KR960010161B1 - Method for manufacturing galvanealed steel plates with an excellent workability and corrosion resistance after coatings - Google Patents

Method for manufacturing galvanealed steel plates with an excellent workability and corrosion resistance after coatings Download PDF

Info

Publication number
KR960010161B1
KR960010161B1 KR1019930021358A KR930021358A KR960010161B1 KR 960010161 B1 KR960010161 B1 KR 960010161B1 KR 1019930021358 A KR1019930021358 A KR 1019930021358A KR 930021358 A KR930021358 A KR 930021358A KR 960010161 B1 KR960010161 B1 KR 960010161B1
Authority
KR
South Korea
Prior art keywords
hot
steel sheet
corrosion resistance
alloying
workability
Prior art date
Application number
KR1019930021358A
Other languages
Korean (ko)
Other versions
KR950011639A (en
Inventor
배대철
장세기
Original Assignee
김종진
포항종합제철주식회사
신창식
재단법인산업과학기술연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김종진, 포항종합제철주식회사, 신창식, 재단법인산업과학기술연구소 filed Critical 김종진
Priority to KR1019930021358A priority Critical patent/KR960010161B1/en
Publication of KR950011639A publication Critical patent/KR950011639A/en
Application granted granted Critical
Publication of KR960010161B1 publication Critical patent/KR960010161B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)

Abstract

fusion galvanizing a low carbon Al-killed steel sheet in a zinc plating bath so that zinc amount adhering on one side of the steel sheet is 80-100g/m3; performing heat treatment for alloying zinc and iron at 500-540 deg.C; and cooling at cooling rate of more than 30 deg.C/sec.. Adjustment of the zinc adhering amount, the temperature for heat treatment and the cooling rate improves workability and corrosion resistance after painting.

Description

가공성 및 도장 후 내식성이 우수한 합금화 용융아연 도금강판의 제조방법Process for producing alloyed hot dip galvanized steel sheet with excellent workability and corrosion resistance after painting

제1도는 합금화 처리온도에 따른 Fe 농도변화를 나타내는 그래프.1 is a graph showing the change in Fe concentration according to the alloying treatment temperature.

제2도는 합금화 처리 후 냉각속도에 따른 가공성 변화를 나타내는 그래프.2 is a graph showing the change in workability according to the cooling rate after the alloying treatment.

제3도는 도금부착량에 따른 가공성 및 내식성 변화를 나타내는 그래프.3 is a graph showing the change in workability and corrosion resistance according to the coating amount.

본 발명은 가전제품, 및 자동차용 강판등으로 사용되는 합금화 용융아연 도금강판을 제조하는 방법에 관한 것으로써, 보다 상세하게는, 가공성 및 도장 후 내식성이 우수한 합금화 용융아연 도금강판을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing an alloyed hot-dip galvanized steel sheet used for home appliances, automobile steel plates, and the like, and more particularly, to a method for producing an alloyed hot-dip galvanized steel sheet excellent in workability and corrosion resistance after coating. It is about.

용융아연 도금제품중 합금화 용융아연 도금강판은 용접성 및 도장성이 우수하여 가전제품, 자동차용 강판으로 널리 사용되고 있으나, 특히 자동차용 강판의 적용에 있어서는 고가공성이 요구되며 내판재 공급확대를 위하여 강판의 도장 후 내식성이 우수하여야 한다.Among hot-dip galvanized products, alloyed hot-dip galvanized steel sheet is widely used in home appliances and automotive steel plates because of its excellent weldability and paintability, but especially in the application of automotive steel sheets, high processability is required, It should be excellent in corrosion resistance after painting.

일반적으로 합금화 용융아연 도금강판은 연속 용융아연 도금라인에서 아연 도금욕을 통과한 스트립을 합금화 열처리하여 제조하게 되며 가공용 강판제조를 위하여 티타늄 혹은 티타늄-니오비듐 복합첨가 극저탄소강을 소재로서 사용한다. 상기 강종에서 제조된 합금화 용융아연 도금강판은 가공시 도금층이 박리되며 파우더링(Powdering) 및 프레이킹(Flaking)의 현상이 발생하여 가공성은 저하하며 이를 개선하기 위하여 강종, 도금전처리, 용융도금조건, 합금화 열처리조건등의 연구가 활발히 진행중에 있다.In general, alloyed hot-dip galvanized steel sheet is manufactured by alloying heat treatment of a strip passed through a galvanizing bath in a continuous hot-dip galvanizing line, and uses titanium or titanium-niobium composite additive ultra-low carbon steel as a material for manufacturing a steel sheet for processing. . The alloyed hot-dip galvanized steel sheet produced in the steel grade is peeled off the plating layer during processing, and the phenomenon of powdering and flaking occurs, the workability is lowered to improve the steel grade, pre-plating, hot-dip plating conditions, Research on alloying heat treatment conditions is actively underway.

합금화 용융아연 도금강판의 가공성 향상에 관한 공지 기술로는 용융아연 도금욕중 알루미늄량을 미량 첨가시켜 아연도금후 합금화처리한 일본특허 공개(소) 56-13470호, 아연도금전 강판에 철, 니켈들을 먼저 도금한 후 아연도금 후 합금화처리한 일본특허 공개(소) 58-104163호, 공개(소) 60-110859호 등이 알려져 있다. 또한, 가공성 및 도장성이 우수한 합금화 용융아연 도금강판의 공지기술로는 도금욕중 바나듐을 첨가하여 도금 및 합금화 처리 후 편면에 유기피막을 01∼4.0g/m2피복시킨 일본특허 공개(평) 5-44006호 등을 들 수 있다.As a well-known technique for improving the workability of alloyed hot-dip galvanized steel sheet, Japanese Patent Laid-Open No. 56-13470, which has been alloyed after galvanizing by adding a small amount of aluminum in a hot-dip galvanizing bath, iron, nickel on a pre-galvanized steel sheet Japanese Patent Laid-Open Publication No. 58-104163, Japanese Laid-Open Publication No. 60-110859, and the like, which have been plated first and then galvanized and alloyed, are known. In addition, the processability and coating property is excellent alloyed hot-dip zinc-coated steel sheet by known techniques is 01~4.0g / m 2 coating the organic film on the one surface after plating and the alloying treatment of the plating bath by the addition of vanadium that Japanese Unexamined Patent Publication (Kokai) 5-44006 etc. are mentioned.

그러나, 상기한 일본특허 공개(소)56-13470호의 경우에는 가공성은 어느 정도 향상되지만, 성형성이 나빠지고 도장 후의 내식성이 떨어지는 문제점이 있다.However, in the case of Japanese Patent Laid-Open No. 56-13470, the workability is improved to some extent, but there is a problem in that moldability is poor and corrosion resistance after coating is inferior.

또한, 상기한 일본특허 공개(소)58-104163호 및(소) 60-110859호의 경우에는 별도의 전처리 공정이 추가되어야 하므로 제조공정이 복잡할 뿐만 아니라 제조비용의 증가를 가져오게 되는 문제점이 있다.In addition, in the case of Japanese Patent Laid-Open Publication No. 58-104163 and No. 60-110859, a separate pretreatment step must be added, which leads to a complicated manufacturing process and an increase in manufacturing cost. .

또한, 상기 일본특허 공개(평)5-44006호의 경우에는 별도의 후처리 공정이 추가되어야 하므로 이 또한 제조공정이 복잡할 뿐만 아니라 제조비용의 증가를 가져오게 되는 문제점이 있다.In addition, in the case of Japanese Patent Laid-Open No. 5-44006, since a separate post-treatment process has to be added, this also has a problem that the manufacturing process is complicated as well as an increase in manufacturing cost.

따라서, 본 발명은 통상의 아연도금욕 조성에서 도금 및 공기분사에 의한 부착량 조정을 거쳐 적정 온도에서의 합금화 처리 후 냉각속도를 상향 조정하므로써, 프레스 가공시 내 파우더링성이 우수하고 도장 후 내식성이 우수한 합금화 용융아연 도금강판을 경제적으로 제조할 수 있는 방법을 제조하고자 하는데, 그 목적이 있다.Therefore, the present invention adjusts the cooling rate after the alloying treatment at an appropriate temperature by adjusting the adhesion amount by plating and air spraying in a conventional galvanizing bath composition, thereby providing excellent powdering resistance during press working and excellent corrosion resistance after painting. To produce a method for economically manufacturing an alloyed hot-dip galvanized steel sheet, the purpose is.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 저탄소 알루미늄 킬드강 소재를 용융아연 도금욕에 침지하여 용융아연 도금한 후 합금화 처리하여 용융아연 합금화 도금강판을 제조하는 방법에 있어서, 편면 부착량이 80∼100g/m2의 범위가 되도록 용융아연 도금한 후 500∼540℃의 온도범위에서 합금화 처리한 다음 30℃/sec이상의 냉각속도로 냉각하여 가공성 및 도장 후 내식성이 우수한 합금화 용융아연 도금강판을 제조하는 방법에 관한 것이다.The present invention is a method for producing a hot-dip galvanized galvanized steel sheet by immersing a low-carbon aluminum-kilted steel material in a hot-dip galvanizing bath, followed by alloying and melting, so that the one-sided adhesion amount is in the range of 80 to 100 g / m 2 After galvanizing and alloying in a temperature range of 500 ~ 540 ℃ and then cooled to a cooling rate of 30 ℃ / sec or more relates to a method for producing an alloyed hot dip galvanized steel sheet excellent in workability and corrosion resistance after coating.

또한, 본 발명은 티타늄-니오비늄 복합첨가 극저탄소강 소재를 용융아연 도금욕에 침지하여 용융아연 도금한 후 합금화 처리하여 용융아연 합금화 도금강판을 제조하는 방법에 있어서 편면부착량 80∼100g/m2의 범위가 되도록 용융아연 도금한 후, 480∼520℃의 온도범위에서 합금화 처리한 다음, 30℃/sec이상의 냉각속도로 냉각하여 가공성 및 도장 후 내식성이 우수한 합금화 용융아연 도금강판을 제조하는 방법에 관한 것이다.In addition, the present invention is a method for producing a hot-dip galvanized coated steel sheet in a method of manufacturing a hot-dip galvanized steel sheet by immersing a titanium-niobium compound-added ultra low carbon steel material in a hot dip galvanizing bath, followed by hot dip galvanizing. After hot-dip galvanizing to the range of 2 , the alloying treatment at a temperature range of 480 ~ 520 ℃, and then cooled at a cooling rate of 30 ℃ / sec or more to produce an alloyed hot dip galvanized steel sheet excellent in workability and corrosion resistance after coating It is about.

이하, 본 발명의 용융아연 도금 및 합금화 처리 공정에 대하여 상세히 설명한다.Hereinafter, the hot dip galvanizing and alloying process of the present invention will be described in detail.

본 발명은 합금화 용융아연 도금강판 제조시 가공성 향상을 위해 합금화 처리온도 및 합금화 처리 후 냉각속도를 제어하고, 또한, 도장 후 내식성 향상을 위해 도금부착량을 적정범위내로 제어하는 것을 그 요지로 하고 있다. 합금화 반응성에 미치는 인자로는 강종, 연속소둔조건, 도금조건, 합금화 처리조건등을 들 수 있다. 특히 도금욕 중 알루미늄 농도는 합금화 반응속도, 합금층구조 및 표면조직에 영향을 미치는 인자로서 스트립통과속도와 합금화로 길이를 고려하여 조정된다. 소치철 강종의 영향으로서 티타늄이 첨가된 극저탄소강은 알루미늄 킬드 저탄소강과는 달리 용융아연 도금시 아연-철 상호확산을 억제하는 철-아연-알루미늄계의 얇은 피막층이 취약하게 되어 아연-철 금속간 화합물이 계면에 생성하게 된다. 이러한 금속간 화합물은 합금화 처리시 소지강종내 철의 확산을 조장하여 합금층내 철이 농도가 증가한다. 도금층내 철의 농도가 적정치 이상으로 증가하면 소지철/도금층 계면에서 캐피털 감마(Γ)층이 생성됨으로써 가공시 파우터링성 경향이 높으며 따라서 합금화 열처리시 적정 온도를 유지하여야 한다. 따라서 합금화 처리시 가공성에 불리한 강중 티타늄량을 적게 하고 티타늄과 첨가목적이 동일한 니오비듐을 소량으로 복합첨가한 강이 많이 사용되고 있으며 티타늄-니오비듐 복합첨가 극저탄소강의 경우 480∼520℃에서 열처리하면 소지철/도금층 계면에서의 캐피털 감마(Γ)층 생성을 방지하면서 가공성을 확보할 수 있다. 알루미늄 킬드강은 용융도금시 도금욕내 알루미늄과 스트립과의 반응에 의하여 안정한 3원 합금층이 형성되며 이러한 3원 합금층은 합금화 처리시 도금층내 적정 철농도를 유지하기 위하여 티타늄-니오비듐 복합첨가 극저탄소강보다 20℃ 높은 온도를 요한다.The present invention is to control the alloying treatment temperature and the cooling rate after the alloying treatment in order to improve the workability during the production of alloyed hot-dip galvanized steel sheet, and to control the coating amount within the appropriate range to improve the corrosion resistance after coating. Factors affecting alloying reactivity include steel grade, continuous annealing conditions, plating conditions, and alloying treatment conditions. In particular, the aluminum concentration in the plating bath is adjusted in consideration of the strip passage speed and the alloy furnace length as factors affecting the alloying reaction rate, the alloy layer structure and the surface structure. Ultra-low carbon steel with added titanium as an effect of SOCHI steel grades, unlike aluminum-kilted low carbon steel, has a weak layer of iron-zinc-aluminum based zinc-iron-diffusion which suppresses zinc-iron interdiffusion during hot dip galvanizing. The compound is produced at the interface. These intermetallic compounds promote the diffusion of iron in the steel grades during the alloying process to increase the iron concentration in the alloy layer. If the iron concentration in the plating layer is increased above the optimum value, the capital gamma (Γ) layer is formed at the base iron / plating layer interface, and thus the powdering tendency is high during processing, and therefore, an appropriate temperature must be maintained during alloying heat treatment. Therefore, in the case of alloying treatment, steel with low titanium content, which is detrimental to workability, and mixed with small amount of niobium having the same purpose as titanium is used in many cases. The workability can be secured while preventing the formation of the capital gamma (Γ) layer at the base iron / plated layer interface. In the case of aluminum-kilted steel, a stable ternary alloy layer is formed by the reaction of aluminum and strip in the plating bath during hot dip plating, and the ternary alloy layer is added with a titanium-niobidium complex to maintain an appropriate iron concentration in the plating layer during alloying. 20 ° C higher temperature than ultralow carbon steel.

즉, 알루미늄 킬드 저탄소강의 경우 500℃의 이하, 티타늄-니오비듐 복합첨가 극저탄소강에서의 480℃ 이하에서도 도금층중 철의 온도가 9% 이하로 되며 도금층 조직이 제타+델타(ζ+δ)상으로 구성되어져 프레스가공시 파우더링성은 양호하나 가압력(Punch Load)이 증가하여 프레스 성형성 불량이 발생되기 쉽고 카치온 전착 도장시 폭부풀음 현상이 발생하여 가공성, 내식성이 저하된다. 또한 알루미늄 킬드 저탄소강의 경우 540℃ 이상, 티타늄-니오비듐 복합첨가 극저탄소강에서의 520℃이상에서 열처리하면 도금층내 철의 농도가 12% 이상이 되며, 소지철/도금층 계면에서 가공성이 취약한 캐피탈 감마(Γ)상이 나타남으로써 바람직하지 않다.That is, in the case of aluminum-kilted low carbon steel, the temperature of iron in the plating layer is 9% or less even at temperatures of 500 ° C. or lower and 480 ° C. or lower in the titanium-niobidium-added ultra low carbon steel, and the structure of the plating layer is zeta + delta (ζ + δ). It is composed of phase, so that powdering property is good during press processing, but the press load is increased, so it is easy to cause poor press formability. In the case of aluminum-kilted low carbon steel, heat treatment at 540 ℃ or higher and titanium-niobidium-added ultra low carbon steel at 520 ℃ or higher results in an iron concentration of 12% or more, and is incapable of workability at the base iron / plated layer interface. Gamma (Γ) phases are not preferred because of the appearance.

따라서, 본 발명에 있어서, 합금화 처리온도는 알루미늄 킬드 저탄소강의 경우 500∼540℃, 티타늄-니오비늄 복합첨가 극저탄소강의 경우 480∼520℃로 제한하는 것이 바람직하다.Therefore, in the present invention, the alloying treatment temperature is preferably limited to 500 to 540 ° C for aluminum-kilted low carbon steel and 480 to 520 ° C for titanium-niobinium-added ultra low carbon steel.

합금화 열처리 후 냉각은 통상의 냉각방법으로 가능하나 압축공기, 물분사, 수증기-물분무, 수중침적 등의 급냉이 바람직하며 도금층의 가공성 향상과 관련되어 중요한 제조요인이다. 즉 합금화 처리 후 냉각중 소지철내 철이 도금층중으로 계속 확산되어 감에 따라 도금층중 철농도가 증가하여 가공성이 열화되므로 도금밀착성을 향상시키기 위하여 합금화 처리 후 냉각속도는 30℃/sec이상으로 하여 소지철/도금층 계면에서의 캐피탈 감마(Γ)층 두께를 최소화시켜야 한다.Cooling after the alloying heat treatment is possible by a conventional cooling method, but quenching such as compressed air, water spray, steam-water spray, and water deposition is preferable, and is an important manufacturing factor related to the improvement of workability of the plating layer. In other words, as iron continues to diffuse into the plating layer during cooling after alloying, the iron concentration in the plating layer increases, resulting in deterioration of workability. Therefore, after alloying, the cooling rate is 30 ° C / sec or more to improve plating adhesion. The thickness of the capital gamma (Γ) layer at the plating layer interface should be minimized.

즉, 합금화 처리 후 냉각속도는 각종 구분없이 30℃/sec 이상이 바람직하여 30℃/sec 이하에서는 냉각중 도금층내 철의 농도가 지속적으로 증가하여 가공성이 열화되며 또한 고온의 스트립에서의 도금층이 톱롤(Top-Roll)에서 전사되어 표면얼룩이 발생하기 때문에 바람직하지 못하다.That is, after the alloying treatment, the cooling rate is preferably 30 ° C./sec or more without any distinction. At 30 ° C./sec or less, the iron concentration in the plating layer continuously increases during cooling, thereby degrading workability, and the plating layer in the hot strip is top rolled. It is not preferable because it is transferred from (Top-Roll) and surface stain occurs.

합금화 용융아연도금 강판은 도금층중 철의 농도가 높아서 도금층 자체의 내식성보다 도장 후 내식성을 평가하는 것이 일반적이다. 부착량은 아연도금욕에서 용융도금후 공기분사 노즐압력 및 스트립과 노즐과의 간격에 의해 결정되며, 박도금에서는 도금층중의 아연의 희색 방식성이 열화되므로 이보다 두꺼운 후도금이 필요하다. 그러나 합금화 용융아연 도금강판의 후도금 제조시 도금밀착성이 급격히 열화되어 바람직하지 못하므로 본 발명에서 제시하는 가공성과 내식성을 동시에 만족시키는 적정 도금 두께 범위로 한정시켜야 한다.Since the alloying hot-dip galvanized steel sheet has a high iron concentration in the plating layer, it is common to evaluate corrosion resistance after coating rather than corrosion resistance of the plating layer itself. The deposition amount is determined by the air spray nozzle pressure and the gap between the strip and the nozzle after hot dip plating in the galvanizing bath. In the thin plating, the thick anti-corrosive property of zinc in the plating layer is deteriorated, and thus thicker after plating is required. However, in the post-plating manufacturing of alloyed hot-dip galvanized steel sheet, the plating adhesion is rapidly deteriorated, which is not preferable, so it should be limited to an appropriate plating thickness range that satisfies the processability and corrosion resistance proposed by the present invention.

즉, 도금층의 두께가 80g/m2이하에서는 폭부풀음 발생시간이 단축되어 내식성이 열화되며, 100g/m2이상에서는 내식성은 증가하나 도금층 두께의 증가에 따라 합금화 열처리시 더욱 높은 온도가 요구되고 따라서 가공성이 열화되며 스트립의 가장자리부분에서 미합금화 현상이 발생하기 때문에 균일한 색상을 가진 제품생상이 불가능하다.That is, when the thickness of the plating layer is 80g / m 2 or less, the swelling occurrence time of the swelling is shortened, and the corrosion resistance is deteriorated.In 100g / m 2 or more, the corrosion resistance is increased, but as the thickness of the plating layer is increased, a higher temperature is required during alloying heat treatment. The workability is deteriorated and unalloyment occurs at the edge of the strip, making it impossible to produce a product with uniform color.

따라서, 본 발명에 있어서 도금층의 부착량(두께)은 80∼100g/m2으로 제한하는 것이 바람직하다.Therefore, in this invention, it is preferable to limit the adhesion amount (thickness) of a plating layer to 80-100 g / m <2> .

이하, 실시예를 통하여 본 발명은 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예Example

두께 0.8mm인 저탄소 알루미늄 킬드강(Al-K) 및 티타늄-니오비듐 복합첨가 극저탄소강(Ti-Nb)의 냉연강판을 소재로 환원 열처리 소둔을 760℃, 820℃에서 각각 행한 후, 하기 표 1과 같은 조건으로 용융도금 및 합금화 처리를 행하여 합금화 용융아연 도금강판을 제조한 다음 시편을 채취하여 가공성 및 도장후 내식성을 측정하고, 그 측정결과를 하기 표 1 및 제2-3도에 나타내었다.After the reduction heat treatment annealing of cold carbon steel sheet of 0.8 mm thick carbon low carbon aluminum (Al-K) and titanium-niobium complex ultra-low carbon steel (Ti-Nb) was carried out at 760 ℃, 820 ℃, respectively, After the hot-dip galvanized steel sheet by hot-dip and alloying treatment under the same conditions as in Table 1, the specimens were taken to measure workability and corrosion resistance after coating, and the measurement results are shown in Tables 1 and 2-3 below. It was.

한편, 440∼560℃의 합금화 온도범위에서의 Fe 농도 변화를 관찰하고, 그 결과를 제1도에 나타내었다.On the other hand, the Fe concentration change in the alloying temperature range of 440-560 degreeC was observed, and the result is shown in FIG.

[표 1]TABLE 1

1) 부착량 : 편면기준, g/m2 1) Attachment amount: one side, g / m 2

2) 가공성 : 에릭션(Erichen) 가공 전후 무게차이에 의한 비교2) Workability: Comparison by weight difference before and after Erichen processing

3) 내식성 : 저착도장 전후 도막 부풀음 폭 1∼2mm 발생시간에 따른 비교3) Corrosion resistance: Comparison of coating film swelling width 1 ~ 2mm before and after adhesion coating

제1-2도 및 상기 표 1에 나타난 바와 같이, 알루미늄 킬드강 500∼540℃, 티타늄-니오비듐 복합첨가 극저탄소강은 480∼520℃에서 도금층내 철의 함량이 9∼12%인 강판을 제조할 수 있음을 알 수 있고 냉각속도는 30℃/sec 이상에서 내식성과 가공성이 양호해짐을 알 수 있다.As shown in FIGS. 1-2 and Table 1, the ultra-low carbon steel with aluminum-kilted steel 500 to 540 ° C. and the titanium-niobidium composite additive has a steel content of 9 to 12% in the plating layer at 480 to 520 ° C. It can be seen that it can be prepared and the cooling rate is 30 ℃ / sec or more it can be seen that the corrosion resistance and workability is good.

한편, 제3도에 나타낸 바와 같이, 제1-2도에서의 각 강종별 제조조건을 만족하면서 도금 부착량이 편면기준으로 80∼100g/m2범위로 제어된 강판은 도장 후 내식성과 가공성이 공히 우수함으로 알 수 있다.On the other hand, as shown in FIG. 3, the steel sheet whose plating adhesion was controlled in the range of 80 to 100 g / m 2 on a one-side basis while satisfying the manufacturing conditions for each steel type in FIGS. Known for excellence.

상술한 바와 같이, 본 발명은 도금조건에서 부착량 조정 및 합금화 처리조건인 온도와 냉각속도를 적절히 조정함으로써, 가공성 및 도장 후 내식성이 우수한 용융아연 합금화 도금강판을 제공할 수 있는 효과가 있는 것이다.As described above, the present invention has an effect of providing a hot-dip zinc alloy plated steel sheet excellent in workability and corrosion resistance after coating by appropriately adjusting the deposition amount and the alloying treatment conditions under the plating conditions and the cooling rate.

Claims (2)

저탄소 알루미늄 킬드강 소재를 용융아연 도금욕에 침지하여 용융아연 도금한 후 합금화 처리하여 용융아연 합금화 도금강판을 제조하는 방법에 있어서, 편면부착량이 80∼100g/m2의 범위가 되도록 용융아연 도금한 후, 500∼540℃의 온도범위에서 합금화 처리한 다음, 30℃/sec 이상의 냉각속도로 냉각하는 것을 특징으로 하는 가공성 및 도장 후 내식성이 우수한 합금화 용융아연 도금강판의 제조방법.In a method of manufacturing a hot-dip galvanized steel sheet by immersing a low-carbon aluminum-kilted steel material in a hot-dip galvanizing bath, followed by alloying, hot-dip galvanized so that the one-sided deposition amount is in the range of 80 to 100 g / m 2 . After, after the alloying treatment in the temperature range of 500 ~ 540 ℃, and the cooling method at a cooling rate of 30 ℃ / sec or more characterized in that the workability and corrosion resistance after coating excellent alloyed hot dip galvanized steel sheet manufacturing method. 티타늄-니오비듐 복합첨가 극저탄소강 소재를 용융아연 도금욕에 침지하여 용융아연 도금한 후, 합금화 처리하여 용융아연 합금화 도금강판을 제조하는 방법에 있어서, 편면부착량이 80∼100g/m2의 범위가 되도록 용융아연 도금한 후, 480∼520℃의 온도범위에서 합금화 처리한 다음, 30℃/sec 이상의 냉각속도로 냉각하는 것을 특징으로 하는 가공성 및 도장 후 내식성이 우수한 합금화 용융아연 도금강판의 제조방법.In a method of producing a hot-dip galvanized steel sheet by immersing a titanium-niobidium-added ultra low carbon steel material in a hot dip galvanizing bath, followed by galvanizing, an alloy having a single sided adhesion amount of 80 to 100 g / m 2 After hot-dip galvanizing to a range, the alloying treatment at a temperature range of 480 ~ 520 ℃, and then cooled at a cooling rate of 30 ℃ / sec or more, characterized in that the production of alloyed hot-dip galvanized steel sheet excellent in workability and corrosion resistance after coating Way.
KR1019930021358A 1993-10-14 1993-10-14 Method for manufacturing galvanealed steel plates with an excellent workability and corrosion resistance after coatings KR960010161B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930021358A KR960010161B1 (en) 1993-10-14 1993-10-14 Method for manufacturing galvanealed steel plates with an excellent workability and corrosion resistance after coatings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930021358A KR960010161B1 (en) 1993-10-14 1993-10-14 Method for manufacturing galvanealed steel plates with an excellent workability and corrosion resistance after coatings

Publications (2)

Publication Number Publication Date
KR950011639A KR950011639A (en) 1995-05-15
KR960010161B1 true KR960010161B1 (en) 1996-07-26

Family

ID=19365849

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930021358A KR960010161B1 (en) 1993-10-14 1993-10-14 Method for manufacturing galvanealed steel plates with an excellent workability and corrosion resistance after coatings

Country Status (1)

Country Link
KR (1) KR960010161B1 (en)

Also Published As

Publication number Publication date
KR950011639A (en) 1995-05-15

Similar Documents

Publication Publication Date Title
JP4987510B2 (en) Alloyed hot-dip galvanized steel sheet with excellent paint sharpness and press formability and method for producing the same
JPS5891162A (en) Manufacture of galvanized steel plate
JPH0324255A (en) Hot-dip galvanized hot rolled steel plate and its production
JPH01279738A (en) Production of alloying hot dip galvanized steel sheet
US5409553A (en) Process for manufacturing galvannealed steel sheets having high press-formability and anti-powdering property
JP2002004018A (en) High strength hot-dip galvanized steel sheet having good corrosion resistance after coating and good press- workability, and coated steel sheet
KR20110066689A (en) Method for manufacturing high manganese hot dip galvanized steel sheet with superior weldability
KR960010161B1 (en) Method for manufacturing galvanealed steel plates with an excellent workability and corrosion resistance after coatings
JP3382697B2 (en) Manufacturing method of galvannealed steel sheet
JPS63312960A (en) Manufacture of zinc alloy hot dip galvanized steel sheet having superior workability
JP3114609B2 (en) Method for producing galvannealed steel sheet with excellent surface properties
JP2525165B2 (en) Method for manufacturing high strength galvanized steel sheet
KR0146886B1 (en) Method for manufacturing hot-dipped zn-alloy coated steel sheet for the good machinability and anti-corrossion
KR100241307B1 (en) The method of making zn alloying coating sheet
KR100356163B1 (en) Manufacturing method of semi-alloyed hot dip galvanized steel sheet
KR950004778B1 (en) Method for making a galvannealed steel sheet with an excellant anti-powdering
JP3016122B2 (en) Galvannealed steel sheet with excellent paintability and its manufacturing method
JPH08269662A (en) Production of zinc-tin alloy coated steel sheet
JPS61119663A (en) General-purpose bath for hot dip galvanizing
JP2841898B2 (en) Alloyed hot-dip galvanized steel sheet with excellent surface smoothness
JPH04103749A (en) Manufacture of galvannealed steel sheet excellent in galvannealing appearance and film workability
JPH04235266A (en) Manufacture of alloying galvannealed steel sheet excellent in workability and corrosion resistance
JPH0463258A (en) Production of galvannealed steel sheet excellent in workability
JPH04173925A (en) Production of hot-dip galvanized steel sheet for high-degree working excellent in baking hardenability and pitting corrosion resistance
KR0143472B1 (en) Manufacturing method of zn-fe alloy coated steel sheet with continuous annealing furnace

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030701

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee