JPH0581662B2 - - Google Patents

Info

Publication number
JPH0581662B2
JPH0581662B2 JP63108851A JP10885188A JPH0581662B2 JP H0581662 B2 JPH0581662 B2 JP H0581662B2 JP 63108851 A JP63108851 A JP 63108851A JP 10885188 A JP10885188 A JP 10885188A JP H0581662 B2 JPH0581662 B2 JP H0581662B2
Authority
JP
Japan
Prior art keywords
alloying
phase
temperature
less
seconds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63108851A
Other languages
Japanese (ja)
Other versions
JPH01279738A (en
Inventor
Motohiro Nakayama
Yukio Numakura
Tatsuya Kanamaru
Toshio Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10885188A priority Critical patent/JPH01279738A/en
Publication of JPH01279738A publication Critical patent/JPH01279738A/en
Publication of JPH0581662B2 publication Critical patent/JPH0581662B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は合金化溶融亜鉛めつき鋼板の製造方法
に関するものである。詳しくは、耐パウダリング
性、耐フレーキング性に優れた合金化溶融亜鉛め
つき鋼板の製造方法である。 (従来の技術) 合金化溶融亜鉛めつき鋼板は、溶融めつき鋼板
をめつき後加熱して素地鋼板の鉄をめつき層中に
拡散させ、鉄〜亜鉛合金相を形成したものであ
る。一般の亜鉛めつき鋼板と比較して塗装耐食性
や溶接に優れていることから、自動車、家電建材
分野で広く使用されている(特開昭62−124266号
公報、62−130268号公報等)。 近年、耐食性の要求がますます高まり、従来の
冷延鋼板や純亜鉛系めつき鋼板に替わり合金化溶
融亜鉛めつき鋼板が要望されている。しかも使用
部位の拡大につれてより厳しい加工を受ける部位
に適用されることになり、プレス性等の加工性の
向上が強く望まれるようになつた。 (発明が解決しようとする課題) しかし、合金化溶融亜鉛めつき鋼板は前述した
ように熱拡散処理で製造するため、鉄素地界面近
傍では鉄濃度の高いFe〜Zn合金相(Γ相やΓ1
の金属間化合物であるが、ここではΓ相として総
称する)が生成する。合金化程度の増加につれて
Γ相厚が増加するため、めつき密着性が劣化す
る。例えば、Γ相が厚くなるプレス加工時にめつ
き層がパウダリング状に剥離し易くなり、製品に
押し疵等が発生し、歩留まり低下あるいは型洗浄
の頻度増加等の実害が生ずる。Γ相生成量を極力
抑制する制御技術が望まれている。特に目付量の
増加とともにこの傾向は顕著となる。 一方、Γ相を低減するため合金化程度を小さく
すると、めつき層の表面ではFe濃度の比較的低
いFe〜Zn合金相(ζ相)やFeが固溶したままの
亜鉛相(η相)が残存し易くなる。合金化程度の
減少につれてその厚さも増大する。この傾向は目
付量の増加につれて顕著となる。 このようなη相あるいはζ相がめつき層表面に
多く残存すると、こらの合金層は比較的軟質なた
めプレス加工時に型かじり生じ易く、いわゆるフ
レーキングとなつて金型ビード部付近に堆積しり
り、型ダイスの中に落下したりして、これもまた
プレス工程での歩留まり低下や作業性を低下させ
ることになる。 以上に述べたプレス加工時の問題を考えると、
合金化溶融亜鉛めつき鋼板の理想的なめつき層構
造は、鉄素地界面からめつき層表面までFe濃度
勾配がなく、均一なδ1相から構成されていること
が望ましいが、熱拡散処理で合金化する限り極め
て困難である。 目付量が小さいほどΓ相やζ相の生成量が減少
するため、上述の問題は比較的軽減される。しか
し、最近のように適用部位の拡大に伴い、より厳
しい加工を受けることから、従来よりも格段に加
工性に優れた合金化溶融亜鉛めつき鋼板が強く要
望されるようになつている。目付量を30g/m2
下に低減することで加工性をかなり改善できる
が、最近では防錆性の向上も同時に要求されるこ
とから、45g/m2以上、望ましくは50g/m2以上
の目付量が要求されている。実用途では耐食性を
目標水準に確保することがと大前提となるため、
単純に薄目付化で対処することは許されない。 以上述べたように、合金化溶融亜鉛めつき鋼板
は優れた特徴を有することから多用される動向に
あり、また加工条件も一層厳しい部位に適用され
ることから、耐パウダリング性、耐フレーキング
性に優れた合金化溶融亜鉛めつき鋼板を安定して
製造する方法が強く望まれている。 本発明は、上述した問題点を有利にかつ確実に
解決するために、耐パウダリング性・耐フレーキ
ング性に優れたδ1主体の合金化溶融亜鉛めつき鋼
板の製造方法を提供するものである。 (課題を解決するための手段) 本発明は、Al:0.04〜0.12wt%、残Zn及び不
可避的不純物からなる亜鉛めつき浴でめつきを施
し、次いで目付量制御を行なつた後、合金化炉で
加熱して合金化処理を行なうに際して、目付制御
完了後合金化炉内の昇温過程で470℃以上の板温
に到達するまでの時間が2.0秒以下の急速加熱を
施し、合金化完了後は冷却過程において板温度が
420℃以下の温度域まで2秒以下で急速冷却する
ことを特徴とする合金化溶融亜鉛めつき鋼板の製
造方法である。めつき浴内の浸漬時間を2.5秒以
下とすること、めつき浴内の浸漬時間を2.5秒以
下とし、かつ合金化最高板温度を470〜510℃の範
囲で加熱合金化処理すること、目付量を45〜90
g/m2とすること、合金化亜鉛めつき鋼板の上層
に哲を主体とし、残部亜鉛からなる電気めつきを
施すことは好ましい。 (作用) 亜鉛めつき浴中のAlを0.04〜0.12wt%(浴中の
有効Al濃度で表わし、以下同じ)にする理由は、
この値より低いAl濃度であるとめつき浴中にお
いて合金層の生成反応が増大し、めつき浴内でζ
相を主体とするFe〜Zn合金層が厚く生成し、こ
の合金層は合金化完了直後もめつき層表面に残存
して耐フレーキング性を劣化させる。また、合金
化完了直後も更に加熱を行う場合もしくは合金化
完了後の冷却速度が小さい場合はこのζ相は比較
的容易に固相拡散反応するため、過合金化反応が
進行し易く、結果的により鉄濃度の高いΓ相に変
態するため、耐パウダリング性を劣化させる。 一方、Alが0.12wt%超になると、めつき浴内
においてAl濃度の高い三元合金層が生成し、Fe
〜Zn合金化反応を抑制することになる。このた
め、合金化炉による過熱化処理において合金化が
困難となり、生焼けと称する金属光沢状のめつき
外観となるか、または生焼けを防止するため加熱
合金化温度を上げると過合金化反応が進行し易く
なり、やはり合金化完了後の冷却途中においてΓ
相に変態し耐パウダリング性を劣化させることに
なり不利である。この場合に必要な合金化加熱板
温度は540℃以上となるため、合金化完了後の冷
却度を大きくして過合金化反応を抑制するには、
冷却のための設備が増大し、また合金化炉の加熱
能力も大きくする必要がある。 上記浴AL濃度範囲でめつきを行なうと、浴内
でAlの選択的優先反応によりAl濃度の高いバリ
アー層が生成し、Fe〜Zn合金化反応を抑制する
が、その抑止時間は比較的短い。したがつて、め
つき浴を出てから目付け制御を行い、次いで合金
化炉で過熱を行なうまでの途中の昇温過程におい
てFe〜Zn合金化反応が開始する。めつき浴を出
た直後の目付制御を完了してから合金化炉内の最
高板温度に到達するまでの途中の昇温過程は420
℃以上〜470℃以下き比較的低温度付近にあり、
このため生成する合金層の主体はζ相であり、前
述した浴内で生成するζ相と同様の問題があり、
耐フレーキング性を劣化させる。 このような昇温過程での反応を抑制するには、
浴内のAl濃度を0.12wt%以上に高めることが有
効であるが、前述したようにめつき外観や耐パウ
ダリング性などの品質を損ねるだけでなく、経済
的にも操業コストや設備コストを増大させる。 この時間を有利に解決するため種々検討した結
果、めつき浴を出てから合金化炉による昇温過程
において、470℃に到達するまでの加熱時間を2.0
秒以下に確保することで上述した浴Al濃度範囲
においても昇温過程でのζ相を主体とする合金層
生成反応が実質的に抑制されるため、前述したよ
うにめつき浴内で生成するζ相を抑制する効果と
同様に、耐フレーキング性や耐パウダリング性の
劣化も無く有利に解決でできることが判明した。
470℃までの昇温時間が2秒より大きい場合は、
この温度域においてはζ相を主体とするFe〜Zn
合金化反応が生起し、反応速度も比較的高いた
め、前述したζ相に起因するめつき品質劣化の問
題が生ずる。すなわち、ζ相がめつき表層に残存
すると耐フレーキング性が劣化するし、一方この
ζ層を消滅させるため加熱温度を高くしたり、加
熱時間を長くすると過合金化反応によりζ相の生
成が起こり易く、耐パウダリング性を劣化させる
ことになる。 更に、合金化完了後は極力急速に冷却し過合金
化反応を抑制することが必要である。この冷却条
件について検討した結果、合金化完了後は板温度
が420℃まで冷却するまでの所要時間を2秒以下
に急冷することが肝要であることを見いだした。 前述の浴Al濃度と昇温速度条件でめつきを行
なつた場合は、めつき表面にはζ相はかなり少な
くδ1相主体の合金層となるため、耐フレーキング
性の問題は生じないが、めつき表面には耐フレー
キング性を劣化させない程度に残存する少量のζ
相は冷却過程の比較的低温度でも早い反応速度で
Γ相に変態するため耐パウダリング性を劣化させ
る問題がある。一方、反応速度は比較的遅いがδ1
相自体もこの冷却過程でΓ相に変態するため極力
急冷し、これらΓ相の生成反応を抑制することが
重要である。冷却過程でのΓ相の生成反応は、合
金化完了後420℃以下の温度域まで2秒以下で急
冷することで抑制できる。Γ相の生成反応は420
℃以下では実質的に起きないが、これ以上の温度
の場合はかなり早い速度でΓ相が生成するため、
420℃以上の温度域で2秒より長い時間過熱され
るとΓ相厚が増大するため、耐パウダリング性が
劣化する問題がある。 なお、合金化完了時点における板温度は一般に
は合金化炉内において最高板温度に到達する時点
とほぼ同一時点にある。しかし、必ずしもその必
要はなく、例えば最高板温度に加熱されてからそ
の後の比較的緩慢に冷却される途中で、例えば調
整冷却炉や板の保有熱などにより合金化を完了す
る場合は、その合金化完了時点の温度域から420
℃の板温度までの冷却時間を2秒以下とすればよ
い。このように合金化完了時点が冷却途中にある
場合は、全めつき層の中で80%以上を470〜510℃
の比較的高い温度域で合金化反応を進めておくこ
とが望ましい。その理由は、めつき層の20%以上
が合金化されないままで、470℃以下の温度域で
加熱により合金化を完了すると、前述したように
めつき表面にζ相が多く残存し易くなり耐フレー
キング性の劣化が生ずるからである。 次に浸漬時間の作用について言及する。浴内の
合金化反応は前述のAl濃度範囲で充分抑制でき
るが、更に望ましくは浴内の浸漬時間を2.5秒以
下とすることが有利である。ここでいう浸漬時間
とは、ストリツプがめつき浴内に浸漬してからめ
つき浴を出てガスワイピング法などにより目付け
制御が完了するまでの時間を言う。浸漬時間が
2.5秒より長くなると、前述のAl濃度範囲におい
ては鋼種や溶融めつきラインにおける熱処理条件
や雰囲気組成の変動などによつて浴内でのAlの
反応性が異なるため、充分なAlバリアー層が形
成されないことがあり、Fe〜Zn合金化反応が浴
内で進行し、有効にζ相の生成を抑制できなくな
る。したがつて、これらの実操業における変動を
考慮すると、浸漬時間を2.5秒以下とすることが
望ましい。 浸漬時間の設定は、鋼帯がスナウトを経由して
めつき浴内に侵入してから目付制御位置までの長
さを調整したり、鋼帯の通板速度を調整すること
が可能である。 一方、合金化熱処理炉で過熱する場合に、最高
板温度を470℃以上かつ510℃以下の温度範囲で合
金化することが望ましい。470℃より低いと素地
から溶出するFeの反応速度に対して亜鉛中のFe
の拡散速度が比較的大きいためFe濃度の低い合
金層が生成することになり、ζ相の厚さ増大し合
金化完了後も残存するため、耐フレーキング性を
劣化させることになるため望ましくない。一方、
合金化板温度が510℃より高くなると、素地鉄の
溶出速度が増大するためδ1相が生成し易くなるた
め前記問題は無いが、合金化完了後の冷却過程で
も温度が高いため、めつき表面に残存する少量の
ζ相はもちろん、δ1相もΓ相への変態反応が比較
的早い速度で進行するため、耐パウダリング性が
著しく劣化する問題がある。特にこの傾向は目付
量の増加とともに顕著となり、良好な品質を確保
することが困難となる。この問題を解決するには
冷却速度を早くすることが考えられるが、水冷却
法などの簡易な方法では効果がないことから冷却
速度を確保するための特殊な設備が必要となり、
設備コストが増大する難点があり好ましくない。 以上述べたように、合金化熱処理炉としては、
めつき後昇温過程の急速加熱、合金化完了後の急
速冷却、それに板温の最適温度範囲の制御が重要
である。この合金化熱処理炉の熱源としては、ガ
ス燃焼加熱、電気抵抗加熱、赤外線加熱、高周波
加熱などの方法を採用することができる。また、
通板速度が変化する場合は、熱源を通板方向に多
段に配置することでそれらのオン・オフを適切に
行い、通板速度に応じて過熱帯や冷却帯の有効長
さが調整できることが望ましい。 本発明は目付量に因らず適用可能である。目付
量が少なくても(通常45g/m2以下)本発明の適
用によりΓ相やζ相の少ないδ1相主体のめつき層
構造にできることから、より過酷な成形加工を受
ける用途や部品へ当合金化溶融亜鉛めつき鋼板を
適用しても、耐フレーキング性や耐パウダリング
性を確実に防止できる利点がある。しかし、本発
明を適用することで最も有利性を発揮できるのは
目付量45g/m2以上、とりわけ50g/m2以上の厚
めつきの合金化溶融亜鉛めつき鋼板の場合であ
る。加熱拡散法で合金化する場合は素地からめつ
き表面へFeの濃度分布は次第に低下するため素
地側ではΓ相が、めつき表面側ではζ相が厚く成
長し易くなる。したがつて、本発明の適用により
δ1相主体の合金相に制御することは耐パウダリン
グ性と耐フレーキング性を確実に防止できる利点
がある。 本発明は合金化溶融亜鉛めつき鋼板に適用する
ものであるが、両面めつきまたは片面のめつきの
いずれにも適用できる。また少なくとも片面に合
金化溶融亜鉛めつき層を有するものであれば特に
限定されるものではない。例えば、表裏差厚めつ
き鋼板(例えば、片面の目付量30g/m2、他面は
60g/m2の合金化溶融亜鉛めつき鋼板)や片面合
金化溶融亜鉛めつき鋼板(片面は目付量30g/m2
の合金化処理めつき層で、他面は100g/m2合金
化処理をしていない通常の溶融亜鉛めつき層)な
どに有利に適用できる。 更に、このような合金化溶融亜鉛めつき鋼板の
上層に、例えばカチオン電着塗装性を向上させる
ため、鉄60%以上で残部が亜鉛、または当該合金
にNi,Co,Cr,Mn:Si,P,Cu,B等の1種
または2種以上を含有させた合金層を目付量:2
〜5g/m2の範囲で電気めつき法により付与する
ことで耐パウダリング性・耐フレーキング性を有
するカチオン電着性に優れためつき鋼板を得るこ
とができる。 (実施例) 次に本発明の実施例を比較例とともに表1に示
す。
(Industrial Application Field) The present invention relates to a method for producing an alloyed hot-dip galvanized steel sheet. Specifically, it is a method for producing an alloyed hot-dip galvanized steel sheet with excellent powdering resistance and flaking resistance. (Prior Art) Alloyed hot-dip galvanized steel sheets are produced by heating hot-dip galvanized steel sheets after plating to diffuse iron in the base steel sheet into the plating layer to form an iron-zinc alloy phase. It is widely used in the fields of automobiles and home appliances and construction materials because it has superior coating corrosion resistance and weldability compared to general galvanized steel sheets (Japanese Patent Laid-Open Nos. 62-124266 and 62-130268, etc.). In recent years, demands for corrosion resistance have increased more and more, and alloyed hot-dip galvanized steel sheets are desired to replace conventional cold-rolled steel sheets and pure zinc-based galvanized steel sheets. Moreover, as the number of areas in which it is used has expanded, it has come to be applied to areas that undergo more severe processing, and there has been a strong desire for improved workability such as pressability. (Problem to be solved by the invention) However, since alloyed hot-dip galvanized steel sheets are manufactured by thermal diffusion treatment as described above, Fe-Zn alloy phases with high iron concentrations (Γ phase and Γ A single- phase intermetallic compound (generally referred to here as the Γ phase) is produced. Since the Γ phase thickness increases as the degree of alloying increases, plating adhesion deteriorates. For example, during press processing when the Γ phase becomes thicker, the plating layer tends to peel off in a powdered form, causing scratches and the like on the product, resulting in actual damage such as a decrease in yield or an increase in the frequency of mold cleaning. A control technology that suppresses the amount of Γ phase produced as much as possible is desired. This tendency becomes particularly noticeable as the basis weight increases. On the other hand, when the degree of alloying is reduced to reduce the Γ phase, the surface of the plating layer has a Fe-Zn alloy phase (ζ phase) with a relatively low Fe concentration and a zinc phase (η phase) in which Fe remains in solid solution. becomes more likely to remain. As the degree of alloying decreases, its thickness also increases. This tendency becomes more remarkable as the basis weight increases. If a large amount of such η phase or ζ phase remains on the surface of the plating layer, these alloy layers are relatively soft and are likely to cause mold galling during press working, resulting in so-called flaking that accumulates near the mold bead. , or fall into the mold die, which also reduces yield and workability in the pressing process. Considering the problems mentioned above during press processing,
The ideal plating layer structure of an alloyed hot-dip galvanized steel sheet is desirably composed of a uniform δ 1 phase with no Fe concentration gradient from the iron substrate interface to the plating layer surface. It is extremely difficult to do so. As the basis weight decreases, the amount of Γ phase and ζ phase produced decreases, so the above-mentioned problem is relatively alleviated. However, as the areas of application have expanded in recent years, there has been a strong demand for alloyed hot-dip galvanized steel sheets, which have much better workability than before, because they are subjected to more severe processing. Workability can be considerably improved by reducing the basis weight to 30 g/m 2 or less, but recently it is also required to improve rust prevention, so the The basis weight is required. In actual use, it is a prerequisite to ensure corrosion resistance at the target level.
It is not acceptable to simply reduce the weight. As mentioned above, alloyed hot-dip galvanized steel sheets are becoming more widely used due to their excellent characteristics, and because they are applied to areas with even more severe processing conditions, they have excellent powdering resistance and flaking resistance. There is a strong demand for a method for stably producing alloyed hot-dip galvanized steel sheets with excellent properties. In order to advantageously and reliably solve the above-mentioned problems, the present invention provides a method for producing a δ 1- based alloyed hot-dip galvanized steel sheet that has excellent powdering resistance and flaking resistance. be. (Means for Solving the Problems) The present invention applies plating in a zinc plating bath consisting of Al: 0.04 to 0.12 wt%, residual Zn, and unavoidable impurities, then controls the area weight, and then When performing alloying treatment by heating in an alloying furnace, after completion of area weight control, rapid heating is performed in the temperature rising process in the alloying furnace in which the time required to reach a plate temperature of 470℃ or higher is 2.0 seconds or less, and alloying is performed. After completion, the plate temperature will increase during the cooling process.
This is a method for producing an alloyed hot-dip galvanized steel sheet, which is characterized by rapid cooling to a temperature range of 420°C or less in 2 seconds or less. The immersion time in the plating bath should be 2.5 seconds or less, the immersion time in the plating bath should be 2.5 seconds or less, and the maximum alloying temperature should be in the range of 470 to 510℃, and the basis weight quantity 45-90
g/m 2 , and it is preferable that the upper layer of the alloyed galvanized steel sheet be electroplated mainly consisting of iron and the balance being zinc. (Function) The reason for setting the Al content in the galvanizing bath to 0.04 to 0.12wt% (expressed as the effective Al concentration in the bath; the same applies hereinafter) is as follows.
If the Al concentration is lower than this value, the formation reaction of the alloy layer increases in the plating bath, and ζ
A thick Fe-Zn alloy layer mainly consisting of phase is formed, and this alloy layer remains on the surface of the plating layer immediately after alloying is completed, deteriorating flaking resistance. In addition, if further heating is performed immediately after alloying is completed, or if the cooling rate after alloying is slow, this ζ phase undergoes a solid phase diffusion reaction relatively easily, so the overalloying reaction tends to proceed, resulting in This transforms into a Γ phase with a high iron concentration, which deteriorates powdering resistance. On the other hand, when Al exceeds 0.12wt%, a ternary alloy layer with high Al concentration is formed in the plating bath, and Fe
- This will suppress the Zn alloying reaction. For this reason, alloying becomes difficult during superheating treatment in an alloying furnace, resulting in a metallic shiny plating appearance called half-baked, or if the heating alloying temperature is raised to prevent half-baked, the overalloying reaction progresses. Γ during cooling after completion of alloying.
This is disadvantageous because it transforms into a phase and deteriorates powdering resistance. In this case, the required alloying heating plate temperature is 540℃ or higher, so in order to increase the degree of cooling after alloying is completed and suppress the overalloying reaction,
It is necessary to increase the number of cooling facilities and also to increase the heating capacity of the alloying furnace. When plating is performed in the above bath AL concentration range, a barrier layer with a high Al concentration is generated due to the selective preferential reaction of Al in the bath, suppressing the Fe-Zn alloying reaction, but the suppression time is relatively short. . Therefore, the Fe--Zn alloying reaction starts during the temperature raising process after leaving the plating bath, controlling the basis weight, and then superheating in the alloying furnace. The temperature increase process from the time the area weight control is completed immediately after exiting the plating bath until the maximum plate temperature in the alloying furnace is reached is 420℃.
The temperature is relatively low, ranging from above ℃ to below 470℃,
Therefore, the main alloy layer that is formed is the ζ phase, which has the same problems as the ζ phase that is formed in the bath described above.
Deteriorates flaking resistance. In order to suppress the reaction during the heating process,
It is effective to increase the Al concentration in the bath to 0.12wt% or more, but as mentioned above, it not only impairs quality such as plating appearance and powdering resistance, but also economically reduces operating and equipment costs. increase As a result of various studies to solve this time advantageously, we found that the heating time from leaving the plating bath to reaching 470℃ in the temperature raising process in the alloying furnace was 2.0℃.
By ensuring that the temperature is within seconds, even in the bath Al concentration range mentioned above, the reaction to form an alloy layer mainly composed of the ζ phase during the heating process is substantially suppressed, so that the formation reaction in the plating bath as described above is suppressed. It has been found that, as well as the effect of suppressing the ζ phase, this can be achieved advantageously without deterioration of flaking resistance or powdering resistance.
If the heating time to 470℃ is longer than 2 seconds,
In this temperature range, Fe~Zn mainly consists of ζ phase.
Since an alloying reaction occurs and the reaction rate is relatively high, the above-mentioned problem of deterioration of plating quality due to the ζ phase occurs. In other words, if the ζ phase remains on the plated surface layer, flaking resistance deteriorates, and on the other hand, if the heating temperature is increased or the heating time is prolonged to eliminate this ζ layer, the overalloying reaction causes the formation of the ζ phase. This can lead to deterioration of powdering resistance. Furthermore, after completion of alloying, it is necessary to cool as rapidly as possible to suppress the overalloying reaction. As a result of examining the cooling conditions, it was found that after completion of alloying, it is important to rapidly cool the plate to a temperature of 420°C within 2 seconds. When plating is carried out under the bath Al concentration and heating rate conditions described above, there is considerably less ζ phase on the plating surface, resulting in an alloy layer consisting mainly of δ 1 phase, so there is no problem with flaking resistance. However, a small amount of ζ remains on the plated surface to the extent that it does not deteriorate flaking resistance.
Since the phase transforms into the Γ phase at a fast reaction rate even at a relatively low temperature during the cooling process, there is a problem of deterioration of powdering resistance. On the other hand, although the reaction rate is relatively slow, δ 1
Since the phase itself also transforms into the Γ phase during this cooling process, it is important to cool it as rapidly as possible and to suppress the reaction that produces the Γ phase. The formation reaction of the Γ phase during the cooling process can be suppressed by rapidly cooling the alloy to a temperature range of 420° C. or lower in 2 seconds or less after completion of alloying. The formation reaction of Γ phase is 420
Although it does not substantially occur at temperatures below ℃, the Γ phase is generated at a fairly rapid rate at temperatures above this temperature.
When heated in a temperature range of 420° C. or higher for a period longer than 2 seconds, the Γ phase thickness increases, resulting in a problem of deterioration of powdering resistance. Note that the plate temperature at the time of completion of alloying is generally approximately the same as the time when the highest plate temperature is reached in the alloying furnace. However, this is not necessarily necessary; for example, if alloying is completed in a conditioning cooling furnace or during the relatively slow cooling after being heated to the highest temperature, the alloy 420 from the temperature range at the time of completion of conversion
The cooling time to the plate temperature of °C may be set to 2 seconds or less. In this way, if the alloying is completed during cooling, 80% or more of the entire plating layer should be heated to 470 to 510℃.
It is desirable that the alloying reaction proceed in a relatively high temperature range. The reason for this is that if more than 20% of the plated layer remains unalloyed and alloying is completed by heating at a temperature below 470℃, a large amount of ζ phase tends to remain on the plated surface as described above, making it difficult to This is because deterioration of flaking properties occurs. Next, we will discuss the effect of immersion time. Although the alloying reaction in the bath can be sufficiently suppressed within the above-mentioned Al concentration range, it is more desirable to set the immersion time in the bath to 2.5 seconds or less. The immersion time here refers to the time from when the strip is immersed in the plating bath to when it leaves the plating bath to when the basis weight control is completed by a gas wiping method or the like. Soaking time
If the time is longer than 2.5 seconds, a sufficient Al barrier layer will not be formed because the reactivity of Al in the bath varies depending on the steel type, heat treatment conditions in the hot-melting line, and changes in the atmosphere composition within the Al concentration range mentioned above. Otherwise, the Fe-Zn alloying reaction proceeds in the bath, making it impossible to effectively suppress the formation of the ζ phase. Therefore, considering these variations in actual operation, it is desirable that the immersion time be 2.5 seconds or less. The immersion time can be set by adjusting the length from when the steel strip enters the plating bath via the snout to the area weight control position, or by adjusting the threading speed of the steel strip. On the other hand, when superheating is performed in an alloying heat treatment furnace, it is desirable to perform alloying at a maximum plate temperature of 470°C or higher and 510°C or lower. When the temperature is lower than 470℃, the reaction rate of Fe eluted from the substrate is
Since the diffusion rate is relatively high, an alloy layer with a low Fe concentration is formed, which increases the thickness of the ζ phase and remains even after alloying is completed, which is undesirable because it deteriorates flaking resistance. . on the other hand,
When the temperature of the alloyed plate is higher than 510℃, the elution rate of the base iron increases, making it easier to form the δ 1 phase, so the above problem does not occur. Since the transformation reaction of not only the small amount of ζ phase remaining on the surface but also the δ 1 phase to the Γ phase progresses at a relatively fast rate, there is a problem that the powdering resistance is significantly deteriorated. In particular, this tendency becomes more pronounced as the basis weight increases, making it difficult to ensure good quality. A possible solution to this problem is to increase the cooling rate, but simple methods such as water cooling are ineffective, so special equipment is required to ensure the cooling rate.
This is not preferable since it has the disadvantage of increasing equipment costs. As mentioned above, as an alloying heat treatment furnace,
Rapid heating during the temperature raising process after plating, rapid cooling after completion of alloying, and control of the optimal temperature range of the plate temperature are important. As a heat source for this alloying heat treatment furnace, methods such as gas combustion heating, electric resistance heating, infrared heating, and high frequency heating can be adopted. Also,
When the threading speed changes, by arranging heat sources in multiple stages in the threading direction, they can be turned on and off appropriately, and the effective length of the superheating zone and cooling zone can be adjusted according to the threading speed. desirable. The present invention is applicable regardless of the basis weight. Even if the basis weight is small (usually 45 g/ m2 or less), by applying the present invention, a plated layer structure consisting mainly of δ 1 phase with less Γ and ζ phases can be created, making it suitable for applications and parts that undergo more severe molding processing. Even when this alloyed hot-dip galvanized steel sheet is applied, there is an advantage that flaking resistance and powdering resistance can be reliably prevented. However, the application of the present invention is most advantageous in the case of thick alloyed hot-dip galvanized steel sheets with a basis weight of 45 g/m 2 or more, particularly 50 g/m 2 or more. When alloying is performed by the heating diffusion method, the concentration distribution of Fe gradually decreases from the substrate to the plated surface, so that the Γ phase tends to grow thickly on the substrate side, and the ζ phase grows thickly on the plated surface side. Therefore, controlling the alloy phase to be mainly δ1 phase by applying the present invention has the advantage of reliably preventing powdering resistance and flaking resistance. Although the present invention is applied to alloyed hot-dip galvanized steel sheets, it can be applied to either double-sided plating or single-sided plating. Further, there is no particular limitation as long as it has an alloyed hot-dip galvanized layer on at least one side. For example, a steel plate with different thickness on the front and back (for example, one side has a basis weight of 30g/m 2 and the other side has a
60g/ m2 alloyed hot-dip galvanized steel sheet) or single-sided alloyed hot-dip galvanized steel sheet (one side has a basis weight of 30g/m2 )
It can be advantageously applied to an alloyed galvanized layer (with the other side being 100 g/m 2 of a normal hot-dip galvanized layer that is not alloyed). Furthermore, in order to improve the cationic electrodeposition coating properties, the upper layer of such an alloyed hot-dip galvanized steel sheet may be made of 60% or more iron and the balance zinc, or the alloy may contain Ni, Co, Cr, Mn:Si, The alloy layer containing one or more of P, Cu, B, etc. has a basis weight of 2.
By applying it by electroplating in the range of 5 g/m 2 , it is possible to obtain a tanned steel sheet with excellent powdering resistance and flaking resistance, and excellent cationic electrodeposition properties. (Example) Next, Examples of the present invention are shown in Table 1 together with Comparative Examples.

【表】【table】

【表】 (発明の効果) 本発明を適用することにより、合金化溶融亜鉛
めつき鋼板の耐パウダリング性・耐フレーキング
性が確実に向上し、自動車・家電・建材分野でプ
レス加工など過酷な成形を受ける用に好適なもの
となる。また、本発明の適用により高品質・高性
能な合金化溶融亜鉛めつき鋼板を比較的容易にか
つ安価に製造でき、優れた効果を有利にかつ確実
に発揮できる。このように、本発明により製造さ
れた合金化溶融亜鉛めつき鋼板の性能向上効果は
顕著であり、今後更に拡大するニーズに的確に応
えられることから、工業的価値は極めて大きいも
のである。
[Table] (Effects of the invention) By applying the present invention, the powdering resistance and flaking resistance of alloyed hot-dip galvanized steel sheets are reliably improved, and they are used in the fields of automobiles, home appliances, and construction materials to undergo harsh processes such as press processing. This makes it suitable for receiving a lot of molding. Furthermore, by applying the present invention, high-quality, high-performance alloyed hot-dip galvanized steel sheets can be produced relatively easily and inexpensively, and excellent effects can be advantageously and reliably produced. As described above, the performance improvement effect of the alloyed hot-dip galvanized steel sheet produced according to the present invention is remarkable, and the industrial value is extremely large because it can accurately meet the needs that will further expand in the future.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は耐フレーキング性の評価試験方法を示
す図である。 1……ポンチ、2……ダイス、3……試験片。
FIG. 1 is a diagram showing a test method for evaluating flaking resistance. 1...Punch, 2...Dice, 3...Test piece.

Claims (1)

【特許請求の範囲】 1 Al:0.04〜0.12wt%、残Zn及び不可避的不
純物からなる亜鉛めつき浴でめつきを施し、次い
で目付量制御を行なつた後、合金化炉で加熱して
合金化処理を行なうに際して、目付制御完了後合
金化炉内の昇温過程で470℃以上の板温に到達す
るまでの時間が2.0秒以下の急速加熱を施し、合
金化完了後は冷却過程において板温度が420℃以
下の温度域まで2秒以下で急速冷却することを特
徴とする合金化溶融亜鉛めつき鋼板の製造方法。 2 めつき浴内の浸漬時間を2.5秒以下とする請
求項1記載の方法。 3 めつき浴内の浸漬時間を2.5秒以下とし、か
つ合金化最高板温度を470〜510℃の範囲で加熱合
金化処理する請求項1記載の方法。 4 目付量を45〜90g/m2とする請求項1〜3の
いずれかの項記載の方法。 5 合金化亜鉛めつき鋼板の上層に鉄を主体と
し、残部亜鉛からなる電気めつきを施す請求項1
〜3のいずれかの項記載の方法。
[Claims] 1. Plating is performed in a galvanizing bath consisting of Al: 0.04 to 0.12 wt%, residual Zn and unavoidable impurities, and after controlling the basis weight, heating is performed in an alloying furnace. When performing alloying treatment, after completion of area weight control, rapid heating is performed in the temperature raising process in the alloying furnace to reach a plate temperature of 470℃ or higher in less than 2.0 seconds, and after completion of alloying, in the cooling process. A method for producing an alloyed hot-dip galvanized steel sheet, characterized by rapid cooling in 2 seconds or less to a temperature range of 420°C or less. 2. The method according to claim 1, wherein the immersion time in the plating bath is 2.5 seconds or less. 3. The method according to claim 1, wherein the immersion time in the plating bath is 2.5 seconds or less, and the alloying treatment is carried out by heating at a maximum alloying temperature in the range of 470 to 510°C. 4. The method according to any one of claims 1 to 3, wherein the basis weight is 45 to 90 g/ m2 . 5 Claim 1, in which the upper layer of the alloyed galvanized steel sheet is electroplated mainly consisting of iron and the balance being zinc.
3. The method according to any one of items 3 to 3.
JP10885188A 1988-04-30 1988-04-30 Production of alloying hot dip galvanized steel sheet Granted JPH01279738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10885188A JPH01279738A (en) 1988-04-30 1988-04-30 Production of alloying hot dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10885188A JPH01279738A (en) 1988-04-30 1988-04-30 Production of alloying hot dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JPH01279738A JPH01279738A (en) 1989-11-10
JPH0581662B2 true JPH0581662B2 (en) 1993-11-15

Family

ID=14495205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10885188A Granted JPH01279738A (en) 1988-04-30 1988-04-30 Production of alloying hot dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JPH01279738A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2709173B2 (en) * 1990-02-27 1998-02-04 日本鋼管株式会社 Alloyed hot-dip galvanized steel sheet with excellent powdering resistance and sliding properties
JP2569869B2 (en) * 1990-02-27 1997-01-08 日本鋼管株式会社 Method for producing alloyed hot-dip galvanized steel sheet with excellent sliding properties and powdering resistance
JP2709174B2 (en) * 1990-02-28 1998-02-04 日本鋼管株式会社 Multi-layer alloyed hot-dip galvanized steel sheet with excellent powdering resistance, sliding properties and cratering resistance
JPH0448061A (en) * 1990-06-18 1992-02-18 Kawasaki Steel Corp Production of galvannealed steel sheet
JP2658580B2 (en) * 1990-12-29 1997-09-30 日本鋼管株式会社 Method for producing alloyed hot-dip galvanized steel sheet excellent in press formability and powdering resistance
DE69215613T2 (en) * 1991-09-10 1997-05-15 Nippon Steel Corp Process for controlling the heating of an alloy furnace for the production of hot-dip metallized and alloy steel strip
JP2546471B2 (en) * 1992-04-06 1996-10-23 株式会社神戸製鋼所 Method for producing bake hardened high strength galvannealed steel sheet with excellent plating adhesion
KR20020046709A (en) * 2000-12-15 2002-06-21 이구택 method of manufacturing hot-dip galvannealed steels with good anti-flaking properties
US20040221929A1 (en) 2003-05-09 2004-11-11 Hebda John J. Processing of titanium-aluminum-vanadium alloys and products made thereby
JP5130491B2 (en) * 2008-10-02 2013-01-30 新日鐵住金株式会社 Method for producing galvannealed steel sheet
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013229A (en) * 1973-06-08 1975-02-12
JPS5815554A (en) * 1981-07-21 1983-01-28 Toray Ind Inc Resin composition
JPS59173255A (en) * 1983-03-19 1984-10-01 Nippon Steel Corp Preparation of alloying molten zinc plated steel plate
JPS61207560A (en) * 1985-03-11 1986-09-13 Sumitomo Metal Ind Ltd Manufacture of alloyed hot dip galvanized steel sheet
JPS61223174A (en) * 1985-03-28 1986-10-03 Sumitomo Metal Ind Ltd Production of zinc alloyed and hot dipped steel sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013229A (en) * 1973-06-08 1975-02-12
JPS5815554A (en) * 1981-07-21 1983-01-28 Toray Ind Inc Resin composition
JPS59173255A (en) * 1983-03-19 1984-10-01 Nippon Steel Corp Preparation of alloying molten zinc plated steel plate
JPS61207560A (en) * 1985-03-11 1986-09-13 Sumitomo Metal Ind Ltd Manufacture of alloyed hot dip galvanized steel sheet
JPS61223174A (en) * 1985-03-28 1986-10-03 Sumitomo Metal Ind Ltd Production of zinc alloyed and hot dipped steel sheet

Also Published As

Publication number Publication date
JPH01279738A (en) 1989-11-10

Similar Documents

Publication Publication Date Title
JP2008214681A (en) Galvannealed steel sheet superior in image clarity of coating and press formability, and manufacturing method therefor
JPH0581662B2 (en)
JPS5891162A (en) Manufacture of galvanized steel plate
JP2970445B2 (en) Hot-dip galvanizing method for Si-added high tensile steel
JPS6055591B2 (en) Manufacturing method of hot-dip zinc alloy plated steel sheet with excellent peeling resistance over time
JP2964911B2 (en) Alloying hot-dip galvanizing method for P-added high-strength steel
US5409553A (en) Process for manufacturing galvannealed steel sheets having high press-formability and anti-powdering property
JPH04147955A (en) Production of hot-dip zn-mg-al coated steel sheet
JP2525165B2 (en) Method for manufacturing high strength galvanized steel sheet
JP2695260B2 (en) Method for producing alloyed hot-dip galvanized steel sheet excellent in press formability
JP4890492B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with excellent paint bake hardening performance
CN112553522A (en) Cold-rolled hot-dip aluminum-zinc plated steel plate with excellent bending performance and manufacturing method thereof
JPH07216526A (en) Production of galvannealed steel sheet
JP2565054B2 (en) Method for producing galvannealed steel sheet with excellent deep drawability and plating adhesion
JPH04360A (en) Galvannealed steel sheet excellent in workability
JP2727598B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JPH0816261B2 (en) Method for producing galvannealed steel sheet having excellent press formability and powdering resistance
JP3766655B2 (en) Method for producing high-Si high-strength galvannealed steel sheet with excellent plating adhesion and workability
JP4600951B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and its manufacturing method
JP3271234B2 (en) Manufacturing method of galvannealed steel sheet with excellent alloying properties
JP2512147B2 (en) Method for producing galvannealed steel sheet with excellent powdering resistance
JPH03274251A (en) Galvannealed steel sheet excellent in press formability
JP2001200351A (en) METHOD OF MANUFACTURING FOR HIGH TENSILE STRENGTH HOT- DIP ZN-Al ALLOY COATED STEEL SHEET
JPH11293438A (en) High tensile strength galvannealed steel sheet and its production
JP2512148B2 (en) Method for producing galvannealed steel sheet with excellent powdering resistance

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 15