method for Si-containing hot rolled steel sheet
WO2024024117A1 (en) * 2022-07-29 2024-02-01 日本製鉄株式会社 Induction heating device for metal sheet, processing equipment for metal sheet, and induction heating method for metal sheet

Also Published As

Publication number Publication date
JPH08291379A (en) 1996-11-05

Similar Documents

Publication Publication Date Title
JP5720856B2 (en) Galvanized steel sheet for hot forming
JP3527092B2 (en) High-strength galvannealed steel sheet with good workability and method for producing the same
US11377712B2 (en) Hot dipped high manganese steel and manufacturing method therefor
JP2970445B2 (en) Hot-dip galvanizing method for Si-added high tensile steel
JP2707928B2 (en) Hot-dip galvanizing method for silicon-containing steel sheet
JP2964911B2 (en) Alloying hot-dip galvanizing method for P-added high-strength steel
JPH0688187A (en) Production of alloyed galvannealed steel sheet
JP3480357B2 (en) Method for producing high strength galvanized steel sheet containing Si and high strength galvannealed steel sheet
JP2619550B2 (en) Manufacturing method of galvannealed steel sheet
JPH0645853B2 (en) Method for producing galvannealed steel sheet
JP3382697B2 (en) Manufacturing method of galvannealed steel sheet
JPH11140587A (en) Galvannealed steel sheet excellent in plating adhesion
JP2993404B2 (en) Alloyed hot-dip galvanized steel sheet excellent in film adhesion and method for producing the same
JPH08170160A (en) Production of silicon-containing high tensile strength hot dip galvanized or galvannealed steel sheet
JPH06212383A (en) Hot dip galvanizing method for silicon-containing steel sheet
KR101188065B1 (en) Galvanized steel sheet having excellent coating adhesion and spot weldability and method for manufacturing the same
JP2705386B2 (en) Hot-dip galvanizing method for Si-containing steel sheet
JPH09310163A (en) High strength galvanized steel sheet excellent in press workability and plating adhesion
JP2725537B2 (en) Manufacturing method of galvannealed steel sheet with excellent impact adhesion
JPH0797670A (en) Galvanizing method for silicon-containing steel sheet
JPH05148604A (en) Manufacture of galvanized steel sheet
JPH05106001A (en) Hot-dip galvanizing method for silicon-containing steel sheet
JP2674429B2 (en) Hot-dip galvanizing method for silicon-containing steel sheet
JP2002173714A (en) High tensile strength hot dip plated steel sheet and its production method
JP3480348B2 (en) Method for producing high-strength galvanized steel sheet containing P and high-strength galvannealed steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990713