JP2574011B2 - Manufacturing method of galvannealed steel sheet - Google Patents

Manufacturing method of galvannealed steel sheet

Info

Publication number
JP2574011B2
JP2574011B2 JP63241263A JP24126388A JP2574011B2 JP 2574011 B2 JP2574011 B2 JP 2574011B2 JP 63241263 A JP63241263 A JP 63241263A JP 24126388 A JP24126388 A JP 24126388A JP 2574011 B2 JP2574011 B2 JP 2574011B2
Authority
JP
Japan
Prior art keywords
alloying
heating
steel sheet
plating film
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63241263A
Other languages
Japanese (ja)
Other versions
JPH0288751A (en
Inventor
聰一 島田
理孝 櫻井
泰久 田尻
武志 安谷屋
秋彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP63241263A priority Critical patent/JP2574011B2/en
Publication of JPH0288751A publication Critical patent/JPH0288751A/en
Application granted granted Critical
Publication of JP2574011B2 publication Critical patent/JP2574011B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、自動車や家電機器或は建材等に使用され
る合金化溶融亜鉛めっき鋼板で特に加工性に優れためっ
き皮膜を有するめっき鋼板に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a galvannealed steel sheet used for automobiles, home electric appliances, building materials, etc., and particularly to a plated steel sheet having a plating film excellent in workability. Things.

[従来技術] 亜鉛めっき鋼板は安価で耐食性や強度に優れた材料と
して広く使われているが、なかでも自動車の数多くの部
位に耐久性向上を目的として、他の表面処理鋼板を凌い
で多量に使われている。そして、これらの表面処理鋼板
に対しては、表面性状、塗装性能、溶接性、加工性等各
種の特性が要求されているが、それらのうちで、近年、
耐食性特に母材鋼板の耐孔食性に対する要求、これに加
えて加工性への要求が強まっている。
[Prior art] Galvanized steel sheet is widely used as an inexpensive material with excellent corrosion resistance and strength. However, in order to improve durability in many parts of automobiles, galvanized steel sheets are more numerous than other surface-treated steel sheets. It is used. For these surface-treated steel sheets, various properties such as surface properties, coating performance, weldability, and workability are required. Among them, in recent years,
There is an increasing demand for corrosion resistance, especially for pitting corrosion resistance of the base steel sheet, and additionally for workability.

亜鉛めっき鋼板の量産法には電気めっき法と溶融めっ
き法とがあるが、電気めっき法では、低温で処理するの
で熱影響による相変化が無く成分コントロールも容易で
あるが、めっき付着量を多くするには処理時間を増さね
ばならない。
There are two methods of mass production of galvanized steel sheet: electroplating and hot-dip galvanizing.Electroplating is a low-temperature treatment, so there is no phase change due to heat and component control is easy. To do so, the processing time must be increased.

これに対して、溶融めっき法では処理時間を増すこと
なく簡単に付着量を増すことが出来、めっき後熱処理を
施すことにより容易にFe−Zn合金めっきとすることが出
来る。上記した耐孔食性に対処するためには亜鉛めっき
の付着量を増やすことが不可欠で、この観点から、付着
量が容易に確保出来且つ経済的な溶融亜鉛めっき鋼板が
有望視されているが、現状では、加工性にもう一つの不
満があり、この解決が強く望まれている。
On the other hand, in the hot-dip plating method, the amount of adhesion can be easily increased without increasing the processing time, and by performing a heat treatment after plating, the Fe-Zn alloy plating can be easily formed. In order to cope with the pitting resistance described above, it is indispensable to increase the amount of galvanized coating, and from this viewpoint, a galvanized steel sheet that can easily secure the coated amount and is economical is promising, At present, there is another dissatisfaction with workability, and this solution is strongly desired.

溶融亜鉛めっき鋼板が高耐食性を目的に自動車用に使
用される場合、めっき皮膜の上に塗装が施され、塗装後
耐食性が評価される。めっき皮膜は亜鉛よりも鉄亜鉛合
金である方が塗膜との密着性が良く、塗装後耐食性が向
上する。又、加工性で最も問題になるのが耐パウダリン
グ性である。これは、プレス成形の際にめっき皮膜が粉
状になって脱落する現象であり、めっき皮膜中に鉄含有
率の高いΓ相(Fe3Zn10,Fe20〜28wt%)が生成され、こ
れが硬くて脆いために起こる。即ち、塗装後耐食性の観
点からは鉄含有率の高い合金めっきが要求され、耐パウ
ダリング性の観点からは鉄含有率の低い合金めっきが要
求される。
When a hot-dip galvanized steel sheet is used for automobiles for the purpose of high corrosion resistance, a coating is applied on the plating film, and the corrosion resistance after coating is evaluated. The plating film made of an iron-zinc alloy has better adhesion to the coating film than zinc, and the corrosion resistance after painting is improved. The most problematic in the workability is the powdering resistance. This is a phenomenon in which the plating film becomes powdery and falls off during press forming, and a 含有 phase (Fe 3 Zn 10 , Fe 20 to 28 wt%) having a high iron content is generated in the plating film, which is hardened. It is caused by brittleness. That is, alloy plating having a high iron content is required from the viewpoint of corrosion resistance after painting, and alloy plating having a low iron content is required from the viewpoint of powdering resistance.

従来、自動車用に使用されている合金化溶融亜鉛めっ
き鋼板は、上記の両観点から両特性を満たすべく、溶融
めっき後全めっき皮膜平均の鉄含有率が10wt%前後に達
するまで合金化処理を施し、耐食性、特に塗装後耐食性
を向上させたものである。即ち、鋼帯に連続的に前処理
(熱処理を含む)を施して素材を調整した後、亜鉛を溶
融しためっき浴に浸漬してめっきし、後続してこのめっ
き鋼帯を合金化炉内で500℃から700℃の温度に急速に昇
温させ短時間(10〜30秒)保持して、合金化させたもの
である。平均鉄含有率を10%前後にするのは、面方向の
鉄含有率の均一性をある程度確保するためで、そのため
に、耐パウダリング性に関しては合金化条件が過剰とな
り不利となっている。即ち、このようにして作られる合
金化溶融亜鉛めっき鋼板は急速な昇温によって高温に加
熱されるので、めっき皮膜中の鉄含有量が場所により異
なりがちで、表層の鉄含有率を確保するための鋼素地と
の界面の鉄含有率が高まりΓ相の生長が避けられないこ
と、更に高温処理と急速冷却によりめっき皮膜に熱応力
が発生する等の問題を抱えている。
Conventionally, alloyed hot-dip galvanized steel sheets used for automobiles are subjected to alloying treatment until the average iron content of all coating films reaches around 10 wt% after hot-dip coating in order to satisfy both characteristics from the above viewpoints. And improved corrosion resistance, especially after coating. That is, after the steel strip is continuously subjected to pretreatment (including heat treatment) to adjust the material, the steel strip is immersed in a plating bath in which zinc is melted, plated, and subsequently, the plated steel strip is placed in an alloying furnace. The alloy is formed by rapidly raising the temperature from 500 ° C. to 700 ° C. and holding it for a short time (10 to 30 seconds). The reason why the average iron content is set to about 10% is to secure a certain degree of uniformity of the iron content in the plane direction. For this reason, the alloying conditions are excessive with respect to the powdering resistance, which is disadvantageous. That is, since the alloyed hot-dip galvanized steel sheet made in this way is heated to a high temperature by a rapid temperature rise, the iron content in the plating film tends to vary from place to place, in order to secure the iron content of the surface layer. However, there is a problem that the iron content at the interface with the steel substrate is increased, the growth of the Γ phase is inevitable, and thermal stress is generated in the plating film by high-temperature treatment and rapid cooling.

一方、合金化処理を一次と二次の二行程に分けて処理
する方法が提案されている。例えば、特公昭59−14541
号では、一時加熱において、めっき皮膜の平滑性を得る
ためにZnめっき皮膜を再溶融させる急速昇温高温加熱を
行う。この加熱では鉄含有率が2.2〜5.5wt%の低い範囲
に留まるので、この一次加熱の結果に応じて、二次加熱
を亜鉛の融点以下の低温で時間をかけて行い、鉄含有率
を6〜13wt%の範囲に納めるものである。そしてこの方
法によって、表面が平滑で外観が優れ、且つ加工の際に
剥離やパウダリングのない合金化溶融亜鉛めっき皮膜が
得られることを開示している。
On the other hand, a method has been proposed in which the alloying treatment is divided into primary and secondary processes. For example, Japanese Patent Publication No. 59-14541
In No. 1, in the temporary heating, rapid heating and high temperature heating to re-melt the Zn plating film is performed to obtain the smoothness of the plating film. In this heating, the iron content remains in the low range of 2.2 to 5.5 wt%, and in accordance with the result of the primary heating, the secondary heating is performed at a low temperature equal to or lower than the melting point of zinc, and the iron content is reduced to 6%. It should be within the range of ~ 13wt%. It discloses that this method provides an alloyed hot-dip galvanized film having a smooth surface, excellent appearance, and no peeling or powdering during processing.

[発明が解決しようとする課題] しかしながら、特公昭59−14541号ではめっき表面の
平滑性を得るために、一次加熱を急速昇温高温加熱によ
って行い亜鉛めっき皮膜を再溶融するものであり、この
場合の加熱条件はめっき皮膜表面まで鉄が拡散しておら
ず、一部η相(純Zn)が混在している。しかも、急速昇
温高温加熱を行っているので、部分的なFe−Zn合金の生
成が避けられず、合金層の成長は不均一であり、特にめ
っき付着量が90g/m2以下の場合、表面まで合金層が成長
した部分とη相の残存した部分とが混在していわゆる焼
けむらの状態となる。この状態で二次加熱による合金化
を行うと、一次加熱の不均一さがそのまま履歴として残
り、例えば、η相残存部分では二次加熱後も他の部分が
灰色にくすんでいるのに対し白っぽくなっている。この
不均一さを解消するため、一次加熱による合金化度の違
いに対応して、バッチ焼純炉での二次加熱合金化処理を
行うことが開示されているが、このような二次加熱合金
化処理は複雑な工程となり板幅全域にわたって均一化の
調整制御を行うことは極めて困難である。
[Problems to be Solved by the Invention] However, in Japanese Patent Publication No. 59-14541, in order to obtain the smoothness of the plating surface, primary heating is performed by rapid heating and high temperature heating to re-melt the galvanized film. The heating condition in this case is that iron is not diffused to the plating film surface, and a part of η phase (pure Zn) is mixed. In addition, since rapid heating and high-temperature heating are performed, the formation of a partial Fe-Zn alloy is inevitable, the growth of the alloy layer is non-uniform, and particularly when the coating weight is 90 g / m 2 or less, The portion where the alloy layer has grown up to the surface and the portion where the η phase remains are mixed, resulting in a so-called uneven burning state. When alloying by secondary heating is performed in this state, the non-uniformity of the primary heating remains as a history, and, for example, in the η-phase remaining portion, the other portion is grayish even after the secondary heating, whereas the portion is whitish. Has become. In order to solve the non-uniformity, it is disclosed that a secondary heating alloying treatment in a batch refining furnace is performed in response to a difference in the degree of alloying due to the primary heating. The alloying process is a complicated process, and it is extremely difficult to control the uniformity over the entire width of the sheet.

この問題を解決するために、この発明はなされたもの
で、耐食性に加えて耐パウダリング性を満たすめっき鋼
板を確実に且つ容易に製造する方法を提供することを目
的とするものである。
In order to solve this problem, the present invention has been made, and an object of the present invention is to provide a method for reliably and easily manufacturing a plated steel sheet that satisfies powdering resistance in addition to corrosion resistance.

[課題を解決するための手段及び作用] この目的を達成するための手段は、通常の前処理を施
した鋼帯をAl:0.05wt%以上0.3wt%以下且つPb:0.20wt
%以下及びその他の不可避的元素を含む溶融亜鉛めっき
浴に連続的に浸漬して、片面当たり30g/m2以上90g/m2
下の付着量範囲の亜鉛めっきを施した後、連続して合金
化処理炉に導入し、めっき皮膜表面まで鉄が拡散した時
点まで合金化し、次いで非酸化性或いは還元性雰囲気の
下に、加熱時間を横軸に、加熱温度を縦軸に表示した第
1図に示す図表のa′(4時間、320℃)、b(20秒、3
20℃)、c(2時間、250℃)、d(15時間、250℃)の
各点を結ぶ線で囲まれた範囲内で、再加熱処理を施すこ
とを特徴とする合金化溶融亜鉛めっき鋼板の製造方法で
あり、前記再加熱処理を施す方法の一つとしてバッチ式
焼純炉を用いる合金化溶融亜鉛めっき鋼板の製造方法で
ある。
[Means and Actions for Solving the Problems] To achieve this object, a steel strip that has been subjected to a normal pretreatment is prepared by converting Al: 0.05 wt% to 0.3 wt% and Pb: 0.20 wt%.
% Or less and continuously immersed in the molten zinc plating bath containing other inevitable elements, after galvanized sided per 30 g / m 2 or more 90 g / m 2 or less of adhesion amount range, continuously Alloy Introduced into a chemical treatment furnace, alloyed until the iron diffused to the plating film surface, and then, in a non-oxidizing or reducing atmosphere, the heating time was plotted on the horizontal axis and the heating temperature was plotted on the vertical axis. A '(4 hours, 320 ° C), b (20 seconds, 3
Alloying hot-dip galvanizing characterized by performing reheating treatment within a range surrounded by a line connecting points of 20 ° C), c (2 hours, 250 ° C) and d (15 hours, 250 ° C) This is a method for producing a steel sheet, and as one of the methods for performing the reheating treatment, is a method for producing an alloyed hot-dip galvanized steel sheet using a batch type refining furnace.

以上の手段について、以下にその作用を含め、詳しく
述べる。
The above means, including the operation thereof, will be described in detail below.

先ず、めっき用の鋼帯は冷延鋼帯でも熱延鋼帯でもよ
く、又、通常の前処理として表面調整とともに焼鈍処理
を施してもよい。
First, the steel strip for plating may be a cold-rolled steel strip or a hot-rolled steel strip, or may be subjected to an annealing treatment together with a surface adjustment as a normal pretreatment.

溶融亜鉛めっき浴には通常、Fe−Zn合金反応の抑制や
めっき面の平滑化等のためAlが0.2wt%前後添加されて
おり、スパングル調整のためPbが含まれている。このう
ちAlはFe−Zn合金化反応に関係するもので、0.05wt%未
満では、めっき浴浸漬直後にFe−Zn合金相が部分的且つ
不均一に生成し、それが後の合金化処理工程に於いても
均一とならないためであり、一方0.3wt%を越えるとマ
クロ的にはFe−Zn合金化反応が著しく抑制され、又、合
金化炉での急速昇温高温加熱処理の際にAlの抑制効果が
部分的に破壊され、却って不均一な合金相生成後を招く
結果になるからである。現状の連続式溶融亜鉛めっき設
備での製造条件(ラインスピード、めっき浴温、合金化
炉温度等)を大きく変更せずに、後に述べるようにめっ
き皮膜表層まで合金化させるためには、Al濃度は0.1〜
0.2wt%が最も望ましい。Pbは合金化反応には直接関与
しないが、多量のPbは耐パウダリング性を低下させるの
で、0.2wt%以下に制限しなければならない。その他の
不可避元素は量も少なく合金化には取り立てて影響しな
いので、含まれていてもよい。
Usually, about 0.2 wt% of Al is added to the hot-dip galvanizing bath for suppressing the reaction of the Fe-Zn alloy and smoothing the plated surface, and contains Pb for adjusting the spangle. Of these, Al is related to the Fe-Zn alloying reaction. If it is less than 0.05 wt%, the Fe-Zn alloy phase is partially and non-uniformly formed immediately after immersion in the plating bath. However, if the content exceeds 0.3 wt%, the Fe-Zn alloying reaction is significantly suppressed macroscopically. Is partially destroyed, which results in the formation of a non-uniform alloy phase. In order to alloy to the surface of the plating film as described later without significantly changing the production conditions (line speed, plating bath temperature, alloying furnace temperature, etc.) in the current continuous hot-dip galvanizing equipment, the Al concentration Is 0.1 ~
0.2 wt% is most desirable. Although Pb does not directly participate in the alloying reaction, a large amount of Pb lowers the powdering resistance, so it must be limited to 0.2 wt% or less. Other unavoidable elements may be included because they have a small amount and do not affect alloying.

合金化溶融亜鉛めっき鋼板の場合、めっき付着量と皮
膜中の鉄含有率によって耐食性の殆どが決定されるの
で、高耐食化に対応するためには、付着量片面当たり30
g/m2以上が必要であるが、片面当たり90g/m2を超えて付
着させることは過剰品質となるばかりか、後の工程の低
温で行う再加熱処理において長時間を要し生産性を低下
させることになる。
In the case of galvannealed steel sheets, most of the corrosion resistance is determined by the coating weight and the iron content in the film.
g / m 2 or more is required, but attaching more than 90 g / m 2 per side not only results in excessive quality, but also requires a long Will be reduced.

めっき付着に引き続いて、急速昇温高温加熱によりFe
−Zn合金化処理を行うが、この処理条件はめっき皮膜表
面まで鉄が拡散し、且つ余分に合金化させない条件であ
り、従来の合金化溶融亜鉛めっきの合金化条件と比べ、
加熱時間が少し短いか或いは加熱温度が少し低いかであ
る。めっき皮膜表面まで合金化するのは、急速昇温高温
加熱の場合、合金化の初期では部分的にめっき皮膜と鋼
素地との界面から表面に向かって合金化反応が進行する
ので、反応進行中に冷却すると甚だしく不均一の皮膜が
出来てしまう。合金化が表面まで達すると、ここで表面
に向かった合金化反応は停止するので、最も反応進行の
遅い部分の鉄拡散が表面に達するまで合金化を進めると
合金化状態は均一となる。又、過剰に合金化を進めると
めっき皮膜中の鉄含有率が高まり、Γ相も成長し耐パウ
ダリング性を阻害することになる。この合金化処理で得
られる合金化めっき皮膜の鉄含有率は7〜15wt%の範囲
が好ましい。7wt%未満では次に行う二次加熱も前記一
次加熱の不均一がそのまま残るため好ましくなく、15wt
%を超えると一次加熱ですでにめっき層の加工性が劣っ
ており、二次加熱を行ってもその改善が出来ないためで
ある。
Subsequent to plating adhesion, rapid heating and high-temperature heating
-Zn alloying treatment is performed, but this treatment condition is a condition in which iron diffuses to the plating film surface and does not cause excessive alloying, and compared with the alloying condition of conventional alloyed hot-dip galvanizing.
Either the heating time is slightly shorter or the heating temperature is slightly lower. The alloying up to the surface of the plating film is carried out in the case of rapid heating and high-temperature heating, since the alloying reaction partially proceeds from the interface between the plating film and the steel base material toward the surface in the early stage of alloying. When cooled, a very uneven film is formed. When the alloying reaches the surface, the alloying reaction toward the surface stops here. Therefore, if the alloying is advanced until the diffusion of iron in the slowest part of the reaction reaches the surface, the alloying state becomes uniform. Further, if alloying is excessively promoted, the iron content in the plating film increases, and the Γ phase grows and impairs the powdering resistance. The iron content of the alloyed plating film obtained by this alloying treatment is preferably in the range of 7 to 15 wt%. If the content is less than 7 wt%, the subsequent secondary heating is not preferable because the non-uniformity of the primary heating remains as it is.
%, The workability of the plating layer is already inferior in the primary heating, and the improvement cannot be achieved by the secondary heating.

次に、低温で再加熱を行うが、この処理によって鉄含
有率の均一化と熱歪みの除去とが行われる。即ち、合金
化処理では急速昇温高温加熱を行うので、合金化しため
っき皮膜の深さ方向に鉄含有率の分布ができ易い。これ
は表層で低く鋼素地との境界面に向かうにつれて鉄含有
率が高くなる分布である。これに比較的低温で緩やかな
加熱処理を施すと、めっき皮膜中での原子の拡散を促
し、その一方で鋼素地からの新たなFe原子の拡散は殆ど
起こらないため、Γ相を成長させることなくめっき皮膜
はζ相とδ相とからなる均質な皮膜となる。しかも皮
膜の面方向でもFe含有率が均一になる。更に、急速昇温
高温加熱によって生じた合金相内の熱歪みが除去され耐
パウダリング性はもとより加工性全般が向上する。この
処理条件について調べたところ、第1図に示す結果が得
られた。図で、横軸は加熱時間、縦軸は加熱温度であ
り、耐パウダリング性の良好な条件範囲を示すと、点
a′(4時間、320℃)、b(20秒、320℃)、c(2時
間、250℃)、d(15時間、250℃)を結ぶ線で囲まれた
範囲となる。加熱温度が250℃未満では、原子の拡散促
進効果が極めて低く保持時間が長くなり過ぎて工業的に
は適さない。
Next, reheating is carried out at a low temperature, and by this treatment, the iron content is made uniform and thermal distortion is removed. That is, in the alloying process, since the temperature is rapidly raised and heated, the iron content is easily distributed in the depth direction of the alloyed plating film. This is a distribution in which the iron content is low at the surface layer and increases toward the interface with the steel base. Slow heat treatment at a relatively low temperature promotes the diffusion of atoms in the plating film, while the diffusion of new Fe atoms from the steel substrate hardly occurs. Instead, the plating film becomes a homogeneous film composed of the ζ phase and the δ 1 phase. In addition, the Fe content becomes uniform even in the surface direction of the film. Further, thermal strain in the alloy phase caused by rapid temperature rise and high temperature heating is removed, and not only powdering resistance but also overall workability is improved. When the processing conditions were examined, the results shown in FIG. 1 were obtained. In the figure, the horizontal axis represents the heating time, and the vertical axis represents the heating temperature. When the conditions range for good powdering resistance are shown, points a ′ (4 hours, 320 ° C.), b (20 seconds, 320 ° C.), This is a range surrounded by a line connecting c (2 hours, 250 ° C.) and d (15 hours, 250 ° C.). If the heating temperature is lower than 250 ° C., the effect of promoting the diffusion of atoms is extremely low and the retention time is too long, which is not industrially suitable.

又、320℃を超えると鋼素地からのFe原子の拡散が促
され、却って合金相の不均一さや熱歪みを助長すること
になる。加熱時間は20秒未満ではめっき被膜内での原子
の拡散が十分に行えない。原理的には温度を下げて長時
間掛けて処理する方がよい条件と言えるが、15時間以上
の時間を費やすことは工業的には適さず下限温度との関
連において時間上限を15時間としたものである。更に工
業性も考慮し無難で好ましい範囲は加熱温度280℃〜320
℃、加熱時間1分〜5時間である。この再加熱処理はバ
ッチ式焼鈍炉を用いてもよく又連続式加熱炉を用いて行
ってもよい。このような再加熱処理では、めっき皮膜全
体の鉄含有率は殆ど増加せずせいぜい1%以内であり、
合金化処理とは異なり、処理効果は前述した均一化と熱
歪除去にとどまる。
On the other hand, if the temperature exceeds 320 ° C., diffusion of Fe atoms from the steel base is promoted, and on the contrary, unevenness of the alloy phase and thermal distortion are promoted. If the heating time is less than 20 seconds, diffusion of atoms in the plating film cannot be sufficiently performed. In principle, it can be said that it is better to reduce the temperature and take a long time to process, but spending more than 15 hours is not industrially suitable and the upper limit of time is set to 15 hours in relation to the lower limit temperature Things. Furthermore, considering the industrial properties, a safe and preferable range is a heating temperature of 280 ° C.
° C and a heating time of 1 minute to 5 hours. This reheating treatment may be performed using a batch annealing furnace or a continuous heating furnace. In such a reheating treatment, the iron content of the entire plating film hardly increases and is at most 1%.
Unlike the alloying treatment, the effect of the treatment is not limited to the above-described homogenization and thermal strain removal.

[実施例] 二種類の鋼板を使用し、溶融亜鉛めっき条件、合金化
処理条件及び再加熱条件を変えて処理した8例の合金化
溶融亜鉛めっき鋼板について、合金化度を調べ、パウダ
リング試験を行って評価した。なお比較のために、この
発明の範囲外の条件で処理した8例(比較例)及び従来
技術による3例(従来例)についても同様に調べた。条
件の詳細は以下の通りである。
[Example] The degree of alloying was examined for eight alloyed hot-dip galvanized steel sheets that were processed using two types of steel sheets while changing the hot-dip galvanizing conditions, alloying treatment conditions, and reheating conditions, and a powdering test was performed. And evaluated. For comparison, eight cases (comparative example) and three cases (conventional example) according to the prior art which were processed under conditions outside the scope of the present invention were similarly examined. Details of the conditions are as follows.

用いた鋼板は板厚0.8mmの冷延鋼板で、汎用されてい
る薄板用低炭素Alキルド鋼(素材A)及び高加工用でパ
ウダリングを起こし易いと言われている超低炭チタン含
有鋼(素材B)とである。各々の成分を第1表に示す。
The steel plate used is a cold-rolled steel plate with a thickness of 0.8 mm, a low-carbon Al-killed steel (material A) for thin sheets that is widely used, and an ultra-low-carbon titanium-containing steel that is said to be easily powdered for high-processing applications (Material B). Each component is shown in Table 1.

溶融亜鉛めっきは、無酸化炉、還元加熱炉を備えた連
続式めっき設備で行い、めっき浴直後に設けられた気体
絞り装置によって付着量の調整を行い、つづいて合金化
炉に導入し鍍金表面まで合金化させた。実施例及び従来
例2、3では、このようにして造った合金化溶融亜鉛め
っき鋼帯をオープンコイルの状態で再加熱した。
Hot-dip galvanizing is performed in a continuous plating facility equipped with a non-oxidizing furnace and a reduction heating furnace, and the amount of coating is adjusted by a gas throttle device provided immediately after the plating bath. Until alloyed. In Examples and Conventional Examples 2 and 3, the alloyed hot-dip galvanized steel strip produced in this manner was reheated in an open coil state.

めっき皮膜中の鉄含有率は化学分析によった。 The iron content in the plating film was determined by chemical analysis.

耐パウダリング性は、曲率半径2mmで90度曲げた後、
曲げの内側に粘着テープを貼り付け、これを剥して、パ
ウダーがこの粘着テープに付着した状況を目視観察し、
点数付けて評価した。評点の基準は、 1;全く付着無し、2;極くわずかに付着、 3;わずかに付着、4;少し付着、 5;かなり付着、 の五段階である。
Powdering resistance, after bending 90 degrees with a radius of curvature of 2 mm,
Paste the adhesive tape inside the bend, peel it off, visually observe the situation where the powder adhered to this adhesive tape,
The evaluation was given with a score. The evaluation criteria are as follows: 1; no adhesion, 2; extremely slight adhesion, 3; slight adhesion, 4; slight adhesion, 5; considerable adhesion.

これらの例の各々の処理条件と調査結果を第2表に示
す。
Table 2 shows the processing conditions and results of each of these examples.

実施例では、素材Bでも耐パウダリング性に劣るものは
なく、差厚めっきで下限付着量30g/m2となっている実施
例8の表側で極く僅かにパウダリングが認められたが、
実用上は問題がない。又、合金化度も鉄含有率が8wt%
から13wt%の範囲内にあり、塗装後耐食性を十分に確保
するものであり、実施例では全ての合金化溶融亜鉛めっ
き鋼板が耐食性と耐パウダリング性とを兼ね備えてい
る。
In the example, the powdering resistance was not inferior even in the material B, and extremely slight powdering was observed on the front side of the example 8 in which the lower limit adhesion amount was 30 g / m 2 in the thickness difference plating.
There is no problem in practical use. The alloying degree is also 8wt% iron content.
To 13 wt% to ensure sufficient corrosion resistance after painting. In Examples, all alloyed hot-dip galvanized steel sheets have both corrosion resistance and powdering resistance.

一方、再加熱処理を行なっていない比較例では、鉄含
有率が高くなくても、僅かではあるが、パウダリングが
起きている。これは再加熱による熱歪み除去の効果の有
無によるものと考えられる。更に、実施例5と比較例7
との比較、及び実施例6と比較例8との比較から明らか
なように、再加熱を還元雰囲気で行うことで大気雰囲気
中で行う場合よりもめっき皮膜中の鉄含有率を容易に高
くすることができるといった格別の効果を奉ずるもので
ある。
On the other hand, in the comparative example in which the reheating treatment was not performed, even though the iron content was not high, powdering occurred, albeit slightly. This is considered to be due to the effect of removing the thermal strain by reheating. Further, Example 5 and Comparative Example 7
As is clear from the comparison with Example 6 and the comparison between Example 6 and Comparative Example 8, the reheating is performed in a reducing atmosphere so that the iron content in the plating film is easily increased as compared with the case where the reheating is performed in the air atmosphere. It has a special effect of being able to do things.

従来例は連続加熱ではめっき皮膜表面までは合金化せ
ず、再加熱によって合金化を終結させているものであ
る。処理条件の全く同じ三例の中に、パウダリングの全
く起こらないものと僅かに起こるものとがあり、実操業
の困難さを物語っている。
In the conventional example, alloying is not performed up to the surface of the plating film by continuous heating, but alloying is terminated by reheating. Among the three identical processing conditions, there are those in which powdering does not occur at all and those in which it occurs only slightly, indicating the difficulty of actual operation.

次に本発明によるめっき皮膜の鉄含有率分布を調べ
た。ここでは実施例5の合金化溶融亜鉛めっきコイル
(幅800mm)の幅方向について、200mm間隔で鉄含有率を
調べた。この場合従来例2と比較した。この結果を第2
図に示す。図において横軸はコイル左端からの距離、縦
軸は鉄含有率であり○印は従来例5をプロットしたもの
であり、●印は従来例2をプロットしたものである。
Next, the iron content distribution of the plating film according to the present invention was examined. Here, the iron content was examined at 200 mm intervals in the width direction of the galvannealed coil of Example 5 (width 800 mm). In this case, comparison was made with Conventional Example 2. This result is
Shown in the figure. In the figure, the abscissa represents the distance from the left end of the coil, the ordinate represents the iron content, ○ represents plotting of Conventional Example 5, and ● represents plotting of Conventional Example 2.

図から明らかなように実施例5の鉄含有率は平均9.7
%であり、全ての測定点が9.5から9.9%の間に分布して
いた。これに対して従来例5の鉄含有率は平均9.7%で
あり、全ての測定点が9.0から10.2%の間に分布しバラ
ツキが大きかった。
As is clear from the figure, the iron content of Example 5 averaged 9.7.
% And all measured points were distributed between 9.5 and 9.9%. On the other hand, the iron content of Conventional Example 5 was 9.7% on average, and all the measurement points were distributed between 9.0 and 10.2%, and the dispersion was large.

[発明の効果] この発明によれば、溶融亜鉛めっき後連続加熱により
めっき皮膜表面まで合金化し、その後低温で再加熱する
ことによって、合金の均一化と熱歪の除去とを行ってい
るので、塗装後耐食性に加えて加工性特に耐パウダリン
グ性の良好な合金化溶融亜鉛めっき鋼板を確実に且つ容
易に製造することができる。このような表面処理鋼板を
複雑な工程を経ずに製造できるようにしたこの発明の効
果は大きい。
[Effects of the Invention] According to the present invention, alloying up to the surface of the plating film is performed by continuous heating after hot-dip galvanizing, and then reheated at a low temperature to homogenize the alloy and remove thermal strain. It is possible to reliably and easily manufacture an alloyed hot-dip galvanized steel sheet having good workability, especially powdering resistance, in addition to corrosion resistance after painting. The effect of the present invention in which such a surface-treated steel sheet can be manufactured without going through a complicated process is great.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の主要部を説明するための熱処理条件
と特性適正との関係図、第2図はこの発明の一実施例の
鉄含有率の分布を示す図である。
FIG. 1 is a diagram showing the relationship between heat treatment conditions and proper characteristics for explaining the main part of the present invention, and FIG. 2 is a diagram showing the distribution of iron content in one embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 秋彦 東京都千代田区丸ノ内1丁目1番2号 日本鋼管株式会社内 合議体 審判長 荻島 俊治 審判官 唐戸 光雄 審判官 長者 義久 (56)参考文献 特開 昭58−34168(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Akihiko Nakamura 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. Jury President Shunji Ogishima Judge Judge Mitsuo Karato Judge Yoshihisa Jahita (56) References Special 1983-34168 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】通常の前処理を施した鋼帯をAl:0.05wt%
以上0.3wt%以下且つPb:0.20wt%以下及びその他の不可
避的元素を含む溶融亜鉛めっき浴に連続的に浸漬して、
片面当たり30g/m2以上90g/m2以下の付着量範囲の亜鉛め
っきを施した後、連続して合金化処理炉に導入し、めっ
き皮膜表面まで鉄が拡散した時点まで合金化し、次いで
非酸化性或いは還元性雰囲気の下に、加熱時間を横軸
に、加熱温度を縦軸に表示した第1図に示す図表のa′
(4時間、320℃)、b(20秒、320℃)、c(2時間、
250℃)、d(15時間、250℃)の各点を結ぶ線で囲まれ
た範囲内で、再加熱処理を施すことを特徴とする合金化
溶融亜鉛めっき鋼板の製造方法。
1. An ordinary pretreated steel strip is made of Al: 0.05 wt%.
More than 0.3 wt% or less and Pb: 0.20 wt% or less and continuously immersed in a hot dip galvanizing bath containing other unavoidable elements,
After galvanizing with a coating amount of 30 g / m 2 or more and 90 g / m 2 or less per side, it is continuously introduced into an alloying furnace, alloyed until the iron diffuses to the surface of the plating film, and then non-alloyed In an oxidizing or reducing atmosphere, the heating time is plotted on the horizontal axis and the heating temperature is plotted on the vertical axis.
(4 hours, 320 ° C), b (20 seconds, 320 ° C), c (2 hours,
A method for producing an alloyed hot-dip galvanized steel sheet, wherein reheating is performed within a range surrounded by a line connecting points (250 ° C.) and d (15 hours, 250 ° C.).
【請求項2】再加熱処理をバッチ式焼鈍炉を用いて施す
ことを特徴とする請求項1記載の合金化溶融亜鉛めっき
鋼板の製造方法。
2. The method for producing a galvannealed steel sheet according to claim 1, wherein the reheating treatment is performed using a batch annealing furnace.
JP63241263A 1988-09-27 1988-09-27 Manufacturing method of galvannealed steel sheet Expired - Lifetime JP2574011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63241263A JP2574011B2 (en) 1988-09-27 1988-09-27 Manufacturing method of galvannealed steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63241263A JP2574011B2 (en) 1988-09-27 1988-09-27 Manufacturing method of galvannealed steel sheet

Publications (2)

Publication Number Publication Date
JPH0288751A JPH0288751A (en) 1990-03-28
JP2574011B2 true JP2574011B2 (en) 1997-01-22

Family

ID=17071650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63241263A Expired - Lifetime JP2574011B2 (en) 1988-09-27 1988-09-27 Manufacturing method of galvannealed steel sheet

Country Status (1)

Country Link
JP (1) JP2574011B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834168A (en) * 1981-08-25 1983-02-28 Nippon Kokan Kk <Nkk> Treatment for fe-zn alloying of zinc hot dipped steel plate

Also Published As

Publication number Publication date
JPH0288751A (en) 1990-03-28

Similar Documents

Publication Publication Date Title
JP2574011B2 (en) Manufacturing method of galvannealed steel sheet
JP2727598B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JP4508378B2 (en) Manufacturing method of galvannealed steel sheet with excellent press formability
JP2727596B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JP2754590B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JP2754596B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability, paintability, and corrosion resistance, and method for producing the same
JPH02118088A (en) Production of hot-dip galvanized alloyed steel sheet excellent in workability and coating property
JPH04176854A (en) Production of aluminized steel sheet excellent in adhesive strength of plating and external appearance characteristic
JP2783457B2 (en) Manufacturing method of hot-dip Zn-Al plated steel sheet
JPS62196364A (en) Manufacture of alloyed hot dip galvanized steel sheet
JP2727597B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JPH0128098B2 (en)
JP2727595B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JP4600951B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and its manufacturing method
JPH02138481A (en) Production of alloyed hot dip galvanizing steel sheet having excellent workability and paintability
JPH02138482A (en) Production of steel plate coated with alloyed zinc by galvanization having excellent workability and paintability
JP2512147B2 (en) Method for producing galvannealed steel sheet with excellent powdering resistance
JP3166568B2 (en) Manufacturing method of hot-dip galvanized steel
JPS6240353A (en) Production of alloyed zinc plated steel sheet
JPH01246348A (en) Manufacture of alloying hot dip galvanized steel sheet
JPH07243012A (en) Production of galvannealed steel sheet excellent in external appearance of surface
JPH02145777A (en) Production of alloyed hot-dip galvanized steel sheet excellent in workability and suitability for coating
JP2792809B2 (en) Hot-dip galvanized steel sheet
KR0128126B1 (en) Manufacturing method of hot dip zinc coated steel sheet
JPH02122082A (en) Production of alloyed hot dip galvanized steel sheet having superior workability and coatability