JPH04325665A - Galvanized steel sheet excellent in press formability and its production - Google Patents

Galvanized steel sheet excellent in press formability and its production

Info

Publication number
JPH04325665A
JPH04325665A JP12289391A JP12289391A JPH04325665A JP H04325665 A JPH04325665 A JP H04325665A JP 12289391 A JP12289391 A JP 12289391A JP 12289391 A JP12289391 A JP 12289391A JP H04325665 A JPH04325665 A JP H04325665A
Authority
JP
Japan
Prior art keywords
steel sheet
galvanized steel
oxide
zno
press formability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12289391A
Other languages
Japanese (ja)
Inventor
Takashi Hotta
堀田 孝
Tetsuya Nomoto
野本 徹也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12289391A priority Critical patent/JPH04325665A/en
Publication of JPH04325665A publication Critical patent/JPH04325665A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To improve the press formability of a galvanized steel sheet by regulating the surface roughness of a galvanized steel sheet to a specified value or below and thereafter forming an oxidized film essentially consisting of ZnO on the surface by oxidizing treatment. CONSTITUTION:The surface roughness Wca of a steel sheet subjected to galvanizing or galvannealing is regulated <=0.6mum, and after that, an oxide of 20 to 3000mg/m<2> (per face) essentially consisting of ZnO is formed on the surface of the plating by a method of electrolytic oxidation, immersing oxidation, coating oxidation or the like. The galvanized steel sheet having press formability not inferior to that of a cold rolled steel sheet can be manufactured.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、プレス成形性に優れた
亜鉛めっき鋼板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a galvanized steel sheet with excellent press formability.

【0002】0002

【従来の技術】亜鉛めっき鋼板のプレス成形性は冷延鋼
板のそれとに比べて劣化することはすでに知られている
。その原因は、めっき層が地鉄の変形を拘束するためと
考えられている。また、亜鉛めっき鋼板のプレス成形性
を向上させる手段として、亜鉛めっき鋼板の表面に各種
の高粘度の潤滑油を塗布する方法が一般的に広く取り入
れられている。しかし、この方法は、プレス成形前に潤
滑油を塗布する作業、プレス成形後に脱脂する作業が必
要である。そのため、コスト高になるほかプレス作業場
の環境を悪くするなどの問題がある。この問題を解決す
る方法として、特開昭62−185883号公報のごと
く、軟質なめっき層をもつ亜鉛めっき鋼板の表面にクロ
ム酸化物やFe−Znめっきを施し、表面を硬質化する
ことにより、プレス成形時の型かじりを回避させること
が開示されている。また、特開昭63−33591号公
報のごとく、粗度パターンの規則性を規定することによ
りプレス成形性を改善する方法。特開平02−2748
53号公報のごとく、粗度パラメータRaとWcaを特
定の大きさに規定することによりプレス成形性が改善さ
れることが開示されている。しかしながら、 プレス成
形性を代表するプレス破断現象を回避する上において、
硬質な皮膜の付与あるいは粗度の規定のみだけでは十分
な効果が期待されない。各種プレス成形性部品の防錆強
化対策として、工業的にもっとも有効な手段として、各
種の亜鉛めっき鋼板が多用される中で、冷延鋼板なみの
プレス成形性を有する亜鉛めっき鋼板に対する期待が大
きい。
BACKGROUND OF THE INVENTION It is already known that the press formability of galvanized steel sheets is inferior to that of cold rolled steel sheets. The reason for this is thought to be that the plating layer restrains the deformation of the steel base. Furthermore, as a means for improving the press formability of galvanized steel sheets, a method of applying various high-viscosity lubricating oils to the surface of galvanized steel sheets has been widely adopted. However, this method requires the work of applying lubricating oil before press molding and the work of degreasing after press molding. Therefore, there are problems such as not only increasing costs but also worsening the environment of the press workplace. As a method to solve this problem, as in JP-A-62-185883, the surface of a galvanized steel sheet with a soft plating layer is coated with chromium oxide or Fe-Zn to harden the surface. It is disclosed to avoid mold galling during press molding. Also, a method of improving press formability by specifying the regularity of the roughness pattern, as disclosed in Japanese Patent Application Laid-Open No. 63-33591. Japanese Patent Publication No. 02-2748
No. 53 discloses that press formability is improved by defining roughness parameters Ra and Wca to specific values. However, in order to avoid the press breakage phenomenon that represents press formability,
A sufficient effect cannot be expected only by providing a hard film or specifying the roughness. Various types of galvanized steel sheets are widely used as industrially the most effective means to strengthen the rust prevention of various press-formable parts, and there are high expectations for galvanized steel sheets that have press-formability comparable to cold-rolled steel sheets. .

【0003】0003

【発明が解決しようとする課題】本発明はこのような要
求を有利に解決するためになされたもので、プレス成形
時のプレス破断を大幅に改善できる亜鉛めっき鋼板を提
供するものである。
SUMMARY OF THE INVENTION The present invention has been made to advantageously solve these demands, and provides a galvanized steel sheet that can significantly improve press breakage during press forming.

【0004】0004

【課題を解決するための手段】本発明の特徴とするとこ
ろは、(1)亜鉛めっき鋼板の表面粗度の一つWcaが
0.6μ以下で、かつめっき層表面にZnO酸化物が2
0〜3000mg/m2(片面あたり)からなるプレス
成形性に優れた亜鉛めっき鋼板。(2)亜鉛めっき鋼板
のめっき層表面に電解酸化、浸漬酸化または塗布酸化処
理により亜鉛を主体とする酸化物を生成せしめることを
特徴とする請求項1に記載のプレス成形性に優れた亜鉛
めっき鋼板の製造方法。(3)めっき層表面が固相状態
または、めっき層表面が合金化後、加熱しZnOを主体
とする酸化膜を生成せしめることを特徴とする請求項1
に記載のプレス成形性に優れた亜鉛めっき鋼板及びその
製造方法にある。即ち、プレス成形時に発生する材料の
破断は、材料の破断耐力が材料の流入抵抗力を上回る状
態になった時発生する。材料の流入抵抗力は、材料の持
つ変形抵抗の他、金型のダイスとしわ押さえ板間に発生
する摺動抵抗力から構成される。従って、材料の流入抵
抗力を低減するためには摺動抵抗力を低減させることが
効果的である。この摺動抵抗力は、金型と材料が接触す
る部位において相対的すべりを伴う時に発生する。摺動
抵抗力は材料表面の凸部がつぶされる時の抵抗力と金型
と材料が接触する部位の摩擦力によって構成される。前
者の表面変形抵抗力は表面の平滑化や硬質化により低減
ができることが知られている。特に、表面の形態に関し
ては、表面のWcaが低いことが有効であるとされてい
るが、前記したように表面の低Wca化のみでは冷延鋼
板なみの低い摺動抵抗力を得ることができない。
[Means for Solving the Problems] The features of the present invention are as follows: (1) Wca, one of the surface roughnesses of the galvanized steel sheet, is 0.6μ or less, and ZnO oxide is present on the surface of the plating layer.
Galvanized steel sheet with excellent press formability consisting of 0 to 3000 mg/m2 (per side). (2) The zinc plating with excellent press formability according to claim 1, characterized in that an oxide mainly consisting of zinc is produced on the surface of the plating layer of the galvanized steel sheet by electrolytic oxidation, immersion oxidation, or coating oxidation treatment. Method of manufacturing steel plates. (3) Claim 1 characterized in that the surface of the plating layer is in a solid phase state or that after the surface of the plating layer is alloyed, it is heated to form an oxide film mainly composed of ZnO.
The present invention provides a galvanized steel sheet with excellent press formability and a method for manufacturing the same. That is, breakage of the material that occurs during press forming occurs when the breakage strength of the material exceeds the inflow resistance force of the material. The inflow resistance force of the material is composed of the deformation resistance of the material and the sliding resistance force generated between the die of the mold and the wrinkle holding plate. Therefore, in order to reduce the material inflow resistance force, it is effective to reduce the sliding resistance force. This sliding resistance force occurs when there is relative slippage at the part where the mold and the material come into contact. The sliding resistance force is composed of the resistance force when the convex part on the material surface is crushed and the frictional force at the part where the mold and the material come into contact. It is known that the former surface deformation resistance can be reduced by smoothing or hardening the surface. In particular, regarding the surface morphology, it is said that a low surface Wca is effective, but as mentioned above, it is not possible to obtain a low sliding resistance equivalent to that of a cold-rolled steel sheet just by lowering the surface Wca. .

【0005】一方、後者の摩擦力に関しては、材料と金
型とが接触する界面に油膜が存在すると、摩擦力は大幅
に低減できることは旧知である。通常、プレス成形には
、一次防錆を兼ねて低粘度の油が使用される。低粘度の
油では、金型と材料の接触面圧が比較的高くなるプレス
成形のような場合、容易に油膜が破壊されて金型と材料
の直接接触が発生することで摩擦力が増大する。 この
ような状態において、摩擦力の増大を抑制するには、油
膜の保持能力が重要である。このような観点から、冷延
鋼板と亜鉛めっき鋼板との詳細な比較実験および調査か
ら、冷延鋼板の場合、油膜の密着性が著しく優れている
のに反して、亜鉛めっき鋼板の場合、油膜の密着性が著
しく悪いことを見出した。 そして、その原因が表面の
酸化膜の被覆量に大きく依存しており、冷延鋼板の場合
、表面が鉄酸化物で十分に被覆され、その上に油膜が強
固に密着しているに対して、亜鉛めっき鋼板の場合酸化
物が離散的にしか存在せず、酸化物の存在しない表面で
の油の密着性が著しく低下すること、よって亜鉛めっき
鋼板の表面を酸化物で均一に被覆することにより油膜の
密着性が確保される表面積が増大することにより、摺動
抵抗力が大幅に改善されることを見出した。しかしなが
ら、亜鉛めっき鋼板の表面に形成される酸化物がZn系
であるのに対して、冷延鋼板の場合、鉄系酸化物からな
る。両者の皮膜成分の差は油膜の密着力の差として現れ
る。理由は明らかではないが、Zn系酸化物は鉄系に比
べて密着力が相対的に低い。従って、亜鉛めっき鋼板の
表面に酸化物を付与する条件のみでは、冷延鋼板なみの
摺動抵抗力は得られない。このようなZn系酸化物を付
与した亜鉛めっき鋼板において、前記した表面の低Wc
a化による効果を複合する場合、初めて冷延鋼板なみの
摺動抵抗力を達成することが可能となることを見出した
On the other hand, regarding the latter frictional force, it is well known that the presence of an oil film at the interface where the material and the mold come into contact can significantly reduce the frictional force. Usually, low-viscosity oil is used for press molding, which also serves as primary rust prevention. With low viscosity oil, in cases such as press molding where the contact surface pressure between the mold and the material is relatively high, the oil film is easily destroyed and direct contact between the mold and the material occurs, increasing frictional force. . In such a state, the ability to retain the oil film is important in order to suppress the increase in frictional force. From this point of view, detailed comparative experiments and research between cold-rolled steel sheets and galvanized steel sheets revealed that cold-rolled steel sheets have significantly superior oil film adhesion, while galvanized steel sheets have significantly better oil film adhesion. It was found that the adhesion was significantly poor. The cause of this is largely dependent on the amount of oxide film on the surface.In the case of cold-rolled steel sheets, the surface is sufficiently coated with iron oxide and the oil film is tightly adhered to it. In the case of galvanized steel sheets, oxides exist only discretely, and the adhesion of oil to surfaces where oxides are not present is significantly reduced.Therefore, the surface of galvanized steel sheets must be uniformly coated with oxides. It has been found that sliding resistance is significantly improved by increasing the surface area on which oil film adhesion is ensured. However, while the oxide formed on the surface of a galvanized steel sheet is Zn-based, in the case of a cold-rolled steel sheet, it is made of iron-based oxide. The difference in film components between the two appears as a difference in the adhesion of the oil film. Although the reason is not clear, Zn-based oxides have relatively low adhesion compared to iron-based oxides. Therefore, the sliding resistance equivalent to that of a cold-rolled steel sheet cannot be obtained only by applying oxides to the surface of a galvanized steel sheet. In a galvanized steel sheet coated with such a Zn-based oxide, the above-mentioned low Wc on the surface
It has been discovered that, for the first time, it is possible to achieve a sliding resistance comparable to that of a cold-rolled steel sheet when the effects of a-forming are combined.

【0006】しかして、亜鉛めっき鋼板としては、溶融
めっき法、電気めっき法、蒸着めっき法、溶射法など各
種の製造方法によるものがあり、めっき組成としては純
Znの他、ZnとFe、ZnとNi、ZnとAl、Zn
とMnなどZnを主成分として、耐蝕性など諸機能の向
上のため1種ないし2種以上の合金元素および不純物元
素を含み、また、SiO2,Al2O3などのセラミッ
クス微粒子、TiO2などの酸化物、有機高分子をめっ
き層中に分散させたものがあり、めっき層の厚み方向で
単一組成のもの、連続的あるいは層状に組成が変化する
ものがあり、さらに複層めっき鋼板では最上層がFeや
Niを主成分としてZn,Pなど各種合金元素を含むも
のがある。例えば、溶融亜鉛めっき鋼板、鉄−亜鉛合金
化溶融亜鉛めっき鋼板、亜鉛を主とするアルミニュウム
、鉄などの合金溶融亜鉛めっき鋼板、めっき層断面方向
で下層のみが合金化されている合金化溶融亜鉛めっき鋼
板(一般にハーフアロイと称する)、片面鉄−亜鉛合金
化溶融亜鉛めっき層、他面溶融亜鉛めっき層からなるめ
っき鋼板、これらのめっき層上に電気めっき、蒸着めっ
き等により亜鉛、鉄、ニッケルを主成分とする金属をめ
っきした鋼板、 あるいは、電気亜鉛めっき鋼板、亜鉛
、ニッケル、クロム等合金電気めっき鋼板等、更に単一
合金層又は複層合金電気めっき鋼板及びこれらのめっき
層上に有機皮膜を被覆しためっき鋼板、亜鉛および亜鉛
含有金属の蒸着めっき鋼板等がある。その他、SiO2
,Al2O3などのセラミックス微粒子,TiO2酸化
物微粒子及び有機高分子などを亜鉛又は亜鉛合金めっき
中に分散させた分散めっき鋼板がある。
[0006] Galvanized steel sheets can be manufactured by various methods such as hot-dip plating, electroplating, vapor deposition plating, and thermal spraying, and the plating compositions include pure Zn, Zn and Fe, and Zn. and Ni, Zn and Al, Zn
Zn, such as Mn and Mn, are the main components, and contain one or more alloying elements and impurity elements to improve various functions such as corrosion resistance, and also contain ceramic fine particles such as SiO2, Al2O3, oxides such as TiO2, and organic There are steel sheets in which polymers are dispersed in the plating layer, and there are those with a single composition in the thickness direction of the plating layer, and those with a composition that changes continuously or layered. Furthermore, in multi-layer plated steel sheets, the top layer may be Fe or Some materials include Ni as a main component and various alloying elements such as Zn and P. For example, hot-dip galvanized steel sheets, iron-zinc alloyed hot-dip galvanized steel sheets, hot-dip galvanized steel sheets made of alloys such as aluminum and iron containing mainly zinc, and alloyed hot-dip galvanized steel sheets in which only the lower layer is alloyed in the cross-sectional direction of the plating layer. Coated steel sheet (generally referred to as half-alloy), coated steel sheet consisting of an iron-zinc alloyed hot-dip galvanized layer on one side and a hot-dip galvanized layer on the other side, and zinc, iron, and nickel coated on these plating layers by electroplating, vapor deposition plating, etc. Or electrogalvanized steel sheets, electroplated steel sheets with alloys such as zinc, nickel, chromium, etc. Furthermore, single alloy layer or multilayer alloy electroplated steel sheets, and organic coatings on these plating layers. There are galvanized steel sheets coated with films, steel sheets coated with zinc and zinc-containing metals, etc. Others, SiO2
There is a dispersion-plated steel sheet in which ceramic fine particles such as , Al2O3, TiO2 oxide fine particles, organic polymers, etc. are dispersed in zinc or zinc alloy plating.

【0007】本発明者らは、亜鉛めっき鋼板の種類の如
何によらず、表面のWcaを0.6μ以下として、めっ
き鋼板の表面に一定範囲の量の酸化物皮膜を形成させる
ことにより、プレス成形における材料の流入抵抗力を冷
延鋼板なみまで低減できることを見出した。材料の流入
抵抗力を支配する因子の一つWcaは低いほど摺動抵抗
力が低下するために、下限値は特に規定されるものでは
なく、上限値の0.6μは、以下にのべる酸化物の効果
を前提にし冷延鋼板なみの摺動抵抗力を達成する条件と
して必要不可欠なものである。次に、このような亜鉛め
っき鋼板の表面に形成せしめる酸化物としては、酸化物
中にZnOの他、例えばめっき層中に含有する成分元素
又はそれらの酸化物などの化合物等を含有するものでも
良い。また、陽極酸化などの電気化学処理において、処
理液が含有する成分あるいは化合物を含んでも良い。こ
のような酸化物の生成量としては、酸化物中のZnO量
(片面あたり)として、20〜3000mg/m2必要
である。ZnO量が20mg/m2未満では効果がなく
、また3000mg/m2超になると化成処理が困難に
なるため好ましくない。このような酸化物は、例えば5
%ヨウ素メタノール溶液でめっき層を溶解し、抽出残渣
を混合融液(硼酸1、炭酸ナトリウム3)で融解した後
、塩酸で溶液化してICPで分析した亜鉛量をZnOに
換算、 またはグロー放電分光法(GDS)により測定
した最表面から1秒間の酸素積分強度値が1.0〜10
VS(片面あたり)で、確実に把握することができる。 上記のごとき、ZnO皮膜は、亜鉛めっき鋼板片面のみ
に形成してもよいが、摺動抵抗力を効果的に低減するた
めには、処理面をダイス側にしてプレス成形することが
よい。さらに効果を得るためには、両面とも皮膜形成す
ることが必要である。しかして、上記のごとき表面の低
Wcaを得るためには、めっき原板となる冷延鋼板の圧
延ロールまたは冷延ロール及び亜鉛めっき鋼板のスキン
パス圧延ロールの表面の低Wca化が当然必要となる。 そのための圧延ロールの加工法としては、放電ダル加工
法、レーザーダル加工法あるいは特別に製造したグリッ
ドを使用したショットブラスト法などが適する。
[0007] The present inventors have determined that regardless of the type of galvanized steel sheet, by setting the surface Wca to 0.6μ or less and forming an oxide film in a certain range on the surface of the galvanized steel sheet, press We have discovered that the resistance force against material inflow during forming can be reduced to that of cold-rolled steel sheets. The lower Wca, which is one of the factors governing the inflow resistance of the material, lowers the sliding resistance, so the lower limit is not particularly defined, and the upper limit of 0.6μ is based on the oxides listed below. This is an essential condition for achieving sliding resistance comparable to that of cold-rolled steel sheets. Next, as the oxide formed on the surface of such a galvanized steel sheet, in addition to ZnO, the oxide may contain, for example, components such as component elements contained in the plating layer or compounds such as their oxides. good. Further, in electrochemical processing such as anodic oxidation, a component or a compound contained in a processing liquid may be included. The amount of such oxide produced is required to be 20 to 3000 mg/m2 as the amount of ZnO in the oxide (per one side). If the amount of ZnO is less than 20 mg/m2, there is no effect, and if it exceeds 3000 mg/m2, chemical conversion treatment becomes difficult, which is not preferable. Such oxides are, for example, 5
% iodine in methanol solution, and the extraction residue is dissolved in a mixed melt (boric acid: 1: sodium carbonate: 3:3), then dissolved in hydrochloric acid, and the amount of zinc analyzed by ICP is converted to ZnO, or by glow discharge spectroscopy. Oxygen integrated intensity value for 1 second from the outermost surface measured by method (GDS) is 1.0 to 10
VS (per side) allows you to accurately understand. The ZnO film as described above may be formed only on one side of the galvanized steel sheet, but in order to effectively reduce sliding resistance, it is preferable to press-form with the treated side facing the die. In order to obtain further effects, it is necessary to form a film on both sides. Therefore, in order to obtain the above-mentioned low Wca on the surface, it is naturally necessary to reduce the Wca on the surface of the roll of the cold-rolled steel sheet or the cold-rolled roll and the skin-pass roll of the galvanized steel sheet, which serve as the plated base plate. Suitable methods for processing the rolls for this purpose include electric discharge dulling, laser dulling, and shot blasting using a specially manufactured grid.

【0008】次に、酸化物の生成方法としては、 めっ
き後、めっき最表面が固相状態または、めっき層を合金
化する場合は、合金化が進行し、表面の粗面化が完了し
た後(最表面がζまたはδ1相の単層または両者が混在
する状態、またはこれらに一部η相が存在する状態)、
高温での水との反応によりZnOを主体とする酸化物が
確実に形成される。その具体的な方法としては、例えば
、連続溶融亜鉛めっきの場合には、ライン内に合金化炉
があり、この合金化炉内で露点調整などを加味して加熱
することにより、また合金化後に処理する場合は、合金
化完了後同様に、気水噴霧、水蒸気噴霧しながらまたは
高露点雰囲気として高温で反応させることにより、確実
に生成させることが出来る。加熱処理条件としては、露
点0℃の場合、加熱温度480℃以上で1秒以上の加熱
が必要である。当然のことながら、露点がさらに高く維
持できる場合は、低温または短時間処理十分な酸化物量
を得ることが出来る。さらに、酸化物形成法としては、
めっき後アルカリまたは酸性溶液中に浸漬酸化する方法
、これら溶液をロールコートあるいはスプレーし酸化す
る方法、そのほかアルカリ、中性または酸性溶液中で電
気化学的に酸化する方法なども有効な手段となる。
[0008] Next, as a method for producing oxides, after plating, the outermost surface of the plating is in a solid state, or if the plating layer is alloyed, after the alloying has progressed and the surface roughening has been completed. (a state in which the outermost surface is a single layer of ζ or δ1 phase or a mixture of both, or a state in which η phase is partially present in these),
The reaction with water at high temperatures ensures the formation of ZnO-based oxides. For example, in the case of continuous hot-dip galvanizing, there is an alloying furnace in the line, and by heating in this alloying furnace with dew point adjustment, and after alloying. In the case of treatment, it can be reliably produced by performing the reaction at high temperature while spraying air and water, spraying water vapor, or in a high dew point atmosphere in the same manner after completion of alloying. As for the heat treatment conditions, when the dew point is 0°C, heating is required at a heating temperature of 480°C or higher for 1 second or more. Of course, if the dew point can be maintained even higher, a sufficient amount of oxide can be obtained for low temperature or short time processing. Furthermore, as an oxide formation method,
Effective methods include immersion oxidation in an alkaline or acidic solution after plating, oxidation by roll coating or spraying these solutions, and electrochemical oxidation in an alkaline, neutral or acidic solution.

【0009】[0009]

【実施例】本発明の実施例を比較例とともに表1及び表
2に示す。
[Examples] Examples of the present invention are shown in Tables 1 and 2 together with comparative examples.

【0010】0010

【表1】[Table 1]

【0011】[0011]

【表2】[Table 2]

【0012】注1):  めっき鋼板の種類は、AS:
合金化溶融亜鉛めっき鋼板(溶融亜鉛めっき後、加熱処
理して、鉄分7〜13%、残亜鉛)、 Gi:溶融亜鉛
めっき鋼板、EG:電気亜鉛めっき鋼板、EL(エクセ
ライト):下層鉄15%、残亜鉛(目付量20g/m2
)、上層鉄85%、残亜鉛(目付量3g/m2)、の電
気めっき鋼板、ZL(ジンクライト):ニッケル12%
、残亜鉛(目付量20g/m2)の電気めっき鋼板、A
S−E:ASの上層に鉄85%、残亜鉛(目付量3g/
m2)を電気めっきしたもの、ZL−E:ZLの上層に
鉄85%、残亜鉛(目付量3g/m2)を電気めっきし
たもの、鋼板厚はいずれも0.80mmの普通鋼である
。 注2):  酸化膜形成法Aは、Giは溶融亜鉛めっき
後表面が固相状態となった後、大気雰囲気中で350℃
×10秒加熱した。ASは、溶融亜鉛めっき後、板温5
30℃×12秒で加熱し、表面が粗面化が完了した直後
に同様に400℃×3秒の加熱を施した。いずれの場合
とも酸化膜厚さの調整は水蒸気噴霧で板表面の露点(0
〜100℃)を調整することで行った。 注3):  酸化膜形成法AAは、A法において、板表
面の露点(0〜100℃)を調整する方法として気水噴
霧方式を用いたものである。 注4):  酸化膜形成法Bは、めっき後、酸性溶液中
に浸漬する方法で酸化膜の形成を行った。 注5):  酸化膜形成法Cは、めっき後、亜鉛イオン
と酸化剤含有浴中で陰極処理する方法で酸化膜の形成を
行った。 注6):  摺動抵抗係数は下記の条件で定量化した。 材料をアセトン溶液で超音波洗浄し、十分な脱脂を行っ
た後、低粘度の防錆油(パーカー興産(株)製:NOX
RUST−530F40/商品名)を片面あたり1g/
m2塗布し、図1に示す方法で摺動抵抗係数を求めた。 その測定条件は次の通りである。 1)接触子:  直径10φ、材質SKD11焼き入れ
材2)負荷荷重(P):  1kgf 3)接触子の移動速度:  2.8 mm/min4)
接触子の移動距離:  80   mm摺動抵抗力は図
1に示すように接触子に取付けられたロードセル1を介
して計測するもので、被加工材4を載置した台をモ−タ
−5にて移動できるように構成され、被加工材4上に工
具3で加圧加重2が与えられている状態で行われる。そ
の結果の計測例を図2に示す。摺動抵抗力は、接触面の
摩擦状態により、辷り距離とともに図のように変動する
。ここでは、摺動抵抗力(F:kgf)を最大と最小の
平均をとり、摺動抵抗係数(R)を次式で定義した。 
   R=F/P 注7)  酸化膜中のZnO 測定 5%ヨウ素メタノール溶液で、めっき層のみ溶解し、抽
出残渣を混合融剤(硼酸1、炭酸ナトリュウム3)で融
解した後、塩酸で溶液化してICPで分析した亜鉛量を
ZnOに換算。 注8)  酸化膜中の酸素強度測定 グロー放電分光法(GDS)により測定された最表面か
ら1秒間の酸素の積分強度の値。 注9)  表面うねり(Wca)はJIS  B061
6に定義されたもの。
Note 1): The type of plated steel sheet is AS:
Alloyed hot-dip galvanized steel sheet (heat-treated after hot-dip galvanizing, iron content 7-13%, remaining zinc), Gi: Hot-dip galvanized steel sheet, EG: Electrogalvanized steel sheet, EL (Excelite): Lower layer iron 15 %, residual zinc (area weight 20g/m2
), upper layer iron 85%, residual zinc (area weight 3 g/m2), electroplated steel sheet, ZL (zincrite): 12% nickel
, electroplated steel sheet with residual zinc (area weight 20 g/m2), A
S-E: 85% iron in the upper layer of AS, residual zinc (basis weight 3g/
ZL-E: The upper layer of ZL was electroplated with 85% iron and residual zinc (basis weight 3 g/m2), and the steel plates were all ordinary steel with a thickness of 0.80 mm. Note 2): In oxide film formation method A, Gi is heated at 350°C in the air after the surface becomes a solid phase after hot-dip galvanizing.
Heated for 10 seconds. AS has a plate temperature of 5 after hot-dip galvanizing.
Heating was performed at 30° C. for 12 seconds, and immediately after the surface roughening was completed, heating was similarly performed at 400° C. for 3 seconds. In either case, the oxide film thickness can be adjusted by water vapor spraying at the dew point (0) on the plate surface.
~100°C). Note 3): Oxide film forming method AA is a method in which an air/water spray method is used as a method of adjusting the dew point (0 to 100° C.) of the plate surface in Method A. Note 4): In oxide film formation method B, an oxide film was formed by immersing the plate in an acidic solution after plating. Note 5): In oxide film formation method C, an oxide film was formed by performing cathodic treatment in a bath containing zinc ions and an oxidizing agent after plating. Note 6): The sliding resistance coefficient was quantified under the following conditions. After the material is ultrasonically cleaned with an acetone solution and thoroughly degreased, a low viscosity rust preventive oil (manufactured by Parker Kosan Co., Ltd.: NOX) is applied.
RUST-530F40/product name) 1g/side
m2 was applied, and the sliding resistance coefficient was determined by the method shown in FIG. The measurement conditions are as follows. 1) Contact: Diameter 10φ, material SKD11 hardened material 2) Applied load (P): 1 kgf 3) Contact moving speed: 2.8 mm/min4)
Traveling distance of the contact: 80 mm The sliding resistance force is measured via the load cell 1 attached to the contact as shown in Fig. 1. The tool 3 is configured to be able to move with a pressure load 2 applied to the workpiece 4 by the tool 3. An example of the measurement results is shown in FIG. The sliding resistance varies with the sliding distance as shown in the figure, depending on the friction condition of the contact surfaces. Here, the sliding resistance coefficient (R) was defined by the following formula by taking the average of the maximum and minimum sliding resistance force (F: kgf).
R=F/P Note 7) Measurement of ZnO in oxide film Dissolve only the plating layer with a 5% iodine methanol solution, melt the extraction residue with a mixed flux (boric acid: 1 part, sodium carbonate: 3 parts), and then dissolve it in hydrochloric acid. The amount of zinc analyzed by ICP was converted to ZnO. Note 8) Oxygen intensity measurement in oxide film The value of the integrated intensity of oxygen for 1 second from the outermost surface measured by glow discharge spectroscopy (GDS). Note 9) Surface waviness (Wca) is JIS B061
As defined in 6.

【0013】[0013]

【発明の効果】かくすることにより、プレス成形時の材
料の流入抵抗力を大幅に低減することが可能となり、成
形品の破断不良現象を冷延鋼板なみに低減し生産性が大
幅に改善できる。また、プレス成形品の歩留りを著しく
向上することができる等の優れた効果が得られる。
[Effects of the invention] By doing so, it is possible to significantly reduce the resistance force of material inflow during press forming, and the phenomenon of defective breakage of molded products can be reduced to the same level as that of cold-rolled steel sheets, and productivity can be greatly improved. . Further, excellent effects such as the ability to significantly improve the yield of press-formed products can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】摺動計測の一例を示す説明図、[Fig. 1] An explanatory diagram showing an example of sliding measurement,

【図2】摺動結
果の一例を示す説明図表である。
FIG. 2 is an explanatory chart showing an example of sliding results.

【符号の説明】[Explanation of symbols]

1  ロ−ドセル、 2  加圧加重、 3  工具、 4  被加工材、 5  モ−タ−。 1 Load cell, 2 Pressure load, 3. Tools, 4 Work material, 5 Motor.

Claims (1)

【特許請求の範囲】 【請求鋼1】  亜鉛めっき鋼板の表面粗度のWcaが
0.6μ以下で、かつめっき層表面にZnO酸化物が2
0〜3000mg/m2(片面あたり)からなるプレス
成形性に優れた亜鉛めっき鋼板。 【請求項2】  亜鉛めっき鋼板のめっき層表面に電解
酸化、浸漬酸化または塗布酸化処理により亜鉛を主体と
する酸化物を生成せしめることを特徴とする請求項1に
記載のプレス成形性に優れた亜鉛めっき鋼板の製造方法
。 【請求項3】  めっき層表面が固相状態または、めっ
き層表面が合金化後、加熱しZnOを主体とする酸化膜
を生成せしめることを特徴とする請求項1に記載のプレ
ス成形性に優れた亜鉛めっき鋼板の製造方法。
[Scope of Claims] [Claim Steel 1] The surface roughness Wca of the galvanized steel sheet is 0.6 μ or less, and ZnO oxide is present on the surface of the plating layer.
Galvanized steel sheet with excellent press formability consisting of 0 to 3000 mg/m2 (per side). 2. The method according to claim 1, wherein an oxide mainly containing zinc is produced on the surface of the plating layer of the galvanized steel sheet by electrolytic oxidation, immersion oxidation or coating oxidation treatment. Method of manufacturing galvanized steel sheet. 3. The method according to claim 1, wherein the surface of the plating layer is in a solid state or the surface of the plating layer is alloyed and then heated to form an oxide film mainly composed of ZnO. A method for producing galvanized steel sheets.
JP12289391A 1991-04-26 1991-04-26 Galvanized steel sheet excellent in press formability and its production Withdrawn JPH04325665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12289391A JPH04325665A (en) 1991-04-26 1991-04-26 Galvanized steel sheet excellent in press formability and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12289391A JPH04325665A (en) 1991-04-26 1991-04-26 Galvanized steel sheet excellent in press formability and its production

Publications (1)

Publication Number Publication Date
JPH04325665A true JPH04325665A (en) 1992-11-16

Family

ID=14847243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12289391A Withdrawn JPH04325665A (en) 1991-04-26 1991-04-26 Galvanized steel sheet excellent in press formability and its production

Country Status (1)

Country Link
JP (1) JPH04325665A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256406A (en) * 2001-03-06 2002-09-11 Nkk Corp Galvannealed steel sheet
JP2005023427A (en) * 2000-03-07 2005-01-27 Jfe Steel Kk Hot dip galvannealed steel sheet
US7673485B2 (en) 2001-10-23 2010-03-09 Sumitomo Metal Industries, Ltd. Hot press forming method
JP2013185215A (en) * 2012-03-08 2013-09-19 Kobe Steel Ltd High-strength hot dip galvannealed steel sheet excellent in chemical conversion property and ductility and method for producing the same
WO2019066063A1 (en) * 2017-09-28 2019-04-04 新日鐵住金株式会社 Plated steel sheet, plated steel sheet coil, method for producing hot pressed article, and automobile component

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023427A (en) * 2000-03-07 2005-01-27 Jfe Steel Kk Hot dip galvannealed steel sheet
JP2002256406A (en) * 2001-03-06 2002-09-11 Nkk Corp Galvannealed steel sheet
JP4696376B2 (en) * 2001-03-06 2011-06-08 Jfeスチール株式会社 Alloy hot-dip galvanized steel sheet
US7673485B2 (en) 2001-10-23 2010-03-09 Sumitomo Metal Industries, Ltd. Hot press forming method
JP2013185215A (en) * 2012-03-08 2013-09-19 Kobe Steel Ltd High-strength hot dip galvannealed steel sheet excellent in chemical conversion property and ductility and method for producing the same
WO2019066063A1 (en) * 2017-09-28 2019-04-04 新日鐵住金株式会社 Plated steel sheet, plated steel sheet coil, method for producing hot pressed article, and automobile component
TWI677595B (en) * 2017-09-28 2019-11-21 日商日本製鐵股份有限公司 Coated steel sheet, coated steel sheet coil, method of producing hot press molded product, and automobile product

Similar Documents

Publication Publication Date Title
KR102301116B1 (en) Method for producing a steel component having a metal coating protecting it against corrosion, and steel component
CN103038398B (en) Steel sheet for hot stamping, and process for manufacturing hot-stamped steel products using steel sheet for hot stamping
JPH02190483A (en) Galvanized steel sheet having superior press formability
KR101849480B1 (en) Vehicle component and vehicle component manufacturing method
KR101974182B1 (en) Plated steel plate for hot pressing and hot pressing method of plated steel plate
CN110777319B (en) Plating solution for highly corrosion-resistant highly formable hot-formed steel, hot-formed steel sheet, hot-dip plating production process, hot-stamped part, and application
TWI485014B (en) A method for manufacturing warm press materials
EP2014783B1 (en) Process for producing alloyed hot-dip zinc-plated steel sheet and alloyed hot-dip zinc-plated steel sheet
JP4987510B2 (en) Alloyed hot-dip galvanized steel sheet with excellent paint sharpness and press formability and method for producing the same
KR20160055858A (en) Method for producing a steel component provided with a metallic coating providing protection against corrosion
KR20160084436A (en) Al-plated steel sheet for hot pressing and process for manufacturing al-plated steel sheet for hot pressing
JPS5891162A (en) Manufacture of galvanized steel plate
KR20190085137A (en) Plated steel sheet for hot press, Method of producing hot-rolled steel sheet, Method of producing hot press-formed article, and method of manufacturing vehicle
JPH04325665A (en) Galvanized steel sheet excellent in press formability and its production
JP2015227494A (en) High strength steel component and method for manufacturing the same
JP5044924B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP2000160358A (en) Hot dip galvanized steel sheet
JP4826486B2 (en) Method for producing galvannealed steel sheet
JP2004124118A (en) Galvanized steel sheet having excellent press formability and appearance and method for manufacturing the same
JP2010248602A (en) Plated steel sheet for hot press and hot press molded article
JP5187413B2 (en) Steel sheet for hot press and method for producing hot press member using the same
JP3106635B2 (en) Method for producing galvannealed steel sheet with excellent press formability and spot weldability
JPH07292452A (en) Galvannealed steel sheet excellent in film breaking resistance
JP3314606B2 (en) Galvanized steel sheet with excellent lubricity and its manufacturing method
JPH0971879A (en) Steel sheet for fuel tank excellent in workability

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711