KR0146886B1 - Method for manufacturing hot-dipped zn-alloy coated steel sheet for the good machinability and anti-corrossion - Google Patents

Method for manufacturing hot-dipped zn-alloy coated steel sheet for the good machinability and anti-corrossion

Info

Publication number
KR0146886B1
KR0146886B1 KR1019940032487A KR19940032487A KR0146886B1 KR 0146886 B1 KR0146886 B1 KR 0146886B1 KR 1019940032487 A KR1019940032487 A KR 1019940032487A KR 19940032487 A KR19940032487 A KR 19940032487A KR 0146886 B1 KR0146886 B1 KR 0146886B1
Authority
KR
South Korea
Prior art keywords
hot
steel sheet
alloying
dip galvanized
coating
Prior art date
Application number
KR1019940032487A
Other languages
Korean (ko)
Other versions
KR960023195A (en
Inventor
배대철
Original Assignee
김만제
포항종합제철주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김만제, 포항종합제철주식회사 filed Critical 김만제
Priority to KR1019940032487A priority Critical patent/KR0146886B1/en
Publication of KR960023195A publication Critical patent/KR960023195A/en
Application granted granted Critical
Publication of KR0146886B1 publication Critical patent/KR0146886B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)

Abstract

본 발명은 통상의 아연도금욕 조성에서 도금 및 공기분사에 의한 부착량 조정을 거쳐 적정 온도에서의 합금화 처리를 실시함으로서 프레스 가공시 내파우더링성이 우수하고 도장후 내식성이 우수한 합금화 용융아연도금강판을 제조할 수 있는 제공하고자 하는데 그 목적이 있다.The present invention is to produce an alloyed hot-dip galvanized steel sheet having excellent powdering resistance during press working and excellent corrosion resistance after coating by performing the alloying treatment at a suitable temperature through the coating amount adjustment by plating and air spraying in a conventional galvanizing bath composition. The purpose is to provide as much as possible.

본 발명은 티타늄-인 복합첨가 극저탄소강을 소둔하고 용융아연도금한 후, 합금화처리하여 합금화용융아연도금강판을 제조하는 방법에 있어서, 상기 용융아연도금시 도금부착량이 80-100g/㎡ 범위가 되도록 용융아연도금을 행한 다음, 500-540℃ 온도범위에서 합금화 처리하여 가공성 및 내식성이 우수한 합금화 용융아연도금 강판을 제조하는 방법을 제공함을 그 요지로 한다.The present invention is an annealing and hot-dip galvanizing titanium-phosphorus composite addition ultra low carbon steel, and then alloyed to produce an alloyed hot-dip galvanized steel sheet, the plating deposition amount during the hot-dip galvanizing ranges from 80-100g / ㎡ The present invention provides a method for producing an alloyed hot-dip galvanized steel sheet excellent in workability and corrosion resistance by performing hot dip galvanizing and then alloying in a temperature range of 500-540 ° C.

Description

가공성 및 내식성이 우수한 고장력 합금화 용융아연도금강판의 제조방법Manufacturing method of high tensile alloyed hot dip galvanized steel sheet with excellent workability and corrosion resistance

제1도는 본 발명의 도금부착량에 따른 가공성 및 내식성 변화를 나타내는 그래프.1 is a graph showing the change in workability and corrosion resistance according to the coating weight of the present invention.

제2도는 본 발명의 합금화 처리온도에 따른 Fe농도변화를 나타내는 그래프.2 is a graph showing the Fe concentration change according to the alloying treatment temperature of the present invention.

본 발명은 가전제품 및 자동차용 강판 등으로 사용되는 합금화 용융아연도금강판의 제조방법에 관한 것으로써, 보다 상세하게는, 가공성 및 도장후 내식성이 우수한 합금화 용융아연도금강판을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing an alloyed hot-dip galvanized steel sheet used for home appliances and automotive steel plates, and more particularly, to a method for producing an alloyed hot-dip galvanized steel sheet excellent in workability and corrosion resistance after coating. .

용융아연 도금제품중 합금화 용융아연도금강판은 용접성 및 도장성이 우수하여 가전제품, 자동차용 강판으로 널리 사용되고 있으며, 특히 자동차용 강판으로 사용되기 위해서는 고가공성과 적정강도가 요구되며 내판재 공급확대를 위하여 강판의 도장후 내식성 또한 우수하여야 한다.Among the hot-dip galvanized products, alloyed hot-dip galvanized steel sheet is widely used in home appliances and automotive steel plates because of its excellent weldability and paintability. For this purpose, the corrosion resistance after coating of steel sheet should be excellent.

일반적으로, 합금화 용융아연 도금강판은 연속용융아연 도금라인에서 아연도금욕을 통과한 스트립을 합금화 열처리하여 제조하게 된다. 이와같은 합금화 열처리에 사용되는 강판은 극저탄소강으로서 통상 가공성 향상을 위해 0.03-0.06wt%의 티타늄을 단독으로 또는 0.02-0.05wt% 티타늄 및 0.015-0.03wt% 니오비늄을 복합으로 함유하며, 또한 강도를 향상시키기 위해 0.04-0.2wt%의 인을 함유한다.In general, alloyed hot-dip galvanized steel sheet is produced by alloying heat treatment of the strip passed through the galvanizing bath in a continuous hot dip galvanizing line. The steel sheet used in such an alloying heat treatment is an ultra low carbon steel, which usually contains 0.03-0.06 wt% titanium alone or a combination of 0.02-0.05 wt% titanium and 0.015-0.03 wt% niobium to improve workability. It also contains 0.04-0.2 wt% phosphorus to improve strength.

상기와 같은 강종을 사용하여 제조된 합금화 용융아연도금강판의 아연도금층과 소지철 계면에 취약한 합금층이 생성되면, 가공시 도금층이 박리되어 파우더링(Powdering) 및 프레이킹(Flaking) 현상이 발생하여 가공성이 저하하며, 이를 개선하기 위하여 강종, 도금전처리조건, 용융도금조건 및 합금화 열처리 조건 등의 연구가 활발히 진행중에 있다.When an alloy layer vulnerable to the zinc plated layer and the base iron interface of the alloyed hot-dip galvanized steel sheet manufactured using the steel grades as described above is produced, the plating layer is peeled off during processing to cause powdering and flaking phenomenon. In order to improve the workability, research on steel grades, pre-plating conditions, hot-dip plating conditions, and alloying heat treatment conditions is actively underway.

상기한 결과, 합금화 용융아연도금강판의 가공성을 향상시키기 위해 종래 여러방법들이 제안되었으며 그중 대표적인 방법으로는 일본특개소 56-13470호, 일본특개소 58-104163호 및 일본특개소 60-110859호, 일본 특개평 5-44006호를 들 수 있다.As a result, various conventional methods have been proposed to improve the workability of alloyed hot-dip galvanized steel sheet, and representative methods include Japanese Patent Laid-Open No. 56-13470, Japanese Patent Laid-Open No. 58-104163, Japanese Patent Laid-Open No. 60-110859, Japanese Laid-Open Patent Publication No. 5-44006.

일본 특개소 56-13470호는 용융아연도금욕중에 알루미늄을 미량 첨가시켜 용융아연 도금한 후 합금화 처리하는 방법으로서, 가공성은 어느정도 향상되지만, 성형성이 나빠지고 도장후의 내식성이 떨어지는 문제점이 있다.Japanese Patent Application Laid-Open No. 56-13470 is a method of alloying after hot-dip galvanizing by adding a small amount of aluminum in a hot dip galvanizing bath. Although workability is somewhat improved, there is a problem of poor moldability and poor corrosion resistance after coating.

일본특개소 58-104163호 및 60-110859호는 아연도금전 강판에 철, 니켈 등을 먼저 도금한 후 아연도금 및 합금화 처리하는 방법이다. 그러나 이 방법의 경우에는 별도의 전처리공정이 추가되어야 하므로 제조공정이 복잡할 뿐만 아니라 제조비용의 증가를 가져오는 문제점이 있다.Japanese Patent Laid-Open Nos. 58-104163 and 60-110859 are methods of first plating iron, nickel, etc. on a steel sheet before galvanizing, followed by galvanizing and alloying. However, in this case, since a separate pretreatment process must be added, the manufacturing process is complicated and there is a problem of increasing the manufacturing cost.

일본특개평 5-44006호는 용융도금욕중에 바나듐을 첨가하여 도금 및 합금화 처리한 후 편면에 유기피막을 0.1-4.0g/㎡ 피복시키는 방법으로서, 가공성 및 도장성향상의 효과는 있으나, 별도의 후처리공정이 추가되어야 하므로 제조공정이 복잡할 뿐만 아니라 제조비용의 증가를 가져오게 되는 문제점이 있다.Japanese Patent Laid-Open No. 5-44006 is a method for coating 0.1-4.0 g / m 2 of an organic coating on one side after plating and alloying by adding vanadium in a hot dip plating bath. Since the treatment process has to be added, there is a problem that the manufacturing process is not only complicated but also increases the manufacturing cost.

이에, 본 발명자는 상기한 문제점들을 해결하기 위해 연구와 실험을 행한 결과 본 발명을 제안하게 된 것으로서, 본 발명은 Ti-P 복합첨가 극저탄소강을 일정한 조건에서 소둔을 행한 후 통상의 아연도금욕 조성에서 도금을 행하고, 공기 분사에 의한 부착량 조정을 거쳐 적정온도에서의 합금화처리를 실시함으로써 프레스 가공시 내파우더링성이 우수하고 도장후 내식성이 우수한 합금화 용융아연도금강판을 제조할 수 있는 방법을 제공하고자 하는데 그 목적이 있다.Accordingly, the present inventors have proposed the present invention as a result of the research and experiment to solve the above problems, the present invention is an ordinary zinc plating bath after annealing the Ti-P composite addition ultra-low carbon steel in a certain condition Plating in the composition, alloying treatment at an appropriate temperature by adjusting the adhesion amount by air injection provides a method for producing an alloyed hot-dip galvanized steel sheet having excellent powder resistance during press working and excellent corrosion resistance after coating. There is a purpose.

이하, 본 발명을 설명한다.Hereinafter, the present invention will be described.

본 발명은 티타늄-인 복합첨가 극저탄소강을 소둔하고 용융아연도금한 후, 합금화처리 하여 합금화용융아연도금강판을 제조하는 방법에 있어서, 0.03-0.06%의 티타늄과 0.05-0.15%의 인이 복합첨가된 극저탄소강을 780-830℃의 온도범위에서 소둔처리한 후, 용융아연도금욕을 통과시키고 도금부착량을 80-100g/㎡ 범위가 되도록 조정하는 용융아연도금을 행한 다음, 500-540℃ 온도범위에서 합금화 처리하여 가공성 및 내식성이 우수한 합금화 용융아연도금 강판을 제조하는 방법에 관한 것이다.The present invention is a method of producing an alloyed hot-dip galvanized steel sheet by annealing and hot-dip galvanizing titanium-phosphorus composite ultra low carbon steel, alloying, 0.03-0.06% titanium and 0.05-0.15% phosphorus composite After the added ultra low carbon steel is annealed at a temperature range of 780-830 ° C., it is passed through a hot dip galvanizing bath and subjected to hot dip galvanizing to adjust the coating amount to be in the range of 80-100 g / m 2, followed by 500-540 ° C. The present invention relates to a method for producing an alloyed hot-dip galvanized steel sheet excellent in workability and corrosion resistance by alloying in a temperature range.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에서는 합금화용융아연도금강판 제조시 강도유지 및 가공성 향상을 위해 합금화 처리조건을 제어하고, 또한 도장후 내식성 향상을 위해 도금부착량을 적정 범위내로 제어하는 것을 그 요지로 하고 있다.In the present invention, the alloying treatment conditions are controlled to maintain strength and improve workability during the production of hot-dip galvanized steel sheet, and to control the coating amount within an appropriate range to improve corrosion resistance after coating.

합금화 처리시 반응성에 영향을 미치는 인자로는 강종, 소둔조건, 도금조건 및 합금화 처리조건등을 들 수 있으며, 특히, 도금욕중에 0.12-0.14% 농도범위로 통상 함유되는 알루미늄은 합금화 반응속도, 합금층 구조 및 표면조직에 영향을 미치는 인자로서 스트립 통과 속도와 합금화로의 길이를 고려하여 조정된다.Factors affecting the reactivity in the alloying treatment include steel grade, annealing conditions, plating conditions and alloying treatment conditions.In particular, aluminum commonly contained in a concentration range of 0.12-0.14% in the plating bath is alloying reaction rate and alloy. Factors affecting layer structure and surface texture are adjusted taking into account the strip passage speed and the length of the alloying furnace.

본 발명에서는 도금소재 강판으로 가공성 및 강도를 위해 티타늄-인 복합첨가 극저탄소강을 사용한다.In the present invention, a titanium-phosphorus composite ultra low carbon steel is used as a plated steel sheet for workability and strength.

일반적으로 강판을 용융아연도금하게 되면 도금층과 소지철 계면에 아연-철의 상호 확산을 억제하는 철-아연-알루미늄계의 얇은 피막층이 생성된다. 이때 소지철 강종이 티타늄을 함유한 극저탄소강이면 알루미늄 킬드 저탄소강과는 달리 상기 철-아연-알류미늄계의 얇은 피막층이 취약하게 생성되므로 도금층과 소지철계면에 아연-철 금속간 화합물이 생성된다.In general, when hot-dip galvanized steel sheet, a thin film layer of iron-zinc-aluminum based on suppressing mutual diffusion of zinc-iron at the plated layer and the base iron interface is produced. At this time, if the base steel is an ultra-low carbon steel containing titanium, unlike the aluminum-kilted low carbon steel, the thin film layer of the iron-zinc-aluminum system is vulnerable, and thus a zinc-iron intermetallic compound is formed on the plating layer and the base iron interface.

이와같이 티타늄첨가 극저탄소강의 아연도금층과 소지철 계면에 형성된 금속간 화합물은 합금화 처리시 소지강종내 철의 확산을 조장하여 도금층내 철의 농도가 증가하며, 그 결과 도금층내 철의 농도가 적정치 이상으로 증가하게 되면 소지철/도금층 계면에서 캐피탈 감마(Γ)층이 생성되므로서 가공시 파우더링 경향이 높으며 따라서 가공성이 열화된다.As such, the intermetallic compound formed at the zinc-plated layer and the base iron interface of the titanium-added ultra low carbon steel promotes the diffusion of iron in the steel grade during the alloying process, thereby increasing the iron concentration in the plating layer, and as a result, the iron concentration in the plating layer is higher than the optimum value. Increasing to increases the powder gamma (Γ) layer at the base iron / plated layer interface to increase the powdering tendency during processing, thereby deteriorating the workability.

가공성을 향상시키기 위해 첨가되는 티타늄의 함량은 통상 0.03-0.06%범위로 제한함이 바람직한데, 그 이유는 상기 티타늄 함량이 0.03%이하일 경우에는 가공성이 저하되며, 0.06%이상일 경우에는 합금화가 빨리 진행되어 도금층이 불안정하며 가공시 파우더링이 발생할 우려가 크기 때문이다.In order to improve the processability, the amount of titanium added is preferably limited to the range of 0.03-0.06%. The reason is that when the titanium content is 0.03% or less, the workability is lowered, and when 0.06% or more, alloying proceeds quickly. This is because the plating layer is unstable and there is a high risk of powdering during processing.

또한, 적정강도를 유지하기 위하여 통상 0.04-0.2% 범위로 첨가되는 인은 합금화처리시 결정립계에 석출하여 소지강종내 철의 확산을 느리게 한다. 그러므로 티타늄-인 복합첨가강에서는 합금화 열처리시 적정온도를 유지하여야 한다. 이러한 인이 소지강중에 0.05%이하로 첨가되면 강판의 인장강도를 확보할 수 없고, 0.15%이상 첨가되면 강중 인이 합금화 처리시 결정립계에 다량 석출됨으로써 합금화반응을 지연시킨다. 또한 인이 0.15%이상 첨가된 도금강판을 합금화시킬 경우 적정합금화도 유지를 위하여 높은 합금화 온도가 요구됨으로써 소지철/도금층 계면에 캐피털 감마()층이 생성되어 합금층의 가공성이 열화된다.In addition, phosphorus, which is usually added in the range of 0.04-0.2% in order to maintain the appropriate strength, precipitates at the grain boundary during alloying to slow the diffusion of iron in the steel grades. Therefore, in the titanium-phosphorus composite additive steel, proper temperature must be maintained during alloying heat treatment. If the phosphorus is added to 0.05% or less in the steel, it is not possible to secure the tensile strength of the steel sheet, when 0.15% or more is added, the phosphorus in the steel precipitates a large amount at the grain boundary during the alloying process, thereby delaying the alloying reaction. In addition, when alloying a plated steel sheet containing 0.15% or more of phosphorus, a high alloying temperature is required to maintain an appropriate alloying degree. ) Layer is formed, the workability of the alloy layer is degraded.

따라서, 본 발명에 있어서, 강중 첨가되는 인은 0.05%-0.15%범위로 제한하는 것이 바람직하다.Therefore, in the present invention, the phosphorus added in the steel is preferably limited to the range of 0.05% -0.15%.

상기와 같은 티타늄-인 복합첨가강판을 재결정시켜 연성 및 가공성을 부여하기 위해 통상의 방법으로 780-830℃ 온도범위에서 소둔처리한 후, 통상의 용융아연도금욕을 통과시켜 아연도금을 행하고 공기를 분사하여 도금부착량을 조절한다.In order to recrystallize the titanium-phosphorus composite additive steel sheet as described above to give ductility and workability, annealing is carried out at a temperature range of 780-830 ° C. by a conventional method, followed by galvanizing through a conventional hot dip galvanizing bath and air. Spray to adjust plating amount.

이때, 도금부착량은 용융아연도금욕에서 용융도금후 공기분사 노즐의 압력 및 스트립과 노즐과의 간격에 의해 결정되며, 그 부착량이 편명당 80g/㎡ 이하일 경우에는 폭부풀음 발생시간이 단축되어 내식성이 열화되며, 100g/㎡ 이상일 경우에는 내식성은 증가하나 도금층 두께의 증가에 따라 합금화 열처리시 더욱 높은 온도가 요구되고 따라서 가공성이 열화되며 스트립의 가장자리 부분에서 미합금화 현상이 발생하기 때문에 균일한 색상을 가진 합금화 용융아연도금강판의 생산이 불가능한 문제점이 있다.At this time, the coating amount is determined by the pressure of the air spray nozzle and the distance between the strip and the nozzle after hot-dip galvanizing in the hot dip galvanizing bath.If the amount of coating is less than 80g / m2 per flight, the swelling time is shortened and the corrosion resistance is reduced. Corrosion resistance is increased when it is over 100g / ㎡, but as the thickness of the plating layer is increased, a higher temperature is required during alloying heat treatment, and thus, workability is deteriorated and unalloyed phenomenon occurs at the edge of the strip. There is a problem that the production of alloyed hot-dip galvanized steel sheet is impossible.

따라서, 본 발명에 있어서 도금층의 부착량은 80-100g/㎡ 으로 제한하는 것이 바람직하며 상기 부착량범위로 용융아연도금된 티타늄-인 복합첨가 극저탄소강은 합금화처리를 하게 된다.Therefore, in the present invention, the deposition amount of the plating layer is preferably limited to 80-100 g / m 2 and the titanium-phosphorus composite ultra low carbon steel hot-dip galvanized in the adhesion amount range is subjected to alloying treatment.

고가공용강으로 널리 사용되고 있는 티타늄 첨가 극저탄소강을 합금화 처리할 경우 480-520℃온도범위에서 열처리하면, 소지철/도금층 계면에서 취약한 캐피탈 감마()층이 생성되는 것을 방지하면서 가공성을 확보할 수 있다.In the case of alloying titanium-added ultra low carbon steel, which is widely used as a high-processing steel, when heat-treated at a temperature range of 480-520 ° C, a weak capital gamma at the interface of the base iron / plated layer ( Processability can be ensured, preventing a layer from being produced.

한편, 고장력강 제조를 위하여 첨가된 인은 소지철의 가공성을 열화시키지 않고 인장강도를 증가시킬 수 있기 때문에 가공용 고장력 합금화용융아연도금강판의 제조시에는 티타늄-인 복합첨가강을 소지강판으로 주로 사용한다. 티타늄-인 복합첨가강의 용융도금 특성은 기존의 티타늄 첨가 극저탄소 고가공용강과 비슷하나, 합금화특성은 소지철의 결정립계로 인이 이동하여 결정립계가 안정됨으로써 소지철/도금층 계면에서의 국부적인 불균일 반응을 억제시킴에 따라 합금화반응이 지연된다. 따라서 티타늄-인 복합첨가 극저탄소강의 합금화처리시 도금층내 철농도를 티타늄 첨가극저탄소 고가공용강과 동일한 합금화도를 유지하기 위하여서는 합금화처리 온도를 티타늄 첨가 극저탄소강보다 20℃높게 설정해야 한다.On the other hand, phosphorus added for the production of high tensile steel can increase the tensile strength without degrading the workability of the base steel, so the titanium-in composite additive steel is mainly used as the base steel sheet when manufacturing high tensile alloyed hot-dip galvanized steel sheet for processing. . The hot-dip galvanizing properties of titanium-phosphorus composite steels are similar to those of titanium-added ultra-low carbon high processing steels, but the alloying properties of the titanium-phosphorus composites are localized due to the shift of phosphorus to the grain boundaries of the ferrous iron, which stabilizes the grain boundaries. By suppressing, the alloying reaction is delayed. Therefore, the alloying temperature should be set 20 ° C higher than the titanium-added ultra low carbon steel in order to maintain the same alloying degree as the titanium-added ultra low carbon high processing steel during alloying of titanium-phosphorus-added ultra low carbon steel.

즉, 티타늄-인 복합첨가 극저탄소강을 합금화처리시 합금화 처리 온도가 500℃이하일 경우에는 도금층중의 철의 농도가 9%이하로 되어 도장밀착성 및 도장후 내식성이 저하되며, 도금층 조직이 제타+델타(ζ+δ)상으로 구성되어져 프레스가공시 파우더링성은 양호하나 가압력(Punch Load)이 증가하여 프레스 성형성 불량이 발생되기 쉽고 카치온 전착도장시 폭부풀음 현상이 발생하여 가공성, 내식성이 저하된다. 또한 티타늄-인 복합첨가 극저탄소강을 540℃이상의 온도에서 합금화 열처리하면 도금층내 철의 농도가 12%이상이 되어 가공성이 취약해지므로서 파우더링성이 불량해지며, 소지철/도금층 계면에 가공성이 취약한 캐피탈 감마()상이 나타남으로써 바람직하지 않다.That is, when the alloying temperature of the titanium-phosphorus composite ultra low carbon steel is alloyed at 500 ° C. or less, the iron concentration in the coating layer is 9% or less, resulting in poor coating adhesion and corrosion resistance after coating, and coating layer structure being zeta +. It is composed of delta (ζ + δ), so the powdering property is good during press processing, but the press load is increased, so it is easy to cause poor press formability, and the swelling phenomenon occurs during cationic electrodeposition coating, resulting in poor workability and corrosion resistance. . In addition, alloying heat treatment of titanium-phosphorus-added ultra low carbon steel at a temperature above 540 ℃ results in a poor powderability due to poor workability due to the iron concentration in the plating layer being more than 12%. Vulnerable Capital Gamma ( The appearance of) phase is undesirable.

따라서, 본 발명에 있어서, 합금화처리온도는 500-540℃로 제한하는 것이 바람직하다.Therefore, in the present invention, the alloying treatment temperature is preferably limited to 500-540 ° C.

이와같이 합금화 처리된 용융아연도금강판의 내식성은 도금층중의 철의 농도가 높아서 도금층 자체의 내식성보다 도장후 내식성을 평가하는 것이 일반적이다.In this way, the corrosion resistance of the alloyed hot-dip galvanized steel sheet has a high iron concentration in the plating layer, so it is common to evaluate the corrosion resistance after coating rather than the corrosion resistance of the plating layer itself.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예 1]Example 1

중량%로, 0.04%의 티타늄과 0.07%의 인이 복합첨가되며, 냉간압연된 0.8㎜ 두께의 극저탄소강을 820℃에서 1분간 환원열처리한 다음, Al함량이 0.14wt%이며 온도가 460℃인 통상의 용융도금욕을 통과시키고 공기를 분사하여 하기 표 1과 같은 부착량으로 용융아연도금을 행하였다. 또한, 용융아연도금 후 하기 표 1과 같은 합금화 온도를 적용하여 합금화 처리를 행하여 합금화 용융아연도금강판을 제조하였다.By weight%, 0.04% titanium and 0.07% phosphorus are added in combination, and cold rolled 0.8mm thick ultra low carbon steel is subjected to reduction heat treatment at 820 ° C for 1 minute, and then the Al content is 0.14wt% and the temperature is 460 ° C. Passing through the usual hot-dip galvanizing bath and blowing the air was carried out hot-dip galvanized in the deposition amount shown in Table 1. In addition, after the hot-dip galvanized alloying treatment was applied by applying the alloying temperature shown in Table 1 below to prepare an alloyed hot-dip galvanized steel sheet.

상기와 같이 제조된 합금화 용융아연도금강판의 가공성을 측정하고 그 결과를 하기 표 1에 나타내었다. 이때, 가공성은 에릭센(Erichen)가공전후의 무게차이를 비교하여 측정하였다.The workability of the alloyed hot-dip galvanized steel sheet prepared as described above was measured and the results are shown in Table 1 below. At this time, the workability was measured by comparing the difference in weight before and after the Erichen processing.

또한, 상기 합금화 용융아연도금강판을 전착전압 및 전류가 각각 220-280V 및 10A인 29℃의 전착도장용액에 1분 30초간 침적하여 전착도장후 내식성을 측정하고 그 결과를 하기 표 1에 나타내었다. 이때, 도장후 내식성은 도막에 'X'자 형태의 흠집을 낸후, 이 시료를 35℃, 포화습도로 유지된 염수분무시험기(SST)내에 집어넣어 일정시간 경과후 꺼내어 'X'자 흠집에서의 전착도장전후의 도막부풀음 폭이 1-2㎜되는 발생시간으로 하여 측정하였다.In addition, the alloyed hot-dip galvanized steel sheet was immersed in an electrodeposition coating solution at 29 ° C. having an electrodeposition voltage and current of 220-280 V and 10 A, respectively, for 1 minute and 30 seconds to measure corrosion resistance after electrodeposition coating, and the results are shown in Table 1 below. . At this time, the corrosion resistance after coating made 'X'-shaped scratches on the coating film, and put the sample into the salt spray tester (SST) maintained at 35 ° C and saturated humidity, and then took it out after a certain period of time. The coating film swelling width before and after electrodeposition coating was measured as an occurrence time of 1-2 mm.

상기 표 1에 나타난 바와같이, 본 발명의 도금부착량 및 합금화 처리온도범위를 만족하는 발명재(1-12)의 경우에는 가공성 및 도장후 내식성이 우수한 반면에, 본 발명의 범위를 벗어나는 비교재(A-L)의 경우에는 발명재에 비해 가공성 및 도장후 내식성이 열화됨을 알 수 있다.As shown in Table 1, in the case of the invention material (1-12) satisfying the plating deposition amount and the alloying treatment temperature range of the present invention, while excellent in workability and corrosion resistance after coating, the comparative material (outside the scope of the present invention) ( In the case of AL), it can be seen that the processability and corrosion resistance after painting are deteriorated compared to the invention material.

한편, 상기와 같이 도금부착량에 따른 가공성 및 도장후 내식성을 제1도에 나타낸 결과, 도금부착량이 80-100g/㎟ 범위에서 가공성 및 도장후 내식성이 우수하게 나타났으며, 440-560℃의 합금화 온도범위에서 합금화 도금층의 Fe 농도변화를 측정하여 제2도에 나타낸 결과, 상기 온도범위에서 도금층 중의 Fe 농도가 가공성 및 도장후 내식성에 가장 적합한 범위인 9-12% 농도범위로 나타남을 알 수 있었다.On the other hand, as shown in FIG. 1, the workability and corrosion resistance after coating according to the coating weight were shown in the range of 80-100 g / mm2, and the coating performance was excellent in the workability and corrosion resistance after coating, and alloyed at 440-560 ° C. As a result of measuring the Fe concentration change of the alloying plated layer in the temperature range and shown in FIG. .

상술한 바와같이 본 발명은 Ti-P복합첨가 극정탄소강을 일정한 조건에서 소둔을 행한 후 용융아연도금시 도금부착량을 제어하고 합금화 처리온도를 조정하므로서 가공성 및 도장후 내식성이 우수한 합금화 용융아연도금강판을 제조할 수 있는 효과가 있다.As described above, the present invention provides an alloyed hot-dip galvanized steel sheet having excellent workability and corrosion resistance after coating by controlling the amount of coating during hot dip galvanizing and adjusting the alloying treatment temperature after annealing the Ti-P composite additive carbon steel under certain conditions. There is an effect that can be produced.

Claims (1)

티타늄-인 복합첨가 극저탄소강을 소둔하고 용융아연도금한 후, 합금화처리하여 합금화용융아연도금강판을 제조하는 방법에 있어서, 0.03-0.06%의 티타늄과 0.05-0.15%의 인이 복합첨가된 극저탄소강을 780-830℃의 온도범위에서 소둔처리한 후, 용융아연도금욕을 통과시키고 도금부착량을 80-100g/㎡ 범위가 되도록 조정하는 용융아연도금을 행한 다음, 500-540℃ 온도범위에서 합금화 처리하는 것을 특징으로 하는 가공성 및 내식성이 우수한 합금화 용융아연도금 강판을 제조하는 방법.Titanium-phosphorus composite addition Annealing and hot dip galvanizing, followed by alloying to produce an alloyed hot-dip galvanized steel sheet, comprising 0.03-0.06% titanium and 0.05-0.15% phosphorus After annealing the low-carbon steel at a temperature range of 780-830 ° C, it is passed through a hot dip galvanizing bath and hot-dip galvanized to adjust the coating amount to be in the range of 80-100 g / m2, and then in the temperature range of 500-540 ° C. A method for producing an alloyed hot-dip galvanized steel sheet excellent in workability and corrosion resistance, characterized in that the alloying treatment.
KR1019940032487A 1994-12-02 1994-12-02 Method for manufacturing hot-dipped zn-alloy coated steel sheet for the good machinability and anti-corrossion KR0146886B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940032487A KR0146886B1 (en) 1994-12-02 1994-12-02 Method for manufacturing hot-dipped zn-alloy coated steel sheet for the good machinability and anti-corrossion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940032487A KR0146886B1 (en) 1994-12-02 1994-12-02 Method for manufacturing hot-dipped zn-alloy coated steel sheet for the good machinability and anti-corrossion

Publications (2)

Publication Number Publication Date
KR960023195A KR960023195A (en) 1996-07-18
KR0146886B1 true KR0146886B1 (en) 1998-11-02

Family

ID=19400108

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940032487A KR0146886B1 (en) 1994-12-02 1994-12-02 Method for manufacturing hot-dipped zn-alloy coated steel sheet for the good machinability and anti-corrossion

Country Status (1)

Country Link
KR (1) KR0146886B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100356163B1 (en) * 1998-07-15 2002-11-18 주식회사 포스코 Manufacturing method of semi-alloyed hot dip galvanized steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100356163B1 (en) * 1998-07-15 2002-11-18 주식회사 포스코 Manufacturing method of semi-alloyed hot dip galvanized steel sheet

Also Published As

Publication number Publication date
KR960023195A (en) 1996-07-18

Similar Documents

Publication Publication Date Title
JPS6330984B2 (en)
KR101621630B1 (en) Galvannealed steel sheet having high corrosion resistance after painting
US5409553A (en) Process for manufacturing galvannealed steel sheets having high press-formability and anti-powdering property
KR0146886B1 (en) Method for manufacturing hot-dipped zn-alloy coated steel sheet for the good machinability and anti-corrossion
JP2525165B2 (en) Method for manufacturing high strength galvanized steel sheet
KR960010161B1 (en) Method for manufacturing galvanealed steel plates with an excellent workability and corrosion resistance after coatings
KR100356163B1 (en) Manufacturing method of semi-alloyed hot dip galvanized steel sheet
JP2988985B2 (en) Method for producing alloyed hot-dip galvanized steel sheet excellent in plating appearance and film workability
JP3045264B2 (en) Manufacturing method of alloyed hot-dip galvanized steel sheet
KR100241307B1 (en) The method of making zn alloying coating sheet
JP3494058B2 (en) Alloyed hot-dip galvanized steel sheet with excellent workability and method for producing the same
JP3198900B2 (en) Manufacturing method of thin galvanized steel sheet
JP2565054B2 (en) Method for producing galvannealed steel sheet with excellent deep drawability and plating adhesion
JPH04173925A (en) Production of hot-dip galvanized steel sheet for high-degree working excellent in baking hardenability and pitting corrosion resistance
JP3446002B2 (en) Method for producing thin steel sheet for paint base with excellent surface appearance and press formability
JP3166568B2 (en) Manufacturing method of hot-dip galvanized steel
KR950004778B1 (en) Method for making a galvannealed steel sheet with an excellant anti-powdering
JP2550849B2 (en) Method for producing high strength galvannealed steel sheet with excellent deep drawability, plating adhesion and corrosion resistance after painting
US4878960A (en) Process for preparing alloyed-zinc-plated titanium-killed steel sheet having excellent deep-drawability
JP3142735B2 (en) Alloyed hot-dip galvanized steel sheet with excellent workability
JPH04301060A (en) High strength alloyed galvanized steel sheet having seizing hardenability and excellent in powdering resistance and its production
JPH04263054A (en) Molten galvanized steel sheet for alloying
JP3033355B2 (en) High corrosion resistance plated steel sheet with excellent plating adhesion
JP3052835B2 (en) Galvannealed steel sheet
JP3271234B2 (en) Manufacturing method of galvannealed steel sheet with excellent alloying properties

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20010427

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee