JPH0448061A - Production of galvannealed steel sheet - Google Patents

Production of galvannealed steel sheet

Info

Publication number
JPH0448061A
JPH0448061A JP15754390A JP15754390A JPH0448061A JP H0448061 A JPH0448061 A JP H0448061A JP 15754390 A JP15754390 A JP 15754390A JP 15754390 A JP15754390 A JP 15754390A JP H0448061 A JPH0448061 A JP H0448061A
Authority
JP
Japan
Prior art keywords
steel sheet
content
powdering resistance
galvanized steel
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15754390A
Other languages
Japanese (ja)
Inventor
Akira Yasuda
安田 顕
Kazuaki Kyono
一章 京野
Koji Yamato
康二 大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP15754390A priority Critical patent/JPH0448061A/en
Publication of JPH0448061A publication Critical patent/JPH0448061A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To produce a galvannealed steel sheet excellent in die sliding characteristics and powdering resistance at the time of press forming by subjecting a hot-dip galvanized steel sheet to heating under specific conditions and controlling iron content in a plated layer. CONSTITUTION:A steel sheet is galvanized by immersion in molten zinc and the resulting galvanized steel sheet is heated, by which a galvannealed steel sheet is produced. At this time, the above galvanized steel sheet is heated up to 470-530 deg.C at >=30 deg.C/sec temp.-rise rate. Subsequently, this steel sheet is held at a temp. in the above temp. region, by which iron content in the plated layer is controlled so that zinc coating weight W(g/m<2>) and the above Fe content CFe(wt.%) in the plated layer satisfy the condition of 18-(W/10)>=CFe>=9. By this method, the galvannealed steel sheet excellent in die sliding characteristics and powdering resistance at the time of press working even under the condition of high zinc coating weight, improving productivity at the time of press working, and capable of producing a high quality press worked part can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は合金化溶融亜鉛めっき鋼板の製造方法に関し、
さらに詳しくはプレス成形に際し、優れた耐パウダリン
グ性と金型摺動性を示す合金化溶融亜鉛めっき鋼板の製
造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an alloyed hot-dip galvanized steel sheet,
More specifically, the present invention relates to a method for producing an alloyed hot-dip galvanized steel sheet that exhibits excellent powdering resistance and mold sliding properties during press forming.

[従来の技術] 合金化溶融亜鉛めっき鋼板(以下GAと記す)は塗装後
嗣食性が優れるため、自動車車体用材料として広く使用
されているが、プレス加工時にめっき層が粉状に剥離す
るパウダリングと、めっき層がプレス金型に凝着するこ
とに起因する金型摺動性の低下がしばしば問題になる。
[Prior art] Alloyed hot-dip galvanized steel sheets (hereinafter referred to as GA) are widely used as materials for automobile bodies because they have excellent corrosion resistance after painting, but powdering occurs when the plating layer peels off into powder during press processing. In this case, a decrease in mold sliding properties due to adhesion of the plating layer to the press mold often becomes a problem.

パウダリングは、プレス部品に凸状欠陥を生じ仕上げ外
観を著しく損うだけでな(、耐食性の低下を招く、一方
、金型摺動性の低下はプレス割れやプレス形状不良の原
因となる。
Powdering not only causes convex defects in pressed parts and significantly impairs the finished appearance (but also leads to a decrease in corrosion resistance), on the other hand, a decrease in mold sliding properties causes press cracks and poor press shapes.

従来の知見では、めっき層中の鉄(Fe)含有率を高く
すると金型摺動性は改善されるものパウダリングが著し
くなり、逆にFe含有率を低く押えると、耐パウダリン
グ性が改善されるものの金型摺動性が低下するという、
二律背反的な性質を示すことが明らかにされている。
Conventional knowledge suggests that increasing the iron (Fe) content in the plating layer improves mold sliding properties, but causes significant powdering, and conversely, keeping the Fe content low improves powdering resistance. However, the sliding properties of the mold are reduced.
It has been revealed that it exhibits antinomic properties.

Fe含有率を高くしたときに耐パウダリング性が劣化す
る原因は、素地鋼板−めっき層界面にFeを約22重量
%含有する1層が形成されるためであるとされる。
The reason why the powdering resistance deteriorates when the Fe content is increased is said to be that one layer containing about 22% by weight of Fe is formed at the base steel sheet-plating layer interface.

一方、低Fe含有率のめつき層では、表面層にFeを約
7重量%含有するζ層が多くなり金型摺動性が低下する
On the other hand, in a plated layer with a low Fe content, the ζ layer containing about 7% by weight of Fe increases in the surface layer, resulting in a decrease in mold slidability.

したがって、耐パウダリング性と金型摺動性の両特性が
優れたGAを得るためには、r相とζ相の生成を抑えて
δ1相がめつき層の大部分を占めるように、めっき層組
成を制御する必要がある。
Therefore, in order to obtain a GA with excellent powdering resistance and mold sliding properties, it is necessary to suppress the formation of the r phase and ζ phase and to make the plating layer so that the δ1 phase occupies most of the plated layer. It is necessary to control the composition.

通常、めっき層中のFe含有率が10重量%を越えると
表面層のζ相が減少し金型摺動性低下の問題はなくなる
。一方、パウダリングが実質上問題にならないFe含有
率の範囲は亜鉛目付量が多くなると低(なる、すなわち
高目付量のときは加工による剥離量が多(なるため、よ
り低含有率にして「相の生成を極力抑制する必要がある
Normally, when the Fe content in the plating layer exceeds 10% by weight, the ζ phase in the surface layer decreases and the problem of reduced mold sliding properties disappears. On the other hand, the Fe content range in which powdering does not practically become a problem becomes low as the zinc basis weight increases. It is necessary to suppress phase formation as much as possible.

例えば、目付量が45g/rn”のときFe含有率の上
限は12重量%、60g/rn”のときは11重量%、
90g/rn”のときは7重量%程度とすることが、耐
パウダリング性良好なGAを得るためには必要である。
For example, when the basis weight is 45g/rn'', the upper limit of the Fe content is 12% by weight, and when the basis weight is 60g/rn'', it is 11% by weight.
In order to obtain a GA with good powdering resistance, it is necessary to set the content to about 7% by weight at 90 g/rn''.

したがって、目付量が多くなると耐パウダリング性と金
型摺動性の両特性がいずれも良好なFe含有率範囲が狭
くなり、工業的に高目付量で両特性に優れたGAを製造
することは実質的に不可能となる。
Therefore, as the basis weight increases, the Fe content range in which both powdering resistance and mold sliding properties are good becomes narrower, and it is difficult to industrially produce GA that is excellent in both properties with a high basis weight. becomes virtually impossible.

耐パウダリング性が良好なGAの製造方法として、特開
昭61−223174号公報に開示されたように、合金
化処理時高温まで急熱し、液相を残存させた状態から急
冷する方法が提案されているが、このような方法では耐
パウダリング性は良好でも、残存した液相が冷却後はη
相やく相としてめっき表層に残存し、金型摺動性を著し
く劣化させる。
As a method for manufacturing GA with good powdering resistance, a method has been proposed in which GA is rapidly heated to a high temperature during alloying treatment and then rapidly cooled while leaving a liquid phase, as disclosed in JP-A No. 61-223174. However, although this method has good powdering resistance, the remaining liquid phase decreases to η after cooling.
It remains on the plating surface layer as a compatible phase and significantly deteriorates the sliding properties of the mold.

また、耐パウダリング性及び金型摺動性がともに優れた
鋼板を製造するためには、特公昭61−26600及び
特開平1−172578号公報などに示されたように、
低Fe含有率のめつき表面に金型との摺動性を改善する
皮膜を形成せしめる方法が取られる。
In addition, in order to manufacture a steel plate with excellent powdering resistance and mold sliding properties, as shown in Japanese Patent Publication No. 61-26600 and Japanese Patent Application Laid-Open No. 1-172578,
A method is used in which a film is formed on the plated surface with a low Fe content to improve sliding properties with the mold.

しかし、かかる方法によればGAの本来の表面特性は失
われ、化成処理性、スポット溶接性、あるいは塗膜密着
性に悪影響を及ぼすことがあるばかりでなく、かかる最
表層に薄膜層を形成せしめて金型摺動性を改善した場合
、材料にかかる金型の圧力が大きいプレス条件になると
、最表層皮膜が破壊され、改善効果が発揮されない場合
がある。また、めっき後の後処理を必要とすることから
、製造工程が繁雑になりコスト上昇が避けられない。
However, such a method not only loses the original surface properties of GA, which may adversely affect chemical conversion treatment properties, spot weldability, or coating adhesion, but also causes the formation of a thin film layer on the outermost layer. When the sliding properties of the mold are improved, if the pressing conditions are such that the pressure of the mold applied to the material is large, the outermost layer film may be destroyed and the improvement effect may not be achieved. Further, since post-treatment after plating is required, the manufacturing process becomes complicated and costs inevitably increase.

【発明が解決しようとする課題1 本発明は、高亜鉛目付量においてもプレス加工時の金型
摺動性と耐パウダリング性に優れたGAの製造方法を提
供し、上記従来技術の欠点を解決しようとするものであ
る。
Problem to be Solved by the Invention 1 The present invention provides a method for producing GA that has excellent mold sliding properties and powdering resistance during press processing even with a high zinc coating weight, and overcomes the drawbacks of the above-mentioned prior art. This is what we are trying to solve.

[課題を解決するための手段] 本発明は上記課題を解決するために、鋼板を溶融亜鉛中
に浸漬して亜鉛めっきした後、該亜鉛めっき鋼板を加熱
して合金化溶融亜鉛めっき鋼板を製造する方法において
前記亜鉛めっき鋼板を470℃以上530℃以下の温度
域に30℃/sec以上の昇温速度で加熱した後、前記
温度域内の温度に保持して、亜鉛目付量W (g/rn
”)とめっき層中のFe含有率C鉄(重量%)とが1g
−(W/l o)≧CFe≧9 なる条件を満たすように前記鉄含有率を調整することを
特徴とする合金化溶融亜鉛めっき鋼板の製造方法を提供
するものである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a method for producing an alloyed hot-dip galvanized steel sheet by immersing a steel sheet in hot-dip zinc to galvanize it, and then heating the galvanized steel sheet. In the method of
”) and Fe content C iron (weight %) in the plating layer is 1g
-(W/l o)≧CFe≧9 A method for manufacturing an alloyed hot-dip galvanized steel sheet is provided, characterized in that the iron content is adjusted so as to satisfy the following condition.

[作用1 一般に、連続式渚融亜鉛めっき設備でGAを製造する場
合、焼鈍されたm扱は440〜490℃に保たれた溶融
亜鉛中に浸漬され、引き上げられた直後に空気やN2ガ
スなどの気体を吹きつけることにより亜鉛目付量を制御
し、しかる後、加熱して亜鉛層中にFeを拡散せしめG
Aを得る。
[Effect 1 Generally, when manufacturing GA using continuous beach dip galvanizing equipment, the annealed material is immersed in molten zinc maintained at 440 to 490°C, and immediately after being pulled out, it is exposed to air, N2 gas, etc. The amount of zinc coating is controlled by blowing G
get an A.

この工程において、気体吹付により鋼板温度は390〜
420℃に冷却されるが、合金化を限られた時間内に効
果的に実現するためには、450℃〜550℃の温度域
に加熱する必要がある。
In this process, the steel plate temperature is increased to 390~390 by gas blowing.
Although it is cooled to 420°C, it is necessary to heat it to a temperature range of 450°C to 550°C in order to effectively achieve alloying within a limited time.

本発明者らは、加熱合金化する温度域を470〜530
℃の範囲とすると、広いFe含有率の範囲で「相とζ相
が少なく、主にδ1相のみからなる合金めっき層が得ら
れ、その結果、耐パウダリング性と金型摺動性が共に優
れたGAが得られることを知見し、本発明を完成した。
The present inventors set the temperature range for heating alloying to 470 to 530.
℃ range, an alloy plating layer consisting mainly of δ1 phase with few phases and ζ phase can be obtained in a wide range of Fe content, and as a result, both powdering resistance and mold sliding properties are obtained. They discovered that excellent GA could be obtained and completed the present invention.

470℃未満の温度域で合金化すると、めっき層中のF
e含有率は連続的に変化し、最表面にη相(純Zn)が
残存しいても鋼板−めっき層界面に「相が層状に形成さ
れる。
When alloyed in a temperature range below 470°C, F in the plating layer
The e content changes continuously, and even if the η phase (pure Zn) remains on the outermost surface, a layered phase is formed at the steel plate-plating layer interface.

特に目付量が高いめっきでは最表面まで合金化するまで
に界面に形成される「相の厚みが厚くなるため耐パウダ
リング性の劣化が著しい。
In particular, in plating with a high basis weight, the phase formed at the interface becomes thick before alloying reaches the outermost surface, resulting in a significant deterioration in powdering resistance.

高目付量で合金化し、耐パウダリング性の良好なGAを
得るためには、めっき表層部にζ相を残存せしめ、めっ
き層全体を軟質化する必要がある。しかし、ζ相が多く
なりめっき層が軟質化すると、プレス加工時に金型工具
に凝着し易くなり金型摺動性が著しく劣化する。
In order to alloy with a high basis weight and obtain GA with good powdering resistance, it is necessary to leave the ζ phase in the plating surface layer and soften the entire plating layer. However, when the zeta phase increases and the plating layer becomes soft, it tends to adhere to the mold tool during press working, and the sliding properties of the mold are significantly deteriorated.

したがって、「相の層状での成長を抑制し、ζ相が少量
であっても耐パウダリング性の劣化を防ぐためには、4
70℃未満の温度域での合金化の進行を極力抑制し、4
70℃以上の温度域で合金化しなければならない。
Therefore, in order to suppress the layered growth of the phase and prevent deterioration of powdering resistance even with a small amount of ζ phase, it is necessary to
The progress of alloying in the temperature range below 70°C is suppressed as much as possible, and 4
Alloying must be carried out in a temperature range of 70°C or higher.

すなわち、ワイピング後1合金化温度まで加熱する際に
、470℃未満の温度域に滞留する時間を短くするため
に、可及的に急速加熱する必要がある。加熱の間にη相
が層状になるのを防ぎ、実質上、めっき層の耐パウダリ
ング性劣化を起こさないために、必要な昇温速度は30
 ’C/ s e c以上である。30℃/ s e 
c以上の加熱速度を得るためには、従来より使用されて
いる合金化炉より大容量の加熱バーナーを設けるが、直
接通電加熱や電磁誘導加熱等の方法をとることが適当で
ある。
That is, when heating to the first alloying temperature after wiping, it is necessary to heat as rapidly as possible in order to shorten the time spent in the temperature range below 470°C. In order to prevent the η phase from forming a layer during heating and to substantially prevent deterioration of the powdering resistance of the plating layer, the required heating rate is 30
'C/sec or higher. 30℃/se
In order to obtain a heating rate of c or more, a heating burner with a larger capacity than the conventionally used alloying furnace is provided, but it is appropriate to use methods such as direct current heating and electromagnetic induction heating.

470〜530℃の温度域では、めっき層が合金化する
際、初期の合金層の成長速度が大きいため、合金層に亀
裂を生じ易くその亀裂に溶融亜鉛が浸入し、鋼板とめっ
き層との界面に亜鉛を供給し「相の成長を抑制するため
、耐パウダリング性が良好なめつき層を得ることができ
る。
In the temperature range of 470 to 530°C, when the plating layer is alloyed, the growth rate of the initial alloy layer is high, so cracks are likely to occur in the alloy layer, and molten zinc infiltrates into the cracks, causing a breakdown between the steel sheet and the plating layer. Since zinc is supplied to the interface to suppress phase growth, a plated layer with good powdering resistance can be obtained.

530℃を越える温度域では、ζ相が存在せず液相から
直接δ1相が晶出するが、470℃未満の温度域と同様
、めっき層の固相中のFe含有率は連続的に変化し、「
相が層状に発達するため耐パウダリング性が劣化し易い
In the temperature range above 530°C, the ζ phase does not exist and the δ1 phase crystallizes directly from the liquid phase, but as in the temperature range below 470°C, the Fe content in the solid phase of the plating layer changes continuously. death,"
Powdering resistance tends to deteriorate because the phase develops in a layered manner.

30℃/ s e c以上の加熱速度で470℃以上5
30℃以下の温度域で合金化を行う際、多量のζ相の存
在による金型摺動性の低下を防ぐためには、めっき層中
のFe含有率は9重量%以上にする必要があり、また、
「相の成長により耐パウダリング性が低下するのを防ぐ
ためには、亜鉛目付量W g / rn’に対して、F
e含有量を(18−[W/101)重量%以下にする必
要がある。
470℃ or higher at a heating rate of 30℃/sec or higher5
When performing alloying in a temperature range of 30°C or lower, the Fe content in the plating layer needs to be 9% by weight or more in order to prevent the mold sliding properties from decreasing due to the presence of a large amount of ζ phase. Also,
"In order to prevent powdering resistance from decreasing due to phase growth, F
It is necessary to keep the e content below (18-[W/101)% by weight.

すなわち、亜鉛目付量が多くなると著しく耐パウダリン
グ性が劣化する臨界剥離量が大きくなるため、より低F
e含有率とする必要がある。昇温速度が小さい場合、あ
るいは合金化温度が470℃未満であった場合には、良
好な耐パウダリング性を確保するためには(18−[W
/l ol )重量%よりはるかに低いFe含有率とす
る必要があるため、金型摺動性と耐パウダリング性をと
もに良好に保つFe含有率範囲は極めて狭(,60g/
−以上の亜鉛目付量では実質上製造することが不可能で
ある。しかるに本発明によれば、70g/ばの目付量と
しても9〜11重量%のFe含有率に制御すればよ(、
工業的に安定して金型摺動性と耐パウダリング性に優れ
たGA製造が可能となる。
In other words, as the zinc weight increases, the critical peeling amount at which the powdering resistance deteriorates significantly increases, so lower F.
It is necessary to set the content to e. When the heating rate is low or when the alloying temperature is less than 470°C, in order to ensure good powdering resistance (18-[W
Since it is necessary to keep the Fe content much lower than the weight percent (20g/l ol ), the Fe content range that maintains both good mold sliding properties and powdering resistance is extremely narrow (60g/l ol )wt%.
- It is virtually impossible to manufacture with a zinc area weight of more than -. However, according to the present invention, even if the basis weight is 70 g/ba, the Fe content can be controlled to 9 to 11% by weight.
It becomes possible to produce GA that is industrially stable and has excellent mold sliding properties and powdering resistance.

〔実施例〕〔Example〕

以下、本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.

実施例1 連続溶融亜鉛めっき設備にて、亜鉛目付量30g/rn
’、45g/m’、60 g/rn”175 g/rn
”、90 g/dのGAを試作した。
Example 1 Continuous hot-dip galvanizing equipment, zinc basis weight 30g/rn
', 45g/m', 60g/rn"175g/rn
”, we prototyped a GA of 90 g/d.

ワイピング後の昇温速度を12℃/ s e c、30
℃/sec、、45℃/ s e c 、加熱温度を4
90℃として合金化し、合金化の時間を変えることによ
り、めっき層中のFe含有率が7〜15重量%となるよ
うに合金化した。
The temperature increase rate after wiping was 12℃/sec, 30
℃/sec, 45℃/sec, heating temperature 4
Alloying was carried out at 90° C. and the alloying time was varied so that the Fe content in the plating layer was 7 to 15% by weight.

各mIfitの耐パウダリング性は、第3図に示すよう
に、鋼板1に直角に曲げ・曲げ戻し変形を施し、剥離し
て粘着テープ2上に付着しためつき層中の亜鉛を蛍光X
線で分析し、1秒間あたりのカウント数が(CPS)を
測定することにより評価した。
The powdering resistance of each mIfit is determined by bending and unbending the steel plate 1 at right angles, peeling it off, and removing the zinc in the pinning layer adhering to the adhesive tape 2 using fluorescent X-ray.
Linear analysis and evaluation by measuring counts per second (CPS).

このカウント数が2000CPS以下であれば実際のプ
レスで何ら支障なくプレス加工が可能である。
If this count number is 2000 CPS or less, press processing can be performed without any problem in an actual press.

また、第4図及び第5図に示すような引張試験装置3を
用い、球頭のダイス4で一定圧力で抑えた鋼板lをダイ
ス間を引き抜く際に必要な荷重を測定し、引き抜き荷重
とダイスを抑えた圧力の比を摩擦係数として金型摺動性
の指標とした。この方法で冷延鋼板の摩擦係数を求める
と、はぼ0.2〜0.25程度となり摩擦係数が0.2
5以下のものを金型摺動性良好とした。
In addition, using a tensile testing device 3 as shown in Figures 4 and 5, the load required to pull out a steel plate l held down at a constant pressure by a ball-headed die 4 between the dies was measured, and the pullout load and The ratio of the pressure that suppressed the die was used as a coefficient of friction and an index of mold slidability. When the friction coefficient of a cold rolled steel plate is determined using this method, it is approximately 0.2 to 0.25, and the friction coefficient is 0.2.
A mold sliding property of 5 or less was considered to be good.

それぞれの昇温速度で加熱合金化したときのパウダリン
グ性と金型摺動性の良否を判定し、両特性が良好なGA
が得られるFe含有率と亜鉛目付量の範囲を第1図に示
す。
Judging the quality of powdering property and mold sliding property when heated and alloyed at each temperature increase rate, and finding a GA with good both properties.
The range of Fe content and zinc basis weight that can be obtained is shown in Fig. 1.

昇温速度が30℃/ s e c、45℃/ s e 
cの場合、耐パウダリング性が良好でかつ摩擦係数が低
(金型摺動性が良好なGAが得られる範囲が広く、90
g/m″の亜鉛目付量でも製造できる。
Temperature increase rate: 30℃/sec, 45℃/sec
In the case of c, the powdering resistance is good and the friction coefficient is low (the range in which GA with good mold sliding property can be obtained is wide, and 90
It can also be produced with a zinc basis weight of g/m''.

一方、昇熱速度が12℃/ s e cと小さい場合に
は、上記両特性が優れたGAは45g/m″以下の低目
付量時に9〜lO重量%の挟い範囲にFe含有率を制御
しなければならない。
On the other hand, when the heating rate is as low as 12°C/sec, GA with excellent both of the above properties has an Fe content in the narrow range of 9 to 10% by weight at a low basis weight of 45 g/m'' or less. Must be controlled.

実施例2 連続溶融亜鉛めっき設備にて、亜鉛目付量30g / 
m”、45/rr1′、60g/ば、75g/rn’、
90g/m″のGAを試作した。
Example 2 Continuous hot-dip galvanizing equipment with zinc coating weight of 30g/
m", 45/rr1', 60g/ba, 75g/rn',
A prototype GA of 90 g/m'' was manufactured.

ワイピング後の加熱速度を40℃/ s e cとし、
加熱温度450℃、470℃、500℃、540℃で合
金化し、合金化処理の時間を変えることによりめっき層
中のFe含有率が7〜15重量%となるように調整した
The heating rate after wiping was 40°C/sec,
Alloying was carried out at heating temperatures of 450°C, 470°C, 500°C, and 540°C, and the Fe content in the plating layer was adjusted to 7 to 15% by weight by changing the alloying treatment time.

第2図に、耐パウダリング性及び金型摺動性が良好な亜
鉛目付量及びFe含有率の範囲を加熱温度毎に示す。図
中O1・、口、1印は第1図と同様である。
FIG. 2 shows the range of zinc area weight and Fe content that provide good powdering resistance and mold sliding properties for each heating temperature. In the figure, O1., mouth, and 1 mark are the same as in FIG.

合金化処理温度が470℃、500℃の場合、耐パウダ
リング性及び金型摺動性に優れたGAが30〜90g/
r+1″の亜鉛目付量の範囲で可能であるが、合金化処
理温度が450℃と低い場合は耐パウダリング性及び金
型摺動性がともに良好なGAは得られず、540℃と高
い場合にはこれら両特性を満足するGAは、亜鉛目付量
が30g/rn”の範囲でしか製造し得ない。
When the alloying treatment temperature is 470°C or 500°C, GA with excellent powdering resistance and mold sliding properties is 30 to 90 g/
It is possible within the range of zinc coating weight of r+1'', but if the alloying temperature is as low as 450°C, GA with good powdering resistance and mold sliding properties cannot be obtained, but if the alloying temperature is as high as 540°C GA that satisfies both of these characteristics can only be produced with a zinc basis weight in the range of 30 g/rn''.

〔発明の効果1 本発明により、高亜鉛目付量においてもプレス加工時の
金型摺動性と耐パウダリング性に(憂れていることから
、プレス作業の生産性を高め、また、プレス加工品の外
観、品質の改善、耐食性の改善に極めて多大な効果を発
揮する合金化溶融亜鉛めっき鋼板を、製造工程の複雑化
及びコストの上昇を避けて製造することができる。
[Effect of the invention 1] The present invention improves the productivity of press work, and improves the productivity of press work since there are concerns about mold sliding properties and powdering resistance during press work even with high zinc coating weight. An alloyed hot-dip galvanized steel sheet, which is extremely effective in improving the appearance, quality, and corrosion resistance of products, can be manufactured without complicating the manufacturing process and increasing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は亜鉛目付量、めっき層中のFe含有率及び■温
速度と耐パウダリング性及び金型摺動性との関係を示す
図、第2図は亜鉛目付量、めっき層中のFe含有率及び
合金化温度と耐パウダリング性及び金型摺動性との関係
を示す図、第3図は耐パウダリング性測定方法の説明図
、第4図は摩擦係数測定装置の説明図、第5図は第4図
におけるダイスの先rA形状を示す図である。 ■・・・合金化溶融亜鉛めっき鋼板 2・・・粘着テープ 3・・・引張=式験装置 4・・・ダイス 5・・・ロードセル 6・・・油圧シリンダ
Figure 1 shows the relationship between the zinc basis weight, the Fe content in the plating layer, and the heating speed, powdering resistance, and mold sliding properties. A diagram showing the relationship between content and alloying temperature, powdering resistance and mold sliding properties, Figure 3 is an explanatory diagram of the powdering resistance measuring method, Figure 4 is an explanatory diagram of the friction coefficient measuring device, FIG. 5 is a diagram showing the tip rA shape of the die in FIG. 4. ■... Alloyed hot-dip galvanized steel plate 2... Adhesive tape 3... Tension = test device 4... Dice 5... Load cell 6... Hydraulic cylinder

Claims (1)

【特許請求の範囲】 1 鋼板を溶融亜鉛中に浸漬して亜鉛めっきした後、該
亜鉛めっき鋼板を加熱して合金化溶融亜鉛めっき鋼板を
製造する方法において、前記亜鉛めっき鋼板を470℃
以上530℃以下の温度域に30℃/sec以上の昇温
速度で加熱した後、前記温度域内の温度に保持して、亜
鉛目付量W(g/m^2)とめっき層中の鉄含有率CF
e(重量%)とが 18−(W/10)≧CFe≧9 なる条件を満たすように前記鉄含有率を調整することを
特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
[Scope of Claims] 1. A method for manufacturing an alloyed hot-dip galvanized steel sheet by immersing a steel sheet in hot-dip zinc and then heating the galvanized steel sheet, wherein the galvanized steel sheet is heated at 470°C.
After heating to a temperature range of 530°C or less at a temperature increase rate of 30°C/sec or more, the temperature is maintained within the above temperature range to determine the zinc basis weight W (g/m^2) and the iron content in the plating layer. Rate CF
A method for manufacturing an alloyed hot-dip galvanized steel sheet, characterized in that the iron content is adjusted so that e (wt%) satisfies the following condition: 18-(W/10)≧CFe≧9.
JP15754390A 1990-06-18 1990-06-18 Production of galvannealed steel sheet Pending JPH0448061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15754390A JPH0448061A (en) 1990-06-18 1990-06-18 Production of galvannealed steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15754390A JPH0448061A (en) 1990-06-18 1990-06-18 Production of galvannealed steel sheet

Publications (1)

Publication Number Publication Date
JPH0448061A true JPH0448061A (en) 1992-02-18

Family

ID=15651980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15754390A Pending JPH0448061A (en) 1990-06-18 1990-06-18 Production of galvannealed steel sheet

Country Status (1)

Country Link
JP (1) JPH0448061A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688185A (en) * 1992-09-03 1994-03-29 Sumitomo Metal Ind Ltd Production of alloyed galvannealed steel sheet excellent in impact-resistant adhesiveness

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279738A (en) * 1988-04-30 1989-11-10 Nippon Steel Corp Production of alloying hot dip galvanized steel sheet
JPH0257670A (en) * 1988-08-22 1990-02-27 Nippon Steel Corp Alloying hot dip galvanized steel sheet excellent in powdering resistance and flaking resistance and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279738A (en) * 1988-04-30 1989-11-10 Nippon Steel Corp Production of alloying hot dip galvanized steel sheet
JPH0257670A (en) * 1988-08-22 1990-02-27 Nippon Steel Corp Alloying hot dip galvanized steel sheet excellent in powdering resistance and flaking resistance and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688185A (en) * 1992-09-03 1994-03-29 Sumitomo Metal Ind Ltd Production of alloyed galvannealed steel sheet excellent in impact-resistant adhesiveness

Similar Documents

Publication Publication Date Title
JP2804167B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
JP2792346B2 (en) Manufacturing method of alloyed hot-dip galvanized steel sheet with excellent clarity after painting
KR101568474B1 (en) HOT DIP Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT BLACKENING-RESISTANCE AND SURFACE APPEARANCE AND METHOD FOR MANUFACTURING THE SAME
JP7321370B2 (en) ALUMINUM ALLOY PLATED STEEL SHEET EXCELLENT IN WORKABILITY AND CORROSION RESISTANCE AND METHOD FOR MANUFACTURING SAME
JPH0448061A (en) Production of galvannealed steel sheet
JP7393551B2 (en) Aluminum alloy plated steel sheet with excellent workability and corrosion resistance and its manufacturing method
JPH0355542B2 (en)
JP2004124118A (en) Galvanized steel sheet having excellent press formability and appearance and method for manufacturing the same
JP2002302749A (en) HOT DIP Zn-Al ALLOY PLATED STEEL SHEET HAVING EXCELLENT SCUFFING RESISTANCE AND PRODUCTION METHOD THEREFOR
JP5533730B2 (en) Method for producing galvannealed steel sheet
JP2001200352A (en) Galvannealed steel sheet excellent in powdering resistance, and its manufacturing method
CN105274301B (en) A kind of production method of yield strength &gt;=220MPa galvanneal steel plates
JP2002194519A (en) METHOD FOR MANUFACTURING HOT-DIP Al-Zn ALLOY PLATED STEEL STRIP
JP3016122B2 (en) Galvannealed steel sheet with excellent paintability and its manufacturing method
JP4600951B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and its manufacturing method
JPH02118088A (en) Production of hot-dip galvanized alloyed steel sheet excellent in workability and coating property
JPH04235266A (en) Manufacture of alloying galvannealed steel sheet excellent in workability and corrosion resistance
JP2002194518A (en) Hot-dip galvanized steel sheet superior in weldability and manufacturing method therefor
JPH04360A (en) Galvannealed steel sheet excellent in workability
JP2569869B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with excellent sliding properties and powdering resistance
JP2512147B2 (en) Method for producing galvannealed steel sheet with excellent powdering resistance
JP2574011B2 (en) Manufacturing method of galvannealed steel sheet
JPS6240353A (en) Production of alloyed zinc plated steel sheet
JP2754590B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JP2727595B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same