JPH03226550A - Manufacture of hot-dipped zinc coating or hot-dipped zinc alloy coating steel sheet having high sliding resistance - Google Patents

Manufacture of hot-dipped zinc coating or hot-dipped zinc alloy coating steel sheet having high sliding resistance

Info

Publication number
JPH03226550A
JPH03226550A JP2017890A JP2017890A JPH03226550A JP H03226550 A JPH03226550 A JP H03226550A JP 2017890 A JP2017890 A JP 2017890A JP 2017890 A JP2017890 A JP 2017890A JP H03226550 A JPH03226550 A JP H03226550A
Authority
JP
Japan
Prior art keywords
hot
plating
bath
sliding resistance
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017890A
Other languages
Japanese (ja)
Other versions
JPH0651903B2 (en
Inventor
Kazumi Nishimura
一実 西村
Toshio Odajima
小田島 壽男
Tetsuya Ohara
哲矢 大原
Ryohei Mizoguchi
溝口 良平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017890A priority Critical patent/JPH0651903B2/en
Publication of JPH03226550A publication Critical patent/JPH03226550A/en
Publication of JPH0651903B2 publication Critical patent/JPH0651903B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a hot-dipped zinc coating steel sheet having high sliding resistance, at the time of coating a steel sheet with molten zinc, by precoating the surface of the steel sheet with a specified metal or alloy and thereafter regulating the conditions of heating, a hot-dipped zinc coating bath and subsequent reheating. CONSTITUTION:The surface of a steel sheet is precoated with an alloy constituted of two or three kinds among Ni, Fe, Co, Cu, Sn, Zn and P such as Ni-P, Fe-Ni, Ni-Zn, Co-P and Ni-Fe-P by the amt. of 0.1 to 3.0g/m<2>. The above is heated in a heating furnace of <=5% O2 concn. to the temp. range of 430 to 500 deg.C at >=7 deg.C/sec temp. rising rate, is immediately immersed into a hot dipped zinc or hot-dipped zinc alloy coating bath of 430 to 500 deg.C bath temp. having 0.05 to 0.15% effective Al concn. and is hot- dipped. The above is pulled up from the hot dipping bath, is subjected to wiping treatment to regulate the coating weight, is thereafter discharged from a wiping apparatus and is immediately heated at 450 to 550 deg.C for 5 to 40sec, by which the hot-dipped zinc coating or hot-dipped zinc alloy coating steel sheet having high sliding resistance of a hot dipped face can be manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、亜鉛又は亜鉛系合金溶融めっき鋼板の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing zinc or zinc-based alloy hot-dip galvanized steel sheets.

〔従来の技術〕[Conventional technology]

従来、プレめっきを利用した溶融Znめっき方法につい
ては、例えば特公昭46−19282号公報記載の溶融
Znめっき方法が、一般のCGL法(無酸化炉および還
元炉を用いて700 ”C近傍まで加熱還元することに
より鋼板表面を活性化した後に溶融めっきを行う方法)
に代わって安価に密着性、加工性の良いめっき鋼板を得
る優れた方法としてすでに知られている。
Conventionally, regarding the hot-dip Zn plating method using pre-plating, for example, the hot-dip Zn plating method described in Japanese Patent Publication No. 46-19282 is based on the general CGL method (heating to around 700''C using a non-oxidation furnace and a reduction furnace). (method of activating the steel plate surface by reduction and then hot-dipping)
It is already known as an excellent method for obtaining plated steel sheets with good adhesion and workability at low cost.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

最近、建築材料などに使用される厚物溶融Znめっき鋼
板の造管材においては、特に、造管時のスリップ防止対
策などの観点から表面の摺動抵抗に優れることが新しく
具備すべき要件となってきた。
Recently, excellent surface sliding resistance has become a new requirement for pipe-making materials made from thick hot-dip Zn-coated steel sheets used as building materials, etc., especially from the perspective of preventing slippage during pipe-making. It's here.

しかしながら、従来のプレめっきを用いた溶融Znめっ
き法を以てしても表面の摺動抵抗を向上させることはで
きない。
However, even with the conventional hot-dip Zn plating method using pre-plating, the sliding resistance of the surface cannot be improved.

そこで、本発明者らはこのプレめっきヲ用いた溶融めっ
き法の特徴を活がしつつ、表面の摺動抵抗の優れためっ
き鋼板を得る方法を見出すために、プレめっき後の前処
理加熱条件、溶融めっき浴条件、さらには、溶融めっき
後の再加熱条件等のバランスを積極的に検討した結果、
めっき層の適度な合金化を進めることにより、めっき層
表面の摺動抵抗を著しく向上させることに成功した。
Therefore, in order to find a method for obtaining a plated steel sheet with excellent surface sliding resistance while taking advantage of the characteristics of the hot-dip plating method using this pre-plating, the present inventors investigated the pre-treatment heating conditions after pre-plating. As a result of actively considering the balance of hot-dip plating bath conditions, reheating conditions after hot-dip plating, etc.,
By proceeding with appropriate alloying of the plating layer, we succeeded in significantly improving the sliding resistance of the surface of the plating layer.

本発明は上記のようにプレめっき後の前処理加熱、めっ
き浴条件、再加熱条件をコントロールして表面の摺動抵
抗に優れた溶融めっき鋼板を製造する方法を提供するも
のであ”る。
The present invention provides a method for producing a hot-dip plated steel sheet with excellent surface sliding resistance by controlling the pretreatment heating, plating bath conditions, and reheating conditions after pre-plating as described above.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、まず、プレめっき後の加熱条件と浴条件
のみをコントロールすることによって、めっき時の合金
化を促進させることにより、摺動抵抗を向上させようと
試みた。その結果、鋼板の表面にNiめっき等を0.1
〜3.0g/m”施した後、0□4度5%以下の雰囲気
中で430〜500℃に7°(:/sec以上で加熱し
てそのまま浴中有効A j! 濃度0.05〜0.15
 %、浴m430〜500℃に制御された亜鉛又は亜鉛
系合金浴中に浸漬してめっきを行なえば、表面の摺動抵
抗がこれらの条件の一つをはずして製造した場合に比較
して向上することが判明した。そこで、さらに、その効
果を大きくするために、めっき後の再加熱を組み合わせ
ることを検討し、本発明範囲の再加熱条件下でのみ、相
乗効果が現れることがわかった。即ち、鋼板の表面にN
i、Fe、Co、Cu、Sn、ZnPの中から選択した
1種を単独で、或いは2種もしくは3種を合金で0.1
〜3.0g/m2めっき後、02濃度5%以下の雰囲気
中で430〜500℃に7℃/sec以上で加熱してそ
のまま浴中有効pJfj4度0.05〜0.15%、浴
温430〜500℃に制御された亜鉛又は亜鉛系合金浴
中に浸漬してめっきを行い、引き上げ後のワイピング直
上で450〜550℃の温度範囲で5〜40sec加熱
することにより、めっき密着性は勿論のことながら、表
面の摺動抵抗が極めて優れためっき綱板が得られること
を見出し、下記の本発明を完成したものである。
The present inventors first attempted to improve the sliding resistance by promoting alloying during plating by controlling only the heating conditions and bath conditions after pre-plating. As a result, the surface of the steel plate was coated with 0.1% Ni plating, etc.
~3.0g/m'', then heated to 430~500℃ at 7° (:/sec or more) in an atmosphere of 0□4 degrees and 5% or less to make it effective in the bath as it is A j! Concentration 0.05~ 0.15
%, bath m4 If plating is performed by immersion in a zinc or zinc-based alloy bath controlled at 30 to 500°C, the sliding resistance of the surface will be improved compared to when manufactured under one of these conditions. It turns out that it does. Therefore, in order to further increase the effect, we considered combining reheating after plating, and found that a synergistic effect appears only under reheating conditions within the range of the present invention. In other words, N on the surface of the steel plate
i, Fe, Co, Cu, Sn, ZnP selected from the group consisting of 0.1 alone or an alloy of two or three.
~3.0g/m2 After plating, heat to 430-500°C at 7°C/sec or more in an atmosphere with a 02 concentration of 5% or less to obtain an effective pJfj of 4 degrees in the bath, 0.05-0.15%, and a bath temperature of 430. Plating is performed by immersion in a zinc or zinc-based alloy bath controlled at ~500°C, and by heating for 5 to 40 seconds in a temperature range of 450 to 550°C immediately above the wiping after pulling, the adhesion of the plating is improved. However, it was discovered that a plated steel plate with extremely excellent surface sliding resistance could be obtained, and the present invention described below was completed.

すなわち、本発明は鋼板の表面にNi、FeCo、Cu
、Sn、Zn、Pの中から選択した1種を単独で、或い
は2種もしくは3種を合金で0.1〜3、Og/m”め
っき後、O2濃度5%以下の雰囲気中で430〜500
℃に7℃/sec以上で加熱してそのまま浴中有効N9
度0.05〜0.15%、浴温430〜500℃に制御
された亜鉛又は亜鉛系合金浴中に浸漬してめっきを行い
、引き上げ後のワイピング直上で450〜550℃の温
度範囲で5〜40sec加熱することを特徴とする摺動
抵抗の高い亜鉛又は亜鉛系合金溶融めっき鋼板の製造方
法を要旨とするものである。
That is, the present invention provides Ni, FeCo, and Cu on the surface of the steel plate.
, Sn, Zn, and P alone or in an alloy of two or three of them at 0.1 to 3 Og/m" after plating in an atmosphere with an O2 concentration of 5% or less. 500
℃ heated at 7℃/sec or more to make effective N9 in the bath as it is.
Plating is carried out by immersion in a zinc or zinc-based alloy bath with a temperature of 0.05 to 0.15% and a bath temperature of 430 to 500°C. The gist of this invention is a method for manufacturing a zinc or zinc-based alloy hot-dip galvanized steel sheet with high sliding resistance, which is characterized by heating for ~40 seconds.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

第1図は、鋼板表面にNiを0.5g/mzめっき後O
2濃度2%の雰囲気中で450℃まで10”(:/se
cで昇温し、そのまま浴中有効N濃度を変化させた浴!
450℃の溶融Zn浴中に3 sec浸漬、引き上げ、
ワイピングした後、再加熱を種々の温度で15sec行
った場合のめっき面の摺動抵抗の変化を示したものであ
る。なお、摺動抵抗の指標としては、表面硬度(ビッカ
ース硬度)と静止摩擦係数の測定値を用いた。
Figure 1 shows the O
10” (:/se
A bath in which the temperature was raised at c and the effective N concentration in the bath was changed as it was!
Immersed in a molten Zn bath at 450°C for 3 seconds, pulled up,
The graph shows the change in sliding resistance of the plated surface when reheating was performed for 15 seconds at various temperatures after wiping. Note that the measured values of surface hardness (Vickers hardness) and coefficient of static friction were used as indicators of sliding resistance.

評価基準は次の通りである。The evaluation criteria are as follows.

評 価  表面硬度(HV)  摩擦係数(μ)5−−
−−−−−−−−− 150〜250  0.15〜0
.184−−−−−−−−−−− 120〜150  
0.14〜0.153−−−−−−−−−  90〜1
20  0.13〜0.142−−−−−−−  70
〜90   0.12〜0.131−−−−−−−− 
 70未満    0.12未満(*評価3以上が合格
) この図より、めっき浴中の有効Al濃度0.15%以下
でめっきを行い、且つ、450℃以上で再加熱を行うと
、摺動抵抗の高いめっき鋼板が得られることが明らかで
ある(浴中有効Mとは、ドロス分など以外のめっき層に
寄与する有効なMのことである)。この条件下のめっき
層を分析したところ、Fe比率が1〜8%であり、めっ
き層表層まで素地からFeが拡散し、合金化が進んでお
り、なお且つNiが素地近傍でMと結合し、合金層中に
も一部Niが存在することが判明した。合金層は大部分
がζ相(FeZn+、)、δ1相(FeZn、)より成
っていた。詳細は未だ明らかではないが、摺動抵抗が高
くなったのは、めっき層の適度の合金化と合金層中のN
iの存在、あるいはN i −jV化合物の形成が相乗
的に作用しているのではないかと考えられる。浴中有効
M濃度が0.15%を超えると摺動抵抗が低いのは、M
が地鉄あるいはNiと結合し強固なバリヤー層を作るた
め、めっき層の合金化が進まないことによるものと思わ
れる。浴中有効Mの下限はめっき密着性の観点から0.
05%とした。また、再加熱温度が450℃未満では摺
動抵抗は向上しない。これも、めっき層の合金化が不十
分なためである。再加熱温度の上限については密着性の
観点から550℃とする。
Evaluation Surface hardness (HV) Friction coefficient (μ) 5--
---------- 150~250 0.15~0
.. 184---------------------- 120~150
0.14~0.153------ 90~1
20 0.13-0.142----70
~90 0.12~0.131------
Less than 70 Less than 0.12 (*Evaluation of 3 or more passes) From this figure, if plating is performed at an effective Al concentration of 0.15% or less in the plating bath and reheated at 450°C or higher, the sliding resistance will decrease. It is clear that a plated steel sheet with a high value can be obtained (the effective M in the bath refers to the effective M that contributes to the plating layer other than dross etc.). An analysis of the plating layer under these conditions revealed that the Fe ratio was 1 to 8%, that Fe diffused from the substrate to the surface layer of the plating layer and alloying progressed, and that Ni combined with M near the substrate. It was found that some Ni also existed in the alloy layer. The alloy layer was mostly composed of ζ phase (FeZn+) and δ1 phase (FeZn). Although the details are still unclear, the reason for the high sliding resistance is the appropriate alloying of the plating layer and the N in the alloy layer.
It is thought that the presence of i or the formation of a N i -jV compound may act synergistically. The sliding resistance is low when the effective M concentration in the bath exceeds 0.15%.
This seems to be due to the fact that alloying of the plating layer does not progress because it combines with the base iron or Ni to form a strong barrier layer. The lower limit of effective M in the bath is 0.0 from the viewpoint of plating adhesion.
05%. Furthermore, if the reheating temperature is lower than 450°C, the sliding resistance will not improve. This is also due to insufficient alloying of the plating layer. The upper limit of the reheating temperature is set at 550° C. from the viewpoint of adhesion.

即ち、Niには地鉄界面近傍の合金層である「相(F 
e、Z nz+)の成長を抑制する作用があると思われ
るが、550℃を超えると、Niがめつき層中の表面近
傍まで拡散してしまい、そのため「相が発達しすぎて密
着性が劣化するものと思われる。再加熱時間は5〜40
secとする。5 sec未満ではめっき層の合金化が
不足し、40secを超えると合金化が進みすぎ、r相
が発達しすぎてめっき密着性が劣化する。再加熱の方法
については、特に限定しないが、加熱炉あるいは、バー
ナー加熱が望ましい。
In other words, Ni has a “phase (F
It seems to have the effect of suppressing the growth of nickel (e, Z nz+), but when the temperature exceeds 550°C, Ni diffuses to the vicinity of the surface of the plating layer, resulting in "phases developing too much and adhesion deteriorating." It seems that the reheating time is 5 to 40 minutes.
sec. If it is less than 5 sec, alloying of the plating layer will be insufficient, and if it exceeds 40 sec, alloying will progress too much and the r phase will develop too much, resulting in poor plating adhesion. The reheating method is not particularly limited, but a heating furnace or burner heating is preferable.

また、めっき前処理加熱温度、浴温度についても同様に
調べたところ、430℃以上で摺動抵抗に対して効果が
現れることもわかった。浴中でのめっき反応時において
も温度上昇とともに合金化が進行することによるものと
思われる。しかしながら、500℃を趙えると、「相が
成長しすぎて摺動抵抗および密着性が劣化する。前処理
加熱の方法については特に限定はしないが、炉内の輻射
加熱、通電加熱等が適用できる。さらに、この前処理加
熱温度および加熱速度が本発明の1つのポイントとなる
条件であるが、500℃以下の加熱では、プレNiめっ
きの加熱後の状態変化が少なく、溶融めっきおよび再加
熱後のめっき面の摺動抵抗、密着性が良好であった。5
00℃を超えるとNiが加熱中に鋼板中に拡散してしま
い、明らかに両性能の低下が認められた。加熱速度につ
いては7°(:/sec以上が必要である。これだと、
前処理加熱の雰囲気がO2濃度が5%以内であれば、プ
レめっきの酸化はそれほど進行せず、良好なめっき密着
性が得られる。Oz濃度が本実験の2%以外でも5%以
内であれば優れた摺動抵抗が得られることも確認した。
Further, when the pre-plating heating temperature and bath temperature were similarly investigated, it was found that an effect on sliding resistance appears at temperatures of 430° C. or higher. This seems to be due to the fact that alloying progresses as the temperature rises during the plating reaction in the bath. However, if the temperature is heated to 500℃, the phase will grow too much and the sliding resistance and adhesion will deteriorate.There are no particular restrictions on the pretreatment heating method, but radiation heating in a furnace, electrical heating, etc. Furthermore, although this pretreatment heating temperature and heating rate are one of the key conditions of the present invention, heating at 500°C or lower causes little change in the state of pre-Ni plating after heating, making it difficult to perform hot-dip plating and reheating. The sliding resistance and adhesion of the plated surface afterward were good.5
When the temperature exceeded 00°C, Ni diffused into the steel sheet during heating, and a clear decrease in both performances was observed. The heating rate needs to be 7° (:/sec or more. If this is the case,
If the pretreatment heating atmosphere has an O2 concentration of 5% or less, oxidation of the pre-plating will not proceed much and good plating adhesion can be obtained. It was also confirmed that excellent sliding resistance could be obtained if the Oz concentration was within 5%, even if it was not 2% in this experiment.

さらにめっき浴浸漬時間については1〜10secの範
囲では同様に良好な性能が得られた。
Furthermore, similarly good performance was obtained when the plating bath immersion time was in the range of 1 to 10 seconds.

第2図は、Niプレめっき量を変化させて、0゜2%雰
囲気中で450℃までlO℃/secで加熱した後、4
50℃で3 secめっき後、450℃で15秒再加熱
した場合の摺動抵抗の変化を示したものである。浴中の
有効M濃度が0.1%と0.15%の場合である。Ni
付着量が0.1g/m”以上の場合において、目付量の
増加と共に摺動抵抗が飛躍的に向上する。このメカニズ
ムは明らかではないが、浴中の有効M濃度とプレNi量
とは適正な割合において、何らかの相関関係を有してお
り、摺動抵抗に寄与しているものと思われる。Ni付着
量が0.1g/m”未満では、摺動抵抗および密着性が
劣化する。これは、Ni付着量が0.1g/m2未満で
は前処理加熱の段階で下地鋼の酸化が進行することに起
因していると考えられ、Niが0.1g/m2以上であ
れば5%0□雰囲気、7℃/secで加熱した場合でも
酸化はほとんど進行せず良好なめっき密着性が得られる
。Ni付着量の上限は特に制約はないが、経済的な観点
から3.0g /m”とする。以上の結果は、前処理加
熱雰囲気が弱酸化性の場合について述べたきたが、非酸
化性雰囲気、還元性雰囲気でも同様な結果であった。ま
た、プレめっきの種類についてもNiプレめっきについ
てのみ説明したが、Fe、Co。
Figure 2 shows that after changing the amount of Ni pre-plating and heating up to 450°C at 10°C/sec in a 0°2% atmosphere,
This figure shows the change in sliding resistance when the plate was plated at 50°C for 3 seconds and then reheated at 450°C for 15 seconds. This is the case when the effective M concentration in the bath is 0.1% and 0.15%. Ni
When the adhesion amount is 0.1 g/m or more, the sliding resistance increases dramatically as the basis weight increases.The mechanism is not clear, but the effective M concentration and pre-Ni amount in the bath are appropriate. It is thought that there is some correlation in the proportion of Ni and that it contributes to the sliding resistance.If the amount of Ni deposited is less than 0.1 g/m'', the sliding resistance and adhesion deteriorate. This is thought to be due to the progress of oxidation of the base steel during the pretreatment heating stage when the Ni adhesion amount is less than 0.1 g/m2, and when the Ni adhesion amount is 0.1 g/m2 or more, 5% Even when heated at 7° C./sec in a 0□ atmosphere, oxidation hardly progresses and good plating adhesion can be obtained. There is no particular restriction on the upper limit of the amount of Ni deposited, but it is set at 3.0 g/m'' from an economical point of view. Similar results were obtained in the atmosphere and reducing atmosphere.As for the type of pre-plating, only Ni pre-plating was explained, but Fe and Co.

Cu、Sn、Zn、Pの単独めっきおよびN1−P、F
e−Ni、Ni−Zn、Co−P、N1Fe−P等の2
元系あるいは3元系の合金めっきにおいても同様の結果
が得られた。また、溶融めっき浴についてもZn浴のみ
について説明したが、Zn−3b、Zn−Mg、Zn−
3n等の合金浴でも同様に本発明を適用することができ
る。
Single plating of Cu, Sn, Zn, P and N1-P, F
2 such as e-Ni, Ni-Zn, Co-P, N1Fe-P, etc.
Similar results were obtained with elemental or ternary alloy plating. Also, regarding the hot-dip plating bath, only the Zn bath was explained, but Zn-3b, Zn-Mg, Zn-
The present invention can be similarly applied to alloy baths such as 3n.

下地鋼板の制約を特に受けないのも本プレめっき法の利
点の一つである。高合金ハイテン材や低炭素鋼板などに
も適用できる。
One of the advantages of this pre-plating method is that it is not particularly limited by the base steel plate. It can also be applied to high alloy high tensile strength materials and low carbon steel plates.

〔実施例〕〔Example〕

第1表に本発明の実施例を示す。*印が比較材である。 Table 1 shows examples of the present invention. *marked is comparative material.

下地に熱延鋼板5PHC(1,2mm)の酸洗材を用い
、Niめっきは、硫酸酸性浴中で電流密度25A/dm
2で行った。前処理加熱は0□2%の炉内で10℃/s
ecで昇温した。さらに、3 sec溶融めっき後、再
加熱は空気中で炉内加熱を行った。種々実験条件を変化
させてサンプルを作成した。
A pickling material for hot rolled steel plate 5PHC (1.2 mm) was used as the base, and Ni plating was carried out at a current density of 25 A/d in a sulfuric acid acid bath.
I went with 2. Pretreatment heating is 10℃/s in a 0□2% furnace.
The temperature was raised using EC. Furthermore, after hot dipping for 3 seconds, reheating was performed in a furnace in air. Samples were created under various experimental conditions.

摺動抵抗の評価は、前述の5点法で行った。また、めっ
き密着性の評価はボールインパクト試験で実施し、10
点法で評価した。10点は剥離皆無であり、1点は前面
剥離を示す。6点以上が合格とする。
The sliding resistance was evaluated using the 5-point method described above. In addition, plating adhesion was evaluated using a ball impact test.
Evaluation was made using the point system. 10 points indicate no peeling, and 1 point indicates frontal peeling. A score of 6 or more is considered passing.

No、 1〜13に示す通り、Niプレめっき付着量0
.1〜3g/m2、前処理加熱温度430〜500℃1
浴温430〜500℃2浴中の有効A/fA度0.05
〜0.15%、めっき後の再加熱温度450〜550℃
の範囲で製造した本発明鋼板は摺動抵抗、めっき密着性
共に優れる。これに比較して、Niめっき付着量が0.
1g/m”未満の場合(Nα14)、浴中の有効N濃度
が0.05%未満あるいは0.15%を超える場合(N
o、15.16入摺動抵抗、密着性が劣る。また、前処
理加熱板温、昇温速度、浴温、めっき後の加熱温度およ
び加熱時間が本発明範囲を逸脱する場合(No、17〜
25)にも両性能が劣化する。
No. As shown in 1 to 13, Ni pre-plating amount is 0
.. 1~3g/m2, pretreatment heating temperature 430~500℃1
Bath temperature: 430-500°C Effective A/fA degree in 2 baths: 0.05
~0.15%, reheating temperature after plating 450~550℃
The steel sheet of the present invention manufactured within the range of 0.05 to 1.00% is excellent in both sliding resistance and plating adhesion. In comparison, the amount of Ni plating deposited is 0.
If the effective N concentration in the bath is less than 0.05% or more than 0.15% (Nα14)
o, 15.16 Sliding resistance and adhesion are poor. In addition, if the pretreatment heating plate temperature, heating rate, bath temperature, post-plating heating temperature and heating time deviate from the scope of the present invention (No. 17 to
25), both performances deteriorate.

また、Nα26〜30は、Niめっき以外の単独めっき
、および合金めっきをプレめっきとして使用した場合で
ある。これらもNiめっき同様、優れた摺動抵抗を示す
Moreover, Nα26-30 is the case where individual plating other than Ni plating and alloy plating are used as pre-plating. Like Ni plating, these also exhibit excellent sliding resistance.

さらに、No、31〜33は、めっき浴としてZn合金
浴を使用した場合である。この場合にもZn浴同様に得
られためっき調板は優れた性能を示した。
Furthermore, Nos. 31 to 33 are cases where a Zn alloy bath was used as the plating bath. In this case as well, the plated plate obtained showed excellent performance as in the case of the Zn bath.

最後に、No、 1〜13の結果からみて、Niプレめ
っきの場合にはho、2,3,9.10に見られるよう
に特に、浴中の有効のM濃度が0.11〜0.12%、
Ni付着量が0.5〜0.8 g /m2の範囲の時に
摺動抵抗が最も優れ、好ましい条件であることは明白で
ある。
Finally, in view of the results of Nos. 1 to 13, in the case of Ni pre-plating, the effective M concentration in the bath is 0.11 to 0.0, as seen in ho, 2, 3, and 9.10. 12%,
It is clear that the sliding resistance is the best when the amount of Ni deposited is in the range of 0.5 to 0.8 g/m2, which is a preferable condition.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、プレめっきを利用して
従来にない摺動抵抗およびめっき密着性に優れた亜鉛又
は亜鉛系合金溶融めっき鋼板が安価に製造でき、その工
業的意義は極めて大きい。
As described above, according to the present invention, a zinc or zinc-based alloy hot-dip coated steel sheet with unprecedented sliding resistance and coating adhesion can be manufactured at low cost by using pre-plating, and its industrial significance is extremely high. big.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、プレNiめっきを0.5g/m”施し、O2
濃度2%の雰囲気中で、前処理加熱板温450″Cに1
0°(/secで昇温し、浴温450℃で種々の浴中の
有効M濃度のもとで、3secめっきを行い、めっき後
の再加熱温度を変化させた場合(加熱時間15sec 
)の摺動抵抗の変化を示した図、第2図は、022%雰
囲気中で前処理加熱板温450℃に10℃/secで昇
温後、浴温450℃1めっき浸漬時間3sec、浴中の
有効M濃度0.1%および0.15%のもとで製造した
場合のプレNi付着量の変化に伴う摺動抵抗の変化を示
した図である。 娯− で 馨皆城(靭凝)−田
Figure 1 shows pre-Ni plating of 0.5g/m" and O2
In an atmosphere with a concentration of 2%, the temperature of the pretreatment heating plate was 450"C.
When the temperature was raised at 0°/sec, plating was performed for 3 seconds at a bath temperature of 450°C and various effective M concentrations in the bath, and the reheating temperature after plating was changed (heating time 15 seconds).
) Figure 2 shows the change in sliding resistance of 0.22% atmosphere after pretreatment heating plate temperature was raised to 450°C at a rate of 10°C/sec, bath temperature was 450°C, plating immersion time was 3 sec, and bath temperature was 450°C. FIG. 4 is a diagram showing changes in sliding resistance with changes in the amount of pre-Ni deposited when manufactured at effective M concentrations of 0.1% and 0.15%. Entertainment - Kaoru Minajo (Utsuko) - Field

Claims (1)

【特許請求の範囲】[Claims] 鋼板の表面にNi,Fe,Co,Cu,Sn,Zn,P
の中から選択した1種を単独で、或いは2種もしくは3
種を合金で0.1〜3.0g/m^2めっき後、O_2
濃度5%以下の雰囲気中で430〜500℃に7℃/s
ec以上で加熱してそのまま浴中有効Al濃度0.05
〜0.15%、浴温430〜500℃に制御された亜鉛
又は亜鉛系合金浴中に浸漬してめっきを行い、引き上げ
後のワイピング直上で450〜550℃の温度範囲で5
〜40sec加熱することを特徴とする摺動抵抗の高い
亜鉛又は亜鉛系合金溶融めっき鋼板の製造方法。
Ni, Fe, Co, Cu, Sn, Zn, P on the surface of the steel plate
One type selected from among them alone, or two or three types
After plating the seed with alloy at 0.1~3.0g/m^2, O_2
7℃/s from 430 to 500℃ in an atmosphere with a concentration of 5% or less
Effective Al concentration in the bath is 0.05 after heating above ec.
~0.15%, plating is performed by immersion in a zinc or zinc-based alloy bath whose bath temperature is controlled at 430 to 500°C, and then plating is performed in a temperature range of 450 to 550°C immediately above the wiping after pulling.
A method for manufacturing a zinc or zinc-based alloy hot-dip plated steel sheet with high sliding resistance, the method comprising heating for ~40 seconds.
JP2017890A 1990-01-30 1990-01-30 Method for producing zinc or zinc-based alloy hot-dip steel sheet with high sliding resistance Expired - Fee Related JPH0651903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017890A JPH0651903B2 (en) 1990-01-30 1990-01-30 Method for producing zinc or zinc-based alloy hot-dip steel sheet with high sliding resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017890A JPH0651903B2 (en) 1990-01-30 1990-01-30 Method for producing zinc or zinc-based alloy hot-dip steel sheet with high sliding resistance

Publications (2)

Publication Number Publication Date
JPH03226550A true JPH03226550A (en) 1991-10-07
JPH0651903B2 JPH0651903B2 (en) 1994-07-06

Family

ID=12019924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017890A Expired - Fee Related JPH0651903B2 (en) 1990-01-30 1990-01-30 Method for producing zinc or zinc-based alloy hot-dip steel sheet with high sliding resistance

Country Status (1)

Country Link
JP (1) JPH0651903B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0632140A1 (en) * 1993-06-29 1995-01-04 Nkk Corporation Method for producing zinc coated sheet
EP0632141A1 (en) * 1993-06-29 1995-01-04 Nkk Corporation Surface treated steel sheet and method thereof
CN1041641C (en) * 1993-06-29 1999-01-13 日本钢管株式会社 Surface treated steel sheet and method therefor
EP1405934A2 (en) * 2002-09-23 2004-04-07 United Technologies Corporation Zinc-diffused alloy coating for corrosion/heat protection
JP2010043296A (en) * 2008-08-08 2010-02-25 Nippon Steel Corp Hot-dip galvannealed steel sheet having excellent plating adhesion
JP2018168435A (en) * 2017-03-30 2018-11-01 Jfeスチール株式会社 Galvanized steel sheet, and production method of galvanized steel sheet
US10294551B2 (en) 2013-05-01 2019-05-21 Nippon Steel & Sumitomo Metal Corporation High-strength low-specific-gravity steel sheet having superior spot weldability
US10336037B2 (en) 2013-05-01 2019-07-02 Nippon Steel & Sumitomo Metal Corporation Galvanized steel sheet and method for producing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0632140A1 (en) * 1993-06-29 1995-01-04 Nkk Corporation Method for producing zinc coated sheet
EP0632141A1 (en) * 1993-06-29 1995-01-04 Nkk Corporation Surface treated steel sheet and method thereof
CN1041641C (en) * 1993-06-29 1999-01-13 日本钢管株式会社 Surface treated steel sheet and method therefor
EP1405934A2 (en) * 2002-09-23 2004-04-07 United Technologies Corporation Zinc-diffused alloy coating for corrosion/heat protection
EP1405934A3 (en) * 2002-09-23 2006-02-01 United Technologies Corporation Zinc-diffused alloy coating for corrosion/heat protection
JP2010043296A (en) * 2008-08-08 2010-02-25 Nippon Steel Corp Hot-dip galvannealed steel sheet having excellent plating adhesion
US10294551B2 (en) 2013-05-01 2019-05-21 Nippon Steel & Sumitomo Metal Corporation High-strength low-specific-gravity steel sheet having superior spot weldability
US10336037B2 (en) 2013-05-01 2019-07-02 Nippon Steel & Sumitomo Metal Corporation Galvanized steel sheet and method for producing the same
JP2018168435A (en) * 2017-03-30 2018-11-01 Jfeスチール株式会社 Galvanized steel sheet, and production method of galvanized steel sheet

Also Published As

Publication number Publication date
JPH0651903B2 (en) 1994-07-06

Similar Documents

Publication Publication Date Title
JP2517169B2 (en) Method for producing hot dip galvanized steel sheet
JP2526320B2 (en) Method for producing high-strength galvannealed steel sheet
JPH03226550A (en) Manufacture of hot-dipped zinc coating or hot-dipped zinc alloy coating steel sheet having high sliding resistance
JP4781577B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JPH0581662B2 (en)
JPH04346644A (en) Production of high tensile strength galvanized steel sheet and galannealed steel sheet
JP2841889B2 (en) Manufacturing method of alloyed hot-dip galvanized steel sheet
JP2002356759A (en) HOT DIP Zn-Al-Cr ALLOY PLATED STEEL HAVING EXCELLENT CORROSION RESISTANCE
JP3480357B2 (en) Method for producing high strength galvanized steel sheet containing Si and high strength galvannealed steel sheet
JPH04147955A (en) Production of hot-dip zn-mg-al coated steel sheet
JP3386657B2 (en) High strength cold rolled steel sheet
JPH0797670A (en) Galvanizing method for silicon-containing steel sheet
JP2557573B2 (en) Hot-dip galvanized steel sheet and method for producing the same
JP2783457B2 (en) Manufacturing method of hot-dip Zn-Al plated steel sheet
JP2554792B2 (en) Method for producing hot-rolled galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JPH0525600A (en) Manufacture of hot dip galvanized steel sheet by pre-ni alloy plating and alloying method
JPH0635648B2 (en) Hot-dip, low-reduction type hot dip galvanizing method for zinc or zinc alloys
JP3449244B2 (en) Manufacturing method of galvannealed steel sheet
JPH0741923A (en) Production of hot dip galvanized steel sheet excellent in adhension of zinc layer and appearance
JPH04263054A (en) Molten galvanized steel sheet for alloying
JP2000169948A (en) Hot dip galvannealed steel sheet and its production
JP3694481B2 (en) Method for producing high-tensile hot-dip galvanized steel sheet
JP3766655B2 (en) Method for producing high-Si high-strength galvannealed steel sheet with excellent plating adhesion and workability
JPS62174360A (en) Manufacture of alloyed hot dip galvanized steel sheet
JP2599535B2 (en) Hot-dip galvanized steel sheet with smooth and glossy spangle pattern and excellent intergranular corrosion resistance

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070706

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees