KR20020046709A - method of manufacturing hot-dip galvannealed steels with good anti-flaking properties - Google Patents

method of manufacturing hot-dip galvannealed steels with good anti-flaking properties Download PDF

Info

Publication number
KR20020046709A
KR20020046709A KR1020000077027A KR20000077027A KR20020046709A KR 20020046709 A KR20020046709 A KR 20020046709A KR 1020000077027 A KR1020000077027 A KR 1020000077027A KR 20000077027 A KR20000077027 A KR 20000077027A KR 20020046709 A KR20020046709 A KR 20020046709A
Authority
KR
South Korea
Prior art keywords
phase
flaking
resistance
layer
alloying
Prior art date
Application number
KR1020000077027A
Other languages
Korean (ko)
Inventor
김종상
Original Assignee
이구택
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 주식회사 포스코 filed Critical 이구택
Priority to KR1020000077027A priority Critical patent/KR20020046709A/en
Publication of KR20020046709A publication Critical patent/KR20020046709A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/285Thermal after-treatment, e.g. treatment in oil bath for remelting the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PURPOSE: A method of manufacturing hot-dip galvannealed steels with excellent anti-flaking and anti-powdering properties is provided. CONSTITUTION: The method of manufacturing hot-dip galvannealed steels with excellent anti-flaking properties is characterized in that by adding 0.05-0.1 wt.% of nickel in a conventional plating bath for hot-dip galvannealing that contains 0.13 to 0.14 wt.% of Al and controlling the heating rate of hot-dip galvannealing at 30 to 50°C/sec, the growth of zeta-phase and gamma-phase in steel can be restricted.

Description

내플레킹성이 우수한 합금화 용융아연 도금강판의 제조방법{method of manufacturing hot-dip galvannealed steels with good anti-flaking properties}Method of manufacturing hot-dip galvannealed steels with good anti-flaking properties

본 발명은 알루미늄 함량이 0.13∼0.14wt%인 용융아연 도금욕에 니켈을 0.05∼0.1wt% 첨가한 도금욕을 사용하여, 합금화 열처리시 30∼50℃/초로 급속가열하여 내플레킹성(Anti-flaking)이 우수한 합금화 용융아연 도금강판의 제조방법에 관한 것으로, 보다 상세하게는 Al농도 0.13∼0.14wt%인 통상의 합금화 용융아연 도금욕에 니켈을 0.05∼0.1wt%첨가한 도금욕에서 인양한 아연도금 강판이 응고되기 전에 합금화로의 가열대에서 30∼50℃/초로 급속가열하여 제타상 및 감마상의 성장을 억제함으로써 도금층의 내플레킹성 및 내파우더링성을 향상시킨 합금화 용융아연 도금강판의 제조방법이다.The present invention uses a plating bath in which nickel is added to 0.05 to 0.1 wt% in a molten zinc plating bath having an aluminum content of 0.13 to 0.14 wt%, and rapidly heated to 30 to 50 ° C./sec during alloying heat treatment to prevent flaking resistance (Anti- The present invention relates to a method for producing an alloyed hot-dip galvanized steel sheet having excellent flaking, and more particularly, to a conventional alloyed hot-dip galvanized bath having an Al concentration of 0.13 to 0.14 wt%. Method for manufacturing alloyed hot-dip galvanized steel sheet which improves flaking resistance and powdering resistance of plating layer by suppressing growth of zeta phase and gamma phase by rapid heating at 30 ~ 50 ℃ / second in heating zone of alloying furnace before the galvanized steel sheet is solidified to be.

합금화 용융아연 도금강판은 내식성, 도장성 및 용접성이 우수하면서 가격이 저렴하여 최근 일본, 미국을 중심으로 자동차 내외판용도로 사용이 확대되고 있다. 이러한 특성은 합금화 용융아연 도금강판의 아연과 철의 합금화 도금층에 의해 나타나는 것이다. 합금화 도금층은 연속용융도금 공정중에서 용융아연욕조를 통과한 후 아연 도금된 강판을 표층의 아연도금층이 완전히 굳기 전에 직상부에 설치된 합금화 열처리로에서 도금층을 가열한 후 공기냉각대에서 급속 냉각시켜 제조하게 된다. 이러한 합금화 열처리시 용융상태의 아연과 소지의 철성분이 열확산 반응으로 합금층을 생성시키게 되고 상온으로 냉각됨에 따라 그 반응은 중지하게 된다. 합금화 용융아연 도금층에 존재하는 각상과 그 특성을 설명하면 먼저 소지철과의 계면에 존재하는 케피탈 감마(Γ)상과 케피탈 감마원(Γ1)상은 각각 합금층중 철 성분의 함량이 24∼31wt% 및 18.5∼23.5wt%이고, 금속학적 격자 구조는 체심 입방정계와 면심입방정계이다. 이중 케피탈 감마상이 가장 취약한 상으로서, 가공시 합금층의 파우더링(Powdering)을 발생시키는 주요인이다. 다음으로 그 상층에 존재하는 델타상(δ)은 철성분이 8.5∼13wt%이고 육방 정계로 격자 구조가 되어 있어 케피탈 감마층에 비해 가공성이 우수하며 또한 마찰계수가 낮다. 제일 상층에 존재하는 제타(ζ)상은 철성분이 6.7∼7.2wt%이고, 격자 구조가 단사정계로 이루어져 있어 합금상중 가공성은 가장 좋으나 마찰계수가 높아 가공시 합금층의 플래킹(Flaking)현상을 유발하게 된다. 따라서 가공성 측면에서 감마상과 제타상이 매우 얇고 델타상으로만 형성된 합금상을 갖는 것이 유리하다. 그러나 이러한 합금상들은 열 확산에 의해 도금층중의 아연과 소지의 철성분이 합금화 반응을 일으켜 생성되는 것으로 강성분, 합금화처리 온도, 합금화 처리시간 및 용융아연 도금욕중의 성분에 따라 합금상들의 분포가 달라지게 된다. 또한 내플레킹성 및 내파우더링성은 도금층내의 Fe함량에 따라 상반되는 특성을 갖고 있어 두 가지 특성을 만족하는 조업조건을 만족하기가 매우 어렵다.The alloyed hot-dip galvanized steel sheet has excellent corrosion resistance, paintability and weldability, and is inexpensive, and has been recently used in automobile and exterior plates mainly in Japan and the United States. This property is exhibited by an alloy plating layer of zinc and iron of an alloyed hot dip galvanized steel sheet. The alloyed plating layer is manufactured by passing the hot dip galvanizing bath in the continuous hot dip plating process and heating the plated layer in an alloy heat treatment furnace installed in the upper part before the zinc plated layer of the surface layer is completely hardened, followed by rapid cooling in an air cooling zone. do. During such an alloying heat treatment, the zinc in the molten state and the base iron are thermally diffused to form an alloy layer, and the reaction is stopped as it is cooled to room temperature. The phases present in the alloyed hot-dip galvanized layer and the characteristics thereof will be described. First, the kepital gamma (Γ) phase and the kepital gamma source (Γ1) phase present at the interface with the base iron have a content of 24 to 31 wt% of iron in the alloy layer, respectively. And 18.5 to 23.5 wt%, and the metallic lattice structure is a body centered cubic system and a face centered cubic system. Among them, the capital Gamma phase is the weakest phase and is the main cause of powdering of the alloy layer during processing. Next, the delta phase (δ) present in the upper layer has an iron component of 8.5 to 13 wt% and has a hexagonal lattice structure, which is superior in workability and low coefficient of friction as compared to the capacitive gamma layer. The zeta (ζ) phase present in the uppermost layer has the iron component of 6.7-7.2wt% and the lattice structure consists of monoclinic system, which has the best workability among the alloy phases, but has a high coefficient of friction. Will cause. Therefore, in view of workability, it is advantageous to have an alloy phase in which the gamma phase and the zeta phase are very thin and formed only in the delta phase. However, these alloy phases are produced by the thermal diffusion of zinc in the plating layer and the iron component of the base alloy. The distribution of the alloy phases according to the steel composition, alloying temperature, alloying time and components in the hot dip galvanizing bath Will be different. In addition, since the flaking resistance and the powder resistance have properties that are incompatible with the Fe content in the plating layer, it is very difficult to satisfy the operating conditions satisfying the two characteristics.

한편 기존의 버너(Burner)를 이용한 직화가열 방식에 의한 합금화 열처리는도금강판의 온도분포가 불균일하고 급속가열이 어려워 제타상 또는 감마상이 두껍게 형성되는 문제점이 많이 발생하였다. 따라서 최근에 고주파 또는 저주파 유도가열 방식에 의한 합금화 열처리 방식을 채택한 결과 급속가열이 가능하고 온도분포가 균일하여 합금상제어가 용이한 장점이 있는 것으로 보고되고 있다. 그러나 유도가열로의 가열속도가 부적절하면 내플레킹성 및 내파우더링성이 열화되는 문제점이 발생하였다. 따라서 본 발명에서는 유도가열로의 가열속도를 조절하여 내플레킹성 및 내파우더링성이 우수한 합금화 용융아연 도금강판을 제조하고자 하였다.On the other hand, the alloy heat treatment by the direct heating method using a conventional burner has a lot of problems in that the temperature distribution of the plated steel sheet is uneven and rapid heating is difficult to form a thick zeta phase or gamma phase. Therefore, as a result of adopting an alloying heat treatment method using a high frequency or low frequency induction heating method, it has been reported that the rapid heating is possible and the temperature distribution is uniform so that the alloy phase control is easy. However, if the heating speed of the induction furnace is inadequate, the flaking resistance and the powder resistance deteriorate. Therefore, in the present invention, an alloyed hot-dip galvanized steel sheet excellent in flaking resistance and powdering resistance was controlled by controlling the heating rate of the induction furnace.

합금화 용융아연 도금층의 플레킹은 도금층내 철함량이 9%이하로 낮을 때 주로 발생하는 것으로 알려져 있다. 따라서 종래의 합금화 용융아연 도금강판의 내플레킹성을 향상하기 위해서는 도금층내의 철함량을 10∼12wt%로 높게 하여야 했으나, 상대적으로 내파우더링성이 열화되는 문제점이 있다. 합금화 용융아연 도금강판의 내파우더링성을 향상시키기 위한 방법으로 일본 신일철(NSC)에서는 합금화 용융아연 도금층 상부에 얇게 철을 전기도금한 플레쉬(Flash) 합금화 용융아연 도금강판을 생산하여 왔다. 그러나 자동차사의 원가절감 요구에 따라 미국 LTV에서 소량 생산하고 있는 인산염처리 합금화 용융아연 도금강판 및 일본 강관(NKK)의 니켈계 무기윤활 피복강판 등이 개발되었다. 전자는 합금화 용융도금 강판위에 인산염 피막(Zn3-xMx(PO4)2·4H2O)를 0.5∼1g/m2도포시켜 프레스 가공시 성형하중 감소로 프레스 다이의 수명연장 및 마찰계수 감소로 내플레킹성은 향상되나, 파우더링성이 열화되고 자동차사의 전착도장시 전처리공정에서 인산염피막이 잘 탈지가 되지 않아 도장밀착성이 열화되는 문제점이 있다. 후자는 합금화 용융도금 강판 위에 니켈계 윤활피막을 100∼200mg/m2도포시킨 것으로 마찰계수를 감소하여 내플레킹성이 개선되고 인산염처리성, 도장성, 내식성은 일반 합금화 용융아연 도금강판과 동등한 성능을 갖는 것으로 보고되고 있다. 그러나 별도의 윤활피막을 도포할 수 있는 설비신설이 필요하고 제조원가가 상승하므로 자동차 사에서 거의 채택하고 있지 않고 있다.The flaking of the alloyed hot dip galvanized layer is known to occur mainly when the iron content in the plated layer is lower than 9%. Therefore, in order to improve the flaking resistance of conventional alloyed hot-dip galvanized steel sheet, the iron content in the plating layer should be increased to 10 to 12 wt%, but there is a problem in that the powder resistance is deteriorated relatively. As a method for improving the powder resistance of alloyed hot-dip galvanized steel sheet, Japan Shin-Il Iron Co., Ltd. (NSC) has produced flash alloyed hot-dip galvanized steel sheet in which iron is electroplated thinly on the alloyed hot-dip galvanized layer. However, in response to the cost reduction demands of automobile companies, phosphate-treated alloyed hot-dip galvanized steel sheets produced by US LTV and nickel-based inorganic lubricated coated steel sheets of NKK were developed. The former is alloyed hot-dip coated steel strip over the phosphate coating (Zn 3-x Mx (PO 4) 2 · 4H 2 O) a 0.5~1g / m 2 is applied to extended life and reduced coefficient of friction of the press die to reduce the molding force during press-forming Furnace resistance is improved, but there is a problem that the powdering resistance is deteriorated and the coating adhesion is deteriorated because the phosphate coating is not degreased well in the pretreatment process during the electrodeposition coating of automobiles. The latter is a 100-200mg / m 2 nickel-coated lubricating film coated on an alloyed hot-dip galvanized steel sheet, which reduces frictional coefficients and improves flaking resistance. It is reported to have. However, it is rarely adopted by automobile companies due to the necessity of new facility to apply a separate lubricating film and the increase of manufacturing cost.

따라서 본 발명은 상기 요망에 의하여 안출된 것으로, 위에서 기술한 별도의 플레쉬도금, 인삼염처리, 윤활피복 등의 후처리 및 강성분 변경없이 내플레킹성 및 내파우더링성이 우수한 합금화 용융아연 도금강판을 제조할 수 있는 방법을 제공하는데 그 목적이 있다.Therefore, the present invention has been made in accordance with the above requirements, and the alloying hot-dip galvanized steel sheet excellent in the flaking resistance and powdering resistance without the post-treatment, such as the separate flash plating, ginseng salt treatment, lubrication coating and changing the steel composition described above The purpose is to provide a method which can be manufactured.

이하 본 발명을 더욱 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명자는 합금화 용융아연 도금층내 합금상분포가 도금욕성분 및 합금화 가열속도애 따라 크게 변화되고, 이에 따라 도금층의 내플레킹성 및 내파우더링성이 크게 영향받는 것을 수많은 반복실험 및 각종 품질평가를 통해 밝혀내었다. 본 발명은 알루미늄 함량이 0.13∼0.14wt%인 용융아연 도금욕에 니켈을 0.05∼0.1wt% 첨가한 도금욕을 사용하여, 합금화 열처리시 30∼50℃/초로 급속가열하여 내플레킹성(Anti-flaking)이 우수한 합금화 용융아연 도금강판의 제조방법이다. 보다 상세하게는 Al농도 0.13∼0.14wt%인 통상의 합금화 용융아연 도금욕에 니켈을 0.05∼0.1wt%첨가한 도금욕에서 인양한 아연도금 강판이 응고되기 전에 합금화 유도가열로에서 30∼50℃/초로 급속가열하여 제타상 및 감마상의 성장을 억제함으로써 도금층의 내플레킹성 및 내파우더링성을 향상시킨 합금화 용융아연 도금강판의 제조방법이다.The inventors have found that the alloy phase distribution in the alloyed hot dip galvanized layer is greatly changed according to the plating bath component and the alloying heating rate, and thus, through numerous repeated experiments and various quality evaluations, the flaking resistance and the powdering resistance of the plating layer are greatly affected. Revealed. The present invention uses a plating bath in which nickel is added to 0.05 to 0.1 wt% in a molten zinc plating bath having an aluminum content of 0.13 to 0.14 wt%, and rapidly heated to 30 to 50 ° C./sec during alloying heat treatment to prevent flaking resistance (Anti- It is a manufacturing method of alloying hot-dip galvanized steel sheet excellent in flaking). More specifically, 30 to 50 ° C. in an alloying induction furnace before the galvanized steel sheet solidified in a plating bath containing 0.05 to 0.1 wt% of nickel is added to a conventional alloyed hot dip galvanizing bath having an Al concentration of 0.13 to 0.14 wt%. It is a manufacturing method of alloyed hot-dip galvanized steel sheet which improves the flaking resistance and the powdering resistance of a plating layer by suppressing the growth of a zeta phase and a gamma phase by rapid heating at / second.

합금화 용융아연 도금층의 플레킹은 프레스 가공시 전단응력에 의해 도금층이 소지철/도금층 계면에서 50∼200mm크기의 입자로 도금층이 탈락되는 현상을 의미한다. 한편 파우더링은 프레스 가공시 압축응력에 의해 도금층 또는 도금층/소지철 계면에서 도금층이 10mm 이하의 작은 입자로 탈락되는 현상을 의미한다. 따라서 플레킹 및 파우더링은 프레스 가공시 작용응력 및 탈락입자 크기가 상이하나, 도금층과 소지철사이의 게면에서의 접착력에 크게 영향을 받는다는 점에서 공통점을 갖고 있다. 따라서 본 발명자는 도금층과 소지철사이의 결합력을 증가시키고, 델타상으로만 이루어진 합금상을 제조할 수 있는 방법을 도출하였다.The flaking of the alloyed hot dip galvanized layer refers to a phenomenon in which the plated layer is dropped into particles having a size of 50 to 200 mm at the base iron / plated layer interface due to shear stress during press working. Powdering, on the other hand, refers to a phenomenon in which a plating layer is dropped into small particles of 10 mm or less at a plating layer or a plating layer / ferrous iron interface due to compressive stress during press working. Therefore, the flaking and powdering have a common point in that the working stress and the dropping particle size are different in the press working, but are greatly affected by the adhesive force on the crab surface between the plating layer and the base iron. Therefore, the present inventors have increased the bonding force between the plating layer and the base iron, and derived a method capable of producing an alloy phase consisting only of the delta phase.

강판이 알루미늄을 0.13∼0.14wt%함유한 통상의 용융아연 도금욕에서 인양시 Fe2Al5합금층이 형성된다. 이들 초기 합금층은 완전한 합금층을 형성하기 위한 철-아연 변태를 지연하기 때문에 확산억제층(inhibition layer)으로 불리고 있다. 이들 확산억제층이 너무 두꺼우면 합금화반응이 억제되어 주로 제타상으로 이루어진 합금층을 형성하여 내플레킹성이 저하되는 문제점이 있다. 이를 해결하기 위해 본 발명에서는 니켈을 0.05∼0.1wt 첨가하는 것으로, 합금화 반응을 방해하는철-아연-알루미늄의 3원계 합금층 대신에 합금화반응을 방해하지 않는 철-아연-알루미늄-니켈의 4원계 합금층을 형성시키는 것이다. 상기 4원계 합금층 생성은 용융도금시 얻어진 도금층의 깊이 방향으로 GDS(glow discharge spectrometer)를 이용하여 분석한 결과, 도금층/소지철 계면에 알루미늄 농도가 저하되면서 동시에 니켈이 농화되어 있음을 보이므로 해서 알 수 있다. 또한 상기 4원 합금층의 니켈분포 및 결합상태를 알아보기 위해 도금층 단면으로 박제(replica)시료를 제작하여 투과전자현미경(TEM)으로 관찰한 결과 소지철/도금층 계면에서 밴드형태의 수지성(dendrite)조직을 관찰할 수 있었다. 이때 성분을 EDAX로 분석한 결과에 의하면 Al, Ni, Fe, Zn가 뭉쳐서 결합된 상태로서 주로 알루미늄과 니켈의 결합체로 구성되어 있다. 알루미늄과 니켈의 2원합금 상태도 및 투과전자현미경으로 회절패턴을 측정한 결과로부터 AlNi중간상의 석출물로 나타났다. 따라서 도금욕내 니켈첨가로 인해 도금층/소지철 계면에 합금화 반응을 저해하지 않는 다공성(porous)의 철-아연-알루미늄-니켈의 4원계 합금층을 형성하여 합금화 속도가 증가되는 것이다. 또한 도금층/소지철계면에 안정한 알루미늄-니켈의 중간상 화합물은 취약한 감마상의 성장을 억제하고, 프레스 가공시 도금층의 균열(crack) 생성 및 전파를 방해하는 장애물(Barrier)로 작용하여 내플레킹성 및 내파우더링성을 향상시키는 것으로 추정된다.The Fe 2 Al 5 alloy layer is formed when the steel plate is lifted in a conventional hot dip galvanizing bath containing 0.13 to 0.14 wt% of aluminum. These initial alloy layers are called diffusion inhibition layers because they retard iron-zinc transformation to form a complete alloy layer. If the diffusion suppression layer is too thick, the alloying reaction is suppressed to form an alloy layer mainly composed of a zeta phase, thereby lowering the flaking resistance. In order to solve this problem, in the present invention, by adding 0.05 to 0.1wt of nickel, a ternary system of iron-zinc-aluminum-nickel, which does not interfere with the alloying reaction instead of the ternary alloy layer of iron-zinc-aluminum, which hinders the alloying reaction It forms an alloy layer. The formation of the quaternary alloy layer was analyzed by using a glow discharge spectrometer (GDS) in the depth direction of the plating layer obtained during hot dip plating. As a result, it was found that nickel was concentrated at the same time as the aluminum concentration decreased at the plating layer / ferrous iron interface. Able to know. In addition, in order to determine the nickel distribution and bonding state of the four-membered alloy layer, a replica sample was prepared from the plated layer section and observed with a transmission electron microscope (TEM). The tissue could be observed. At this time, according to the result of EDAX analysis of components, Al, Ni, Fe, and Zn are agglomerated and mainly composed of a combination of aluminum and nickel. From the results of diffraction patterns measured by binary alloy state diagram of aluminum and nickel and transmission electron microscope, precipitates of AlNi intermediate phase appeared. Therefore, the alloying speed is increased by forming a quaternary alloy layer of porous iron-zinc-aluminum nickel that does not inhibit the alloying reaction at the plating layer / ferrous iron interface due to the addition of nickel in the plating bath. In addition, the intermediate phase compound of aluminum-nickel, which is stable on the plating layer / ferrous iron interface, inhibits the growth of vulnerable gamma phase and acts as a barrier that prevents crack formation and propagation of the plating layer during press working, thereby preventing flaking resistance and resistance. It is estimated to improve powdering property.

또한 합금화 열처리시 균열대에 도달하기까지 가열속도가 빠르면 확산억제층이 빠르게 소멸되고, 제타상의 성장이 억제되는 반면, 가열속도가 느리면 초기 합금화반응은 아웃버스트(outburst)형태로 불균일하게 일어난다. 즉 저온에서 안정한제타상의 성장이 촉진되어 내플레킹성이 저하된다.In addition, if the heating rate is fast to reach the crack during alloying heat treatment, the diffusion inhibiting layer is quickly extinguished, and the growth of the zeta phase is suppressed, whereas if the heating rate is low, the initial alloying reaction occurs unevenly in the form of outburst. That is, the growth of the stable zeta phase at low temperature is promoted, and flaking resistance is lowered.

본 발명에서 도금욕내 Ni함량을 0.05∼0.1wt 로 한정한 이유에 대해 설명한다. 도금욕내 Ni함량이 0.05wt%미만 첨가시는 도금층/소지철 계면에서 철-아연-니켈-알루미늄 4원계 합금상을 형성하기에 불충분하여 부분적으로 철-아연-알루미늄 3원계 합금층을 형성하므로 해서 제타상의 합금상이 발달하며, 0.1wt%를 초과하면 합금화반응은 촉진되나, 도금욕 상부에 니켈로 인한 드로스 발생량이 많아져서 제품의 표면품질이 열화되고, 또한 비용면에서도 유리하지 못하다.The reason why the Ni content in the plating bath is limited to 0.05 to 0.1 wt in the present invention will be described. When the Ni content in the plating bath is less than 0.05wt%, it is insufficient to form the iron-zinc-nickel-aluminum quaternary alloy phase at the plating layer / ferrous iron interface, and thus partially form the iron-zinc-aluminum tertiary alloy layer. The alloy phase of zeta phase is developed, and when it exceeds 0.1wt%, the alloying reaction is promoted, but the dross generation amount due to nickel is increased on the plating bath, so that the surface quality of the product is deteriorated and it is not advantageous in terms of cost.

다음은 합금화처리시 가열속도를 30∼50℃/초로 한정한 이유에 대해 설명한다. 합금화 가열속도가 30℃/초 미만이면, 초기 합금화반응은 아웃버스트(outburst)형태로 불균일하게 일어난다. 즉 저온에서 안정한 제타상의 성장이 촉진되어 내플레킹성이 저하되었다. 반면 가열속도가 50℃/초를 초과하면 초기 확산억제층이 빠르게 소멸되어 제타상의 성장이 억제되는 반면, 감마상이 빠르게 성장하여 내파우더링성이 저하되고, 현재의 유도가열로 방식으로 가열속도를 50℃/초 이상으로 하는 것은 설비적으로 곤란하였다.Next, the reason why the heating rate was limited to 30 to 50 ° C / sec during the alloying treatment will be explained. If the alloying heating rate is less than 30 ° C./sec, the initial alloying reaction occurs unevenly in the form of outburst. That is, the growth of the zeta phase which is stable at low temperature is promoted, and the flaking resistance is lowered. On the other hand, if the heating rate exceeds 50 ° C / sec, the initial diffusion inhibiting layer disappears rapidly and the growth of the zeta phase is suppressed, while the gamma phase grows rapidly, deteriorating the powdering resistance, and the heating rate is increased by 50 induction heating. It was difficult in terms of equipment to be higher than or equal to ° C / sec.

내플레킹성 및 내파우더링성은 도금층중의 철농도 및 감마상 두께에도 밀접한 관계가 있다. 합금화도(도금층내 철함량)를 9∼11wt%로 좁게 관리시 0.5㎛ 미만의 감마상 두께를 얻을 수 있다. 즉 합금화도가 9wt% 미만에서는 주로 제타상으로 이루어진 합금상으로 인해 플레이킹 발생량이 증가하며, 11wt%를 초과시에는 감마상 두께가 0.6㎛를 초과하여 내파우더링성이 저하된다.Flaking resistance and powder resistance are closely related to iron concentration and gamma phase thickness in the plating layer. When the alloying degree (iron content in the plating layer) is narrowly controlled to 9 to 11 wt%, a gamma-phase thickness of less than 0.5 μm can be obtained. That is, when the alloying degree is less than 9wt%, the amount of flaking is increased due to the alloy phase mainly composed of zeta phase. When the alloying degree is more than 11wt%, the gamma phase thickness exceeds 0.6 µm and the powdering resistance is lowered.

이하 본 발명을 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.

(실시예)(Example)

표 1은 본 발명에 의한 실시 예를 나타낸 것으로 두께 0.8mm인 극저탄소 냉간압연 강판을 사용하여 도금부착량을 단면기준으로 60g/m2으로 하였다. 0.135wtAl, 0.02%Fe를 함유한 460℃ 도금욕에 니켈함량을 달리 하여 도금한 후, 40℃/초로 가열하여 480℃에서 유지하여 도금층내 Fe함량을 9wt%로 제조한 합금화 용융아연 도금강판을 대상으로 플레킹량, 파우더링량 및 표면외관을 평가하여 하기표 1에 나타내었다. 플레킹량은 유-비드 시험기(U-bead tester)를 이용하여 전단응력에 의한 도금층의 탈락량을 측정하였으며, 파우더링량은 컵성형시험기(Cupping tester)를 이용하여 압축응력에 의한 도금층의 탈락량을 측정하여 평가하였다.Table 1 shows an embodiment according to the present invention using a very low carbon cold rolled steel sheet having a thickness of 0.8mm to set the coating deposition amount of 60g / m 2 based on the cross-sectional basis. The alloyed hot-dip galvanized steel sheet prepared by coating the 460 ° C plating bath containing 0.135wtAl and 0.02% Fe with different nickel content, heating at 40 ° C / sec and maintaining at 480 ° C to produce 9wt% Fe in the plating layer. The amount of flaking, the amount of powdering and the surface appearance were evaluated by the subjects, and are shown in Table 1 below. The amount of flaking was measured using the U-bead tester to measure the amount of dropping of the plated layer by the shear stress, and the amount of powdering was measured by the cup forming tester to determine the amount of falling of the plated layer by the compressive stress. Measured and evaluated.

표 1에서 보듯이 본 발명의 조건을 만족하는 발명예(1∼2)는 제타상 및 감마상의 성장이 억제되어 도금층의 플레킹량(합격<10mg), 파우더링량(합격<10mg) 및 표면외관이 우수하였다. 그러나 도금욕내 Ni첨가량이 0.05wt%미만인 경우(비교예 1∼2), 합금상중 제타상 분율이 높아 파우더링량은 감소하나 마찰계수가 증가에 따른 플레킹량이 증가하여, 프레스 성형성 연속작업성이 크게 저하되었다. 또한 Ni첨가량이 0.10wt%를 초과한 경우(비교예 3, 비교예4), 플레킹량은 양호하였으나, 취약한 감마상의 두께가 증가하여 파우더링량이 증가하고 강판에 아연-니켈계 드로스부착으로 인한 표면외관도 크게 열화되었다. 한편 도금욕내 Al함량이 0.14wt%를 초과한 경우(비교예 5)에는 Ni를 본 발명예 범위 내로 첨가하여도 두꺼운 학산억제층으로 인해 제타상으로 이루어진 합금층을 형성하여 내플레킹성이 현저히 열화되었다.As shown in Table 1, Inventive Examples (1 to 2) satisfying the conditions of the present invention suppress the growth of the zeta phase and the gamma phase so that the amount of flaking (passing <10 mg), powdering amount (passing <10 mg), and surface appearance of the plating layer is reduced. Excellent. However, when the Ni content in the plating bath is less than 0.05 wt% (Comparative Examples 1 and 2), the zeta phase fraction in the alloy phase is high, so that the amount of powdering decreases but the amount of flaking increases due to the increase of the friction coefficient. It was greatly degraded. In addition, when the Ni addition amount exceeded 0.10 wt% (Comparative Example 3, Comparative Example 4), the flaking amount was good, but the thickness of the vulnerable gamma phase increased, resulting in an increase in powdering amount and adhesion of zinc-nickel dross to the steel sheet. The surface appearance was also greatly degraded. On the other hand, when the Al content in the plating bath exceeds 0.14 wt% (Comparative Example 5), even if Ni is added within the range of the present invention, an alloy layer made of a zeta phase is formed due to the thick academic acid suppression layer to significantly deteriorate the flaking resistance. It became.

구분division 도금욕 조성(wt%)Plating bath composition (wt%) 플레킹량(mg)Flaking amount (mg) 파우더링량(mg)Powdering amount (mg) 표면외관Surface appearance AlAl NiNi 발명예1Inventive Example 1 0.130.13 0.060.06 33 88 양호Good 발명예2Inventive Example 2 0.140.14 0.090.09 55 44 양호Good 비교예1Comparative Example 1 0.130.13 00 2424 55 양호Good 비교예2Comparative Example 2 0.140.14 0.040.04 2727 22 양호Good 비교예3Comparative Example 3 0.130.13 0.150.15 1One 5656 불량Bad 비교예4Comparative Example 4 0.140.14 0.200.20 22 4343 불량Bad 비교예5Comparative Example 5 0.150.15 0.070.07 3838 33 불량Bad

(실시예 2)(Example 2)

표 2는 본 발명에 의한 실시 예를 나타낸 것으로 두께 0.8mm인 극저탄소 냉간압연 강판을 사용하여 도금부착량을 단면기준으로 60g/m2으로 하였다. 0.135wtAl, 0.02%Fe, 0.06%Ni를 함유한 460℃ 도금욕에서 도금한 후, 합금화 유도가열로의 가열속도를 달리하여 480℃에서 15초 유지하여 도금층내 Fe함량을 10wt%로 제조한 합금화 용융아연 도금강판을 대상으로 플레킹량 및 파우더링량을 평가하여 하기표 2에 나타내었다.Table 2 shows an embodiment according to the present invention using a very low carbon cold rolled steel sheet having a thickness of 0.8mm to set the coating deposition amount of 60g / m 2 on a cross-sectional basis. After plating in a 460 ° C plating bath containing 0.135wtAl, 0.02% Fe, 0.06% Ni, alloying produced 10wt% of Fe in the plating layer by maintaining the heating rate of the alloying induction furnace at 480 ° C for 15 seconds. The amount of flaking and powdering of the hot-dip galvanized steel sheet was evaluated and shown in Table 2 below.

하기 표 2에서 알 수 있는 바와 같이 본 발명의 조건을 만족하도록 합금화 가열속도를 조절한 발명예 1 및 발명예 2는 내플래킹성 및 내파우더링성이 매우 우수하였다. 그러나 가열속도가 30℃/초 미만이면(비교예 1), 저온에서 안정한 제타상의 성장이 촉진되어 내플레킹성이 크게 저하되었다. 반면 가열속도가 50℃/초를 초과하면(비교예 2) 초기 확산억제층이 빠르게 소멸되어 제타상의 성장이 억제되는 반면, 감마상이 빠르게 성장하여 파우더링량이 증가하고 전기적인 단락이 자주 발생하는 등의 설비적으로도 많은 문제점을 보였다.As can be seen in Table 2, Inventive Example 1 and Inventive Example 2, in which the alloying heating rate was adjusted to satisfy the conditions of the present invention, were very excellent in flaking resistance and powdering resistance. However, when the heating rate was less than 30 ° C./sec (Comparative Example 1), growth of the zeta phase stable at low temperature was promoted and the flaking resistance greatly decreased. On the other hand, if the heating rate exceeds 50 ° C / sec (Comparative Example 2), the initial diffusion inhibitor layer disappears rapidly to suppress the growth of the zeta phase, whereas the gamma phase grows rapidly, increasing the amount of powdering and frequent electrical shorts. In terms of equipment, there were many problems.

구분division 가열속도(℃/초)Heating rate (℃ / sec) 플레킹량(mg)Flaking amount (mg) 파우더링량(mg)Powdering amount (mg) 발명예1Inventive Example 1 3535 33 77 발명예2Inventive Example 2 4545 22 55 비교예1Comparative Example 1 1515 2525 33 비교예2Comparative Example 2 5555 1One 2525

상술한 바와 같이 본 발명은 별도의 후처리없이 도금욕 성분조절 및 합금화 가열속도를 30℃∼50/초로 조절할 경우 합금화 용융아연 도금강판의 내플레킹성 및 내파우더링성을 크게 향상시킬 수 있으므로 산업상 이용효과가 매우 크다.As described above, the present invention can greatly improve the flaking resistance and the powdering resistance of the alloyed hot-dip galvanized steel sheet when the plating bath component control and alloying heating rate is adjusted to 30 ° C. to 50 / sec. Use effect is very big.

Claims (2)

Al농도 0.13∼0.14wt%인 통상의 합금화 용융아연 도금욕에 니켈을 0.05∼0.1wt%첨가하여 제타상 및 감마상의 성장을 억제하여 도금층의 내플레킹성 및 내파우더링성이 우수한 합금화 용융아연 도금강판의 제조방법.Alloyed hot-dip galvanized steel sheet having excellent flaking resistance and powdering resistance by suppressing growth of zeta phase and gamma phase by adding nickel to 0.05 to 0.1 wt% in a conventional alloyed hot dip galvanizing bath having an Al concentration of 0.13 to 0.14 wt%. Manufacturing method. 합금화 가열속도를 30∼50℃/초로 급속가열하여 제타상 및 감마상의 성장을 억제함으로써 도금층의 내플레킹성 및 내파우더링성을 향상시킨 합금화 용융아연 도금강판의 제조방법.A method for producing an alloyed hot-dip galvanized steel sheet which improves the flaking resistance and the powdering resistance of the plating layer by rapidly heating the alloying heating rate at 30 to 50 ° C./sec to suppress the growth of the zeta phase and the gamma phase.
KR1020000077027A 2000-12-15 2000-12-15 method of manufacturing hot-dip galvannealed steels with good anti-flaking properties KR20020046709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000077027A KR20020046709A (en) 2000-12-15 2000-12-15 method of manufacturing hot-dip galvannealed steels with good anti-flaking properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000077027A KR20020046709A (en) 2000-12-15 2000-12-15 method of manufacturing hot-dip galvannealed steels with good anti-flaking properties

Publications (1)

Publication Number Publication Date
KR20020046709A true KR20020046709A (en) 2002-06-21

Family

ID=27682224

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000077027A KR20020046709A (en) 2000-12-15 2000-12-15 method of manufacturing hot-dip galvannealed steels with good anti-flaking properties

Country Status (1)

Country Link
KR (1) KR20020046709A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279738A (en) * 1988-04-30 1989-11-10 Nippon Steel Corp Production of alloying hot dip galvanized steel sheet
JPH0413855A (en) * 1990-04-27 1992-01-17 Nisshin Steel Co Ltd Galvannealed steel sheet excellent in workability and its production
JPH04147953A (en) * 1990-10-09 1992-05-21 Nippon Steel Corp Production of galvannealed steel sheet
JP2000248347A (en) * 1999-03-03 2000-09-12 Nkk Corp Production of hot dip galvanized steel sheet and galvaneealed steel sheet
KR100270115B1 (en) * 1996-11-19 2000-10-16 이구택 The galvanizing coating method with hot rolled steel
KR100370581B1 (en) * 1998-12-30 2003-03-17 주식회사 포스코 Manufacturing method of high strength hot dip galvanized steel sheet with excellent plating adhesion

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279738A (en) * 1988-04-30 1989-11-10 Nippon Steel Corp Production of alloying hot dip galvanized steel sheet
JPH0413855A (en) * 1990-04-27 1992-01-17 Nisshin Steel Co Ltd Galvannealed steel sheet excellent in workability and its production
JPH04147953A (en) * 1990-10-09 1992-05-21 Nippon Steel Corp Production of galvannealed steel sheet
KR100270115B1 (en) * 1996-11-19 2000-10-16 이구택 The galvanizing coating method with hot rolled steel
KR100370581B1 (en) * 1998-12-30 2003-03-17 주식회사 포스코 Manufacturing method of high strength hot dip galvanized steel sheet with excellent plating adhesion
JP2000248347A (en) * 1999-03-03 2000-09-12 Nkk Corp Production of hot dip galvanized steel sheet and galvaneealed steel sheet

Similar Documents

Publication Publication Date Title
KR101727424B1 (en) Galvannealed steel plate and method for manufacturing same
KR20090020751A (en) Hot dip al-si-mg alloy plating bath and products and method for production
JPH01279738A (en) Production of alloying hot dip galvanized steel sheet
KR20020046709A (en) method of manufacturing hot-dip galvannealed steels with good anti-flaking properties
JP2770824B2 (en) Method for producing alloyed hot-dip galvanized steel sheet excellent in press formability and powdering resistance
KR20010056280A (en) Galvannealing method for decreasing crater
KR100498092B1 (en) corrosion resistant Zinc plating bath and products
KR100356163B1 (en) Manufacturing method of semi-alloyed hot dip galvanized steel sheet
KR101674771B1 (en) Galvannealed steel sheet and method for manufacturing the same having excellent workability
KR20020042154A (en) method of manufacturing melting galvanized steel iron with good workability and chipping resistance
JP3494058B2 (en) Alloyed hot-dip galvanized steel sheet with excellent workability and method for producing the same
KR100910451B1 (en) Hot?dip galvannealed steel sheet having superior flaking resistance and method for manufacturing thereof
JP3658723B2 (en) Method for producing hot-dip aluminized steel sheet with excellent corrosion resistance
KR101091442B1 (en) Hot-dip galvannealed steel sheet having excellent galvanized adhesion properity and method for manufacturing thereof
JPH04325665A (en) Galvanized steel sheet excellent in press formability and its production
TWI682041B (en) Zinc-coated steel sheet and method of forming the same
KR960003730B1 (en) Method for making a galvanized steel sheet with an excellent coating function
KR100530048B1 (en) A method for manufacturing hot galvanizing steel sheet with good surface appearance
KR100985345B1 (en) Galvannealing process for superior convertion from GI to GA mode
KR0146886B1 (en) Method for manufacturing hot-dipped zn-alloy coated steel sheet for the good machinability and anti-corrossion
JP3275686B2 (en) Galvannealed steel sheet with excellent press formability
JP2569869B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with excellent sliding properties and powdering resistance
KR950006275B1 (en) Method for producing a hot-dipped galvanized steel sheet with an excellent surface brightness and surface smoothness
KR100409227B1 (en) The plating method of a steel plate
KR960010161B1 (en) Method for manufacturing galvanealed steel plates with an excellent workability and corrosion resistance after coatings

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application