JPH02122082A - Production of alloyed hot dip galvanized steel sheet having superior workability and coatability - Google Patents

Production of alloyed hot dip galvanized steel sheet having superior workability and coatability

Info

Publication number
JPH02122082A
JPH02122082A JP27518188A JP27518188A JPH02122082A JP H02122082 A JPH02122082 A JP H02122082A JP 27518188 A JP27518188 A JP 27518188A JP 27518188 A JP27518188 A JP 27518188A JP H02122082 A JPH02122082 A JP H02122082A
Authority
JP
Japan
Prior art keywords
plating
steel sheet
less
hot
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27518188A
Other languages
Japanese (ja)
Inventor
Yasuhisa Tajiri
田尻 泰久
Soichi Shimada
島田 聰一
Michitaka Sakurai
理孝 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP27518188A priority Critical patent/JPH02122082A/en
Publication of JPH02122082A publication Critical patent/JPH02122082A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To produce an alloyed hot dip galvanized steel sheet having superior workability and coatability by successively subjecting a pretreated steel sheet to hot dip galvanizing, alloying, Mn-Zn alloy plating and reheating under specified conditions. CONSTITUTION:A steel sheet pretreated as usual is hot dip galvanized by dipping in a molten Zn bath contg. 0.05-0.3wt.% Al and <=0.2wt.% Pb to form a Zn film by 30-90g/m<2>. The steel sheet is introduced into an alloying furnace and alloyed to such a degree that the Zn film has 3-8wt.% Fe content and contains part of Zn in the unalloyed state. One side or both sides of the steel sheet are further plated with an Mn-Zn alloy contg. >=35wt.% Mn to form a Mn-Zn alloy film by 0.5-10g/m<2> and the steel sheet is reheated in the temp. range of 250 deg.C to the m.p. of Zn for 20sec to 15hr in a furnace filled with a nonoxidizing or reducing atmosphere. A plated steel sheet having superior resistance to corrosion, powdering and cratering is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、自動車や家電機器或は建材等に使用される
亜鉛系合金めっき鋼板に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a zinc-based alloy coated steel sheet used for automobiles, home appliances, building materials, etc.

[従来技術] 亜鉛めっき鋼板は安価で耐食性や強度に優れた材料とし
て広く使われており、なかでも自動車の内外板には耐食
性に加えて、加工性や塗装性を考慮したものが多量に使
われている。亜鉛めっき鋼板の量産法には、一般に電気
めっき法と溶融めっき法とがあるが、電気めっき法では
、低温で処理するので熱影響による相変化が無くめつき
皮膜の成分コントロールも容易であるが、めっき付着量
を多くするには処理時間を増さねばならない、これに対
して、溶融めっき法では処理時間を増すことなく簡単に
付着量を増すことが出来、めっき後熱処理を施すことに
より容易にFe−Zn合金を作ることが出来る。しかし
、めっき皮膜組成と生成される相のコントロールとに工
夫を要する。近年自動車用の鋼板では、塩害への対処等
もあってより高度の耐食性が要求され、これに呼応して
、付着量が容易に確保出来、且つ経済的な溶融亜鉛めっ
きを主体に、めっき組成や相コントロールを上手に行い
、高い耐食性を確保しながらその上で加工性や塗装性を
合わせ持っためつき鋼板の開発に力が注がれている。
[Prior art] Galvanized steel sheets are widely used as materials that are inexpensive and have excellent corrosion resistance and strength.In particular, galvanized steel sheets are used in large quantities for the interior and exterior panels of automobiles, considering their workability and paintability in addition to their corrosion resistance. It is being said. Generally speaking, there are two methods for mass production of galvanized steel sheets: electroplating and hot-dip plating.Since electroplating is processed at low temperatures, there is no phase change due to heat effects, and it is easy to control the composition of the plating film. In order to increase the amount of plating deposited, it is necessary to increase the processing time.On the other hand, with the hot-dip plating method, the amount of plating can be easily increased without increasing the processing time, and it is possible to easily increase the amount of plating by applying heat treatment after plating. Fe-Zn alloy can be made from However, the composition of the plating film and the control of the generated phases require some ingenuity. In recent years, steel sheets for automobiles have been required to have a higher degree of corrosion resistance in order to deal with salt damage, etc. In response to this, we have developed plating compositions, mainly hot-dip galvanizing, which can easily secure a coating amount and is economical. Efforts are being focused on the development of toughened steel sheets that have excellent corrosion resistance and processability and paintability through skillful phase control.

加工性で最も問題になるのが耐パウダリング性であり、
塗装性で問題になるのが耐クレータリング性である。パ
ウダリングとは、プレス成形の際にめっき皮膜が粉状に
なって脱落する現象であり、クレータリングとは、めっ
き皮膜に化成処理を施した後に行う電着塗装処理におい
て塗膜に目視できる凹凸(クレータ)が発生する現象で
ある。前者はめつき皮膜中に鉄含有率の高いr相(Fe
3 Zn1O+ Fe2O〜28wt%)が生成され、
これが硬くて脆いために起こり、後者はめっき皮膜表面
の不均一さく表面形状、酸化膜、めっき皮膜相構造等)
に起因して発生する。
The most important problem in processability is powdering resistance.
An issue with paintability is cratering resistance. Powdering is a phenomenon in which a plating film becomes powdery and falls off during press molding, and cratering is a phenomenon in which the plating film becomes powdery and falls off. Cratering is a phenomenon in which the plating film becomes visually visible in the electrocoating process that is performed after chemical conversion treatment. (crater) is a phenomenon that occurs. The former has r-phase (Fe) with high iron content in the plating film.
3 Zn1O+ Fe2O~28wt%) is generated,
This occurs because the plating film is hard and brittle, and the latter is caused by uneven surface shape of the plating film, oxide film, plating film phase structure, etc.)
Occurs due to.

従来、自動車用に使用されている合金化溶融亜鉛めっき
鋼板は、溶融めっき後金めっき皮膜平均の鉄含有率が1
0wt%前後に達するまで合金化処理を施し、めっき表
面までFeを拡散させて耐食性、特に塗装後耐食性を向
上させたものである。
Conventionally, alloyed hot-dip galvanized steel sheets used for automobiles have an average iron content of 1 after hot-dipping.
Alloying treatment is performed until the Fe content reaches around 0 wt%, and Fe is diffused to the plating surface to improve corrosion resistance, especially post-painting corrosion resistance.

即ち、鋼板に連続的に前処理(熱処理を含む)を施して
素材を調整した後、亜鉛を溶融しためっき浴に浸漬して
めっきし、後続してこのめっき鋼板を合金化炉内で50
0℃から700”Cの温度に急速に昇温させ短時間(1
0〜30秒)保持して、めっき皮膜の鉄含有率を10%
前後に合金化させたものである。しかし、このようにし
て作られる合金化溶融亜鉛めっき鋼板は急速な昇温によ
って高温に加熱されるので、めっき皮膜中の鉄含有量が
場所により異なりがちで、めっき皮膜の面方向及び深さ
方向共に合金化が不均一になること、これに加えてめっ
き皮膜内での鉄濃度勾配が大きくなり、表層の鉄含有量
を確保するため鋼素地との界面の鉄含有率が高まりr相
の生成が避けられないこと、更に高温処理と急速冷却に
よりめっき皮膜に熱応力が発生すること等の問題を抱え
ている。
That is, after pre-treating the steel plate (including heat treatment) continuously to adjust the material, it is plated by immersing it in a plating bath containing molten zinc, and then this plated steel plate is heated for 50 minutes in an alloying furnace.
Rapidly raise the temperature from 0℃ to 700"C for a short period of time (1
0 to 30 seconds) to reduce the iron content of the plating film to 10%.
The front and back are alloyed. However, since the alloyed hot-dip galvanized steel sheets produced in this way are heated to high temperatures due to rapid temperature rise, the iron content in the plating film tends to vary depending on the location, and the iron content in the plating film tends to vary in the surface direction and depth direction. In addition to this, the iron concentration gradient within the plating film increases, and in order to secure the iron content in the surface layer, the iron content at the interface with the steel base increases and the r-phase is formed. Furthermore, high temperature treatment and rapid cooling generate thermal stress in the plating film.

一方、合金化処理を一次二次の二工程に分けて処理する
方法が提案されている0例えば、特公昭59−1454
1号では、−次加熱において、めっき皮膜の平滑性を得
るためにZnめっき皮膜を再溶融させる急速昇温高温加
熱を行う、この加熱では鉄含有率を2.2〜5.5wt
%の低い範囲に留めるので、この−次加熱の結果に応じ
て、二次加熱を亜鉛の融点以下の低温で時間をがけて行
い、鉄含有率を6〜13wt%の範囲に納めるものであ
る。そしてこの方法によって、表面が平滑で外観が優れ
、且つ加工の際に剥離やパウダリングのない合金化溶融
亜鉛めっき皮膜が得られることを開示している。
On the other hand, a method has been proposed in which the alloying process is divided into two steps, primary and secondary.
In No. 1, in the secondary heating, rapid heating and high temperature heating is performed to remelt the Zn plating film in order to obtain smoothness of the plating film. In this heating, the iron content is reduced to 2.2 to 5.5 wt.
Therefore, depending on the result of this secondary heating, secondary heating is performed at a low temperature below the melting point of zinc over a period of time to keep the iron content within a range of 6 to 13 wt%. . It is also disclosed that by this method, it is possible to obtain an alloyed hot-dip galvanized film with a smooth surface, excellent appearance, and no peeling or powdering during processing.

他方、めっき皮膜表層のみの鉄含有率を高めて耐クレー
タリング性を改善したものも提案されている0例えば、
特公昭58−15554号の提案は、耐食性金属層を内
層とし、その上に鉄含有率の高いFe−Zn合金被覆層
を付してカチオン電着塗装性を向上させためっき鋼板で
ある。この提案では、内層である前記耐食性金属層とし
て溶融亜鉛めっき後に熱処理によりFe−Zn合金化し
た合金化溶融亜鉛めっき層が開示されている。
On the other hand, some proposals have been made that improve cratering resistance by increasing the iron content only in the surface layer of the plating film.
The proposal of Japanese Patent Publication No. 58-15554 is a plated steel sheet with a corrosion-resistant metal layer as an inner layer and a Fe--Zn alloy coating layer with a high iron content attached thereon to improve cationic electrodeposition coating properties. This proposal discloses an alloyed hot-dip galvanized layer that is formed into an Fe-Zn alloy by heat treatment after hot-dip galvanizing as the corrosion-resistant metal layer that is the inner layer.

[発明が解決しようとする課題] しかしながら上述した特公昭59−14541号では、
耐クレータリング性を満足するものではない、耐クレー
タリング性に関しては、表面の鉄含有率は不十分である
。又、耐パウダリング性に関しても、溶融亜鉛めっき後
急速昇温高温加熱によって合金化処理を行うので合金化
反応が不均一に進むことが避けられず、その結果、加工
性に劣るF層が成長してしまう。更に場合によっては、
合金化されない部分と合金化の進んだ部分とが混在して
いわゆる焼けむらの現象を呈したりする。
[Problem to be solved by the invention] However, in the above-mentioned Japanese Patent Publication No. 59-14541,
Regarding the cratering resistance, which does not satisfy the cratering resistance, the iron content on the surface is insufficient. In addition, regarding powdering resistance, since the alloying process is performed by rapid temperature rise and high temperature heating after hot-dip galvanizing, it is inevitable that the alloying reaction progresses unevenly, resulting in the growth of an F layer with poor workability. Resulting in. Furthermore, in some cases,
Unalloyed portions and highly alloyed portions coexist, resulting in a so-called uneven burning phenomenon.

このように、−次加熱が不均一になり易いので、−次加
熱の結果を基にした二次加熱条件が極めて複雑になり実
操業ではその実施に大きな困難を伴う。
As described above, secondary heating tends to be non-uniform, so secondary heating conditions based on the results of secondary heating become extremely complicated, and implementation thereof is very difficult in actual operation.

特公昭58−15554号では、めっき表面の鉄濃度を
飛躍的に高めたので、耐クレータリング性は改善される
が、溶融亜鉛めっき後の熱処理によって合金化を完了さ
せているので、特公昭59−14541号と同様に合金
化の不均一さの問題があり、加えてめっき皮膜内での鉄
濃度勾配が大きくなり、鉄濃度の高くなる鋼素地との界
面では「相が成長してしまう、又、急熱急冷による熱歪
応力も耐パウダリング性にとっては好ましくない このように、耐パウダリング性、耐クレータリング性を
満たすべく工夫がなされてきたが、未だ両特性を共に満
足させる溶融亜鉛めっき鋼板は得られていない。
In Japanese Patent Publication No. 58-15554, the iron concentration on the plating surface was dramatically increased, improving the cratering resistance, but since alloying was completed by heat treatment after hot-dip galvanizing, Similar to No. 14541, there is the problem of non-uniform alloying, and in addition, the iron concentration gradient within the plating film becomes large, and at the interface with the steel base where the iron concentration becomes high, "phases grow". In addition, thermal strain stress caused by rapid heating and cooling is also unfavorable for powdering resistance.Thus, efforts have been made to satisfy powdering resistance and cratering resistance, but molten zinc that satisfies both properties has not yet been developed. No plated steel sheets were obtained.

この問題を解決するために、この発明はなされたもので
、耐食性に加えて耐パウダリング性と耐クレータリング
性とを共に満たすめっき鋼板の製造法を提供することを
目的とするものである。
In order to solve this problem, the present invention was made, and an object of the present invention is to provide a method for manufacturing a plated steel sheet that satisfies not only corrosion resistance but also powdering resistance and cratering resistance.

[課題を解決するための手段及び作用]この目的を達成
するための手段は、 (1)以下の工程を含むことを特徴とする加工性、塗装
性に優れた合金化溶融亜鉛めっき鋼板の製造方法であり
、 (イ)通常の前処理を施した鋼板をAl0.05wt%
以上0.3wt%以下、且つPb0.2wt%以下を含
有する溶融亜鉛めっき浴に浸漬して30g/m”以上9
0g/m”以下のめっきを施す工程、(ロ)前記めっき
を施す工程に連続して合金化処理炉に亜鉛めっきされた
鋼板を導入してめっき皮膜中の鉄含有率を3wt%以上
8wt%以下の範囲、且つ皮膜中の亜鉛の一部が未合金
のまま残る状態に合金化処理を行う工程、 (ハ)前記合金化処理された溶融亜鉛めっき鋼板の片面
又は両面に0.5g/m”以上10g/m2以下のMn
35wt%以上のMn−Zn合金めっきを施す工程、 (ニ)前記工程でめっきを施した鋼板を非酸化性又は還
元性雰囲気に維持した炉内で250°C以上亜鉛の融点
以下の温度範囲で20秒以上15時間以下再加熱する工
程。
[Means and effects for solving the problem] The means for achieving this objective are: (1) Manufacturing of an alloyed hot-dip galvanized steel sheet with excellent workability and paintability, which includes the following steps: (a) A steel plate subjected to normal pretreatment is coated with Al0.05wt%.
30 g/m” or more by immersion in a hot-dip galvanizing bath containing Pb of 0.3 wt% or less and Pb of 0.2 wt% or less
0g/m" or less plating step; (b) Continuing with the plating step, introducing a galvanized steel sheet into an alloying treatment furnace to increase the iron content in the plating film from 3 wt% to 8 wt%. A step of performing alloying treatment in the following range and in a state where part of the zinc in the coating remains unalloyed, (c) 0.5 g/m on one or both sides of the hot-dip galvanized steel sheet subjected to the alloying treatment. ”Mn of 10g/m2 or less
A step of applying Mn-Zn alloy plating of 35 wt% or more, (d) The steel plate plated in the above step is kept in a furnace maintained in a non-oxidizing or reducing atmosphere at a temperature range of 250 ° C or more and below the melting point of zinc. A step of reheating for 20 seconds or more and 15 hours or less.

(2)以下の工程を含むことを特徴とする加工性、塗装
性に優れた合金化溶融亜鉛めっき鋼板の製造方法である
(2) A method for producing an alloyed hot-dip galvanized steel sheet with excellent workability and paintability, which includes the following steps.

(イ)通常の前処理を施した鋼板をAll0.05wt
%以上0.3wt%以下、且っPb0.2.wt%以下
を含有する溶融亜鉛めっき浴に浸漬して30g / m
’以上90 g/m2以下のめっきを施す工程、(ロ)
前記めっきを施す工程に連続して合金化処理炉に亜鉛め
っきされた鋼板を導入してめっき皮膜中の鉄含有率を3
wt%以上8wt%以下の範囲、且つ皮膜中の亜鉛の一
部が未合金のまま残る状態に合金化処理を行う工程、 (ハ)めっき皮膜が溶融状態であるうちに鋼板の片面又
は両面にMn35wt%以上のMn−Zn合金パウダー
を吹き付けて0.5g/m”以上10g/m”以下の上
層めっきを施す工程、 (ニ)めっき皮膜が固化した後スキンパス処理を行い溶
融亜鉛めっき皮膜の表面を平滑化する工程、 (ホ)前記工程で平滑化しためつき皮膜を有する鋼板を
非酸化性又は還元性雰囲気に維持した炉内で250 ’
C以上亜鉛の融点以下の温度範囲で20秒以上15時間
以下再加熱する工程。
(a) All 0.05wt steel plate subjected to normal pretreatment
% or more and 0.3 wt% or less, and Pb0.2. 30g/m by immersion in a hot-dip galvanizing bath containing up to wt%
'The process of applying plating of at least 90 g/m2, (b)
Continuing with the plating process, a galvanized steel sheet is introduced into the alloying furnace to reduce the iron content in the plating film to 3.
A step of alloying the zinc in the range of wt% or more and 8 wt% or less and in a state where a part of the zinc in the coating remains unalloyed. A step of spraying Mn-Zn alloy powder containing 35 wt% or more of Mn to form an upper layer plating of 0.5 g/m" or more and 10 g/m" or less; (d) After the plating film has solidified, skin pass treatment is performed on the surface of the hot-dip galvanized film. (e) The steel plate with the toughening film smoothed in the above step is heated for 250' in a furnace maintained in a non-oxidizing or reducing atmosphere.
A step of reheating at a temperature range of C or more and below the melting point of zinc for 20 seconds or more and 15 hours or less.

以上の手段について、以下にその作用も含め、詳しく述
べる。
The above means will be described in detail below, including their effects.

先ず、めっき用の鋼板は冷延鋼板でも熱延鋼板でもよく
、通常の前処理として表面調整とともに焼鈍処理を施し
てもよい。
First, the steel plate for plating may be a cold-rolled steel plate or a hot-rolled steel plate, and may be subjected to surface conditioning and annealing treatment as a normal pretreatment.

溶融亜鉛めっき浴には通常、Fe−Zn合金反応の抑制
やめつき面の平滑化等のためAfIが0.2%前後添加
されており、スパングル調整のためPbが含まれている
。このうちAlは合金化抑制効果を持つので、0.05
wt%以上添加し、溶融亜鉛めっき浴浸漬後のFe−Z
n合金が部分的且つ不均一に生成することを防ぐ、この
工程で不均一にFe−Zn合金を生成させないことは重
要なことであり、−旦不均−化すると後の工程で修正す
ることが出来ない、Alの添加量が多過ぎて0.3wt
%を超えると合金化の抑制効果が過剰となり、後の合金
化処理に時間が掛かり過ぎ工業的には不適切になる。P
bは合金化反応には直接関与しないが、多量のpbは耐
パウダリング性を低下させるので、0.2wt%以下に
制限しなければならない。
A hot-dip galvanizing bath usually contains around 0.2% AfI for suppressing the Fe--Zn alloy reaction and smoothing the mating surface, and also contains Pb for spangle adjustment. Among these, Al has an effect of suppressing alloying, so 0.05
Fe-Z after adding wt% or more and immersing in hot-dip galvanizing bath
It is important to prevent Fe-Zn alloy from being formed unevenly in this process, and once it becomes uneven, it must be corrected in a later process. Cannot be done, the amount of Al added is too large, 0.3wt
If it exceeds %, the effect of suppressing alloying becomes excessive, and the subsequent alloying treatment takes too much time, making it unsuitable for industrial use. P
Although b does not directly participate in the alloying reaction, a large amount of pb reduces powdering resistance, so it must be limited to 0.2 wt% or less.

ここで形成される下層めっき層は、後に形成される薄い
上層めっき層と一体構造となったときめっき皮膜の大半
を占める皮膜内層部を形成するが、耐食性と耐パウダリ
ング性の殆どがこの層によって決まる。下層めっき層の
付着量は、高耐食性を発揮するために、30g/m”以
上の付着量が必要である。しかし90g/m”を超えて
付着させても過剰品質となるばかりか、後の工程の低温
で行う再加熱処理において長時間を要し生産性を低下さ
せる。又、−mにめっき皮膜が厚くなると加工時に皮膜
の破壊や剥離が起こることがあり、合金化溶融亜鉛めっ
き鋼板の場合ではパウダリングが起こり易くなる。
When the lower plating layer formed here becomes an integral structure with the thin upper plating layer that will be formed later, it forms the inner layer that occupies most of the plating film, but this layer provides most of the corrosion resistance and powdering resistance. Determined by The coating weight of the lower plating layer needs to be 30 g/m or more in order to exhibit high corrosion resistance. However, if it is deposited in excess of 90 g/m, it will not only result in excessive quality, but also cause the subsequent The reheating process performed at a low temperature in the process takes a long time and reduces productivity. Furthermore, if the plating film becomes thicker than -m, the film may break or peel off during processing, and in the case of alloyed hot-dip galvanized steel sheets, powdering is likely to occur.

合金化溶融亜鉛めっき鋼板の場合、めっき付着量と皮膜
中の鉄含有率によって耐食性特に塗装後耐食性の殆どが
決定される。このため、めっき工程に連続して合金化処
理を行う、この処理は合金化処理炉内にめっきした鋼板
を通すことによって鋼板を昇温し、鋼素地から亜鉛めっ
き層中にFeを拡散させることによって行うが、この際
、合金化の度合いとして鉄含有率が3wt%から8wt
%の範囲にコントロールし合金化未完の状態にしておく
。即ち、この発明では、後の工程で行う再加熱処理によ
って溶融亜鉛めっき層の合金化を完成させるが、再加熱
時間をできるだけ短くし、尚且つ耐パウダリング性を劣
化させないために3wt%以上の鉄含有率は必要である
。一方、8wt%以下にとどめることによって、亜鉛め
っき層の全てを合金化させることはせずに、η相(純Z
n)を残しておく、このη相を残しておかないと、後の
工程で行う再加熱処理において上層から下層へのMnの
拡散が容易には行われなくなり、その結果、両層間の密
着力が十分には向上せず、プレス時におけるめっき皮膜
外層部の一部脱落が避けられなくなる。又、連続式溶融
亜鉛めっき設備内での合金化処理では短時間(数秒内至
数十秒)ではあるが、亜鉛の融点(419,5℃)以上
の高温となるので、Fe−Zn合金として、r相、δ1
相、ζ相等の生成及び成長が考えられる。このうちδ1
相とζ相はめつき皮膜の塗装後耐食性を向上させるが、
「相は硬くて脆く耐パウダリングを劣化させるので好ま
しくない、しかし、上記の合金化条件であればこのr相
は殆ど成長せず耐パウダリング性には悪い影響を与えな
い。
In the case of alloyed hot-dip galvanized steel sheets, the corrosion resistance, particularly the post-painting corrosion resistance, is largely determined by the amount of coating deposited and the iron content in the coating. For this reason, alloying treatment is performed following the plating process. This treatment involves passing the plated steel sheet through an alloying furnace to raise the temperature of the steel sheet and diffusing Fe from the steel base into the galvanized layer. However, at this time, the degree of alloying is such that the iron content ranges from 3 wt% to 8 wt%.
% range and leave the alloying in an incomplete state. That is, in this invention, the alloying of the hot-dip galvanized layer is completed by the reheating treatment performed in a later step, but in order to shorten the reheating time as much as possible and not to deteriorate the powdering resistance, 3wt% or more of the hot-dip galvanized layer is added. Iron content is necessary. On the other hand, by keeping the amount below 8 wt%, the η phase (pure Z
If this η phase is not left, Mn will not easily diffuse from the upper layer to the lower layer during the reheating treatment performed in the later process, and as a result, the adhesion between the two layers will decrease. is not sufficiently improved, and part of the outer layer of the plating film inevitably falls off during pressing. In addition, although the alloying process in continuous hot-dip galvanizing equipment takes a short time (from a few seconds to several tens of seconds), the temperature is higher than the melting point of zinc (419.5°C), so it cannot be used as an Fe-Zn alloy. , r phase, δ1
Generation and growth of phase, ζ phase, etc. are considered. Of these, δ1
The phase and ζ phase improve corrosion resistance after coating of the plating film, but
``The phase is hard and brittle and deteriorates powdering resistance, which is undesirable. However, under the above alloying conditions, this r phase hardly grows and does not have a negative effect on powdering resistance.

この連続式溶融亜鉛めっき設備内での合金化処理に先立
って、ミストスプレィやパウダスプレィ等によってスパ
ングルの微細化を行うと亜鉛結晶配向のマクロ的不均−
が解消され、後の工程で行う上層めっきの被覆率がよく
なるので、必要に応じて行うとよい、又、合金化処理後
にスキンパスを行いめっき皮膜表面を平滑化することに
より、上層めっき皮膜の被覆率や塗装後の鮮映性を効率
的に向上させることができる。
Prior to alloying treatment in this continuous hot-dip galvanizing equipment, if the spangles are made finer by mist spray or powder spray, the macroscopic inhomogeneity of the zinc crystal orientation will be reduced.
This can be done as needed, as this will improve the coverage of the upper layer plating performed in the later process.Also, by performing a skin pass after the alloying treatment to smooth the surface of the plating film, it will improve the coverage of the upper layer plating film. It is possible to efficiently improve the image quality and sharpness after painting.

このように合金化処理された溶融亜鉛めっき鋼板の上に
Mn−Zn合金の上層めっきを施すが、これはめつき皮
膜表層に耐クレータリング性を付与することと、この後
の工程で内層部にMnを拡散させるためである。耐クレ
ータリング性の観点からこのめっき層のMn含有率は3
5Wし%以上、又、付着量は0.5g/m”から10g
/m2であることが必要である。自動車用には、合金化
溶融亜鉛めっき鋼板は、めっき面に化成処理(燐酸塩処
理)を施した後カチオン電着塗装が施されるが、燐酸塩
処理に際して、めっき表層にZnだけが存在すると結晶
に、ホパイト [Z n3  (PO4)2・4 H20Fと称する粗
大な針状の燐酸塩結晶が生成される。
An upper layer of Mn-Zn alloy is applied to the hot-dip galvanized steel sheet that has been alloyed in this way. This is to diffuse Mn. From the viewpoint of cratering resistance, the Mn content of this plating layer is 3.
5W% or more, and the adhesion amount is 0.5g/m” to 10g
/m2. For automobiles, alloyed hot-dip galvanized steel sheets are subjected to chemical conversion treatment (phosphate treatment) and then cationic electrodeposition coating. Coarse, needle-shaped phosphate crystals called hopite [Z n3 (PO4)2.4 H20F are formed in the crystals.

しかしながら、Mnが共存すると結晶中のZnの一部が
Mnと置換わり、燐酸塩結晶は緻密なものとなる。そし
てクレータ発生原因の一つに化成処理皮膜欠陥部への局
所的な電流集中が考えられるが、緻密な結晶で形成され
ている皮膜はど欠陥部が少ない。上層めっき中のMn含
有量が35Wし%以上であると、後の工程で行う再加熱
処理により下層との間に成分の拡散があっても、外層部
のMn含有率は30wt%以上とすることができる0発
明者らの研究によると、めっき表面のMn含有率が高く
なり30wt%近くになるとクレータの発生は急激に減
少する。更に、ZnはMnと合金化することによってよ
り耐食性が向上するが、Mn含有率の高い外層部は勿論
、後の再加熱よってMnが拡散する内層部の耐食性も改
善される。
However, when Mn coexists, a part of Zn in the crystal is replaced with Mn, and the phosphate crystal becomes dense. One of the causes of crater generation is thought to be local concentration of current in defective areas of the chemical conversion coating, but coatings made of dense crystals have fewer defects. If the Mn content in the upper layer plating is 35W% or more, even if there is diffusion of components between it and the lower layer due to reheating treatment in a later step, the Mn content in the outer layer should be 30wt% or more. According to research conducted by the inventors, when the Mn content on the plating surface becomes high and approaches 30 wt %, the occurrence of craters rapidly decreases. Further, corrosion resistance is further improved by alloying Zn with Mn, and the corrosion resistance is improved not only in the outer layer portion with a high Mn content but also in the inner layer portion where Mn diffuses by subsequent reheating.

付着量は0.5g/m”未満では、化成処理時に、めっ
き面全体にわたって十分にMnを供給することが出来な
い、又10g/m2を超えて付着した場合にはその効果
が飽和し、コスト的に不利になるだけである。
If the adhesion amount is less than 0.5 g/m2, Mn cannot be sufficiently supplied to the entire plating surface during chemical conversion treatment, and if the adhesion amount exceeds 10 g/m2, the effect will be saturated and the cost will increase. It will only put you at a disadvantage.

上記上層めっきの処理方法は、亜鉛の融点より低い温度
で処理する方法であれば、電気めっき、蒸着めっき、溶
射等どのような方法でもよい、この上層めっき処理を合
金パウダー吹き付けで行うときは、先の溶融亜鉛めっき
層が溶融状態のうちに行い、スパングルの微細化をも兼
ねることが出来る。しかし、この場合上層めっき後表面
の平滑性は期待出来ないので、スキンパス処理によって
平滑化する必要がある。このスキンパス処理は伸長率0
.3%以上で行うとめつき面は平滑となるが、伸長率が
大き過ぎて5%を超えると、一般の薄板用鋼板では加工
性に影響するおそれがある。
The above-mentioned upper layer plating treatment may be any method such as electroplating, vapor deposition plating, thermal spraying, etc. as long as the treatment is performed at a temperature lower than the melting point of zinc.When performing this upper layer plating treatment by alloy powder spraying, This is done while the previous hot-dip galvanizing layer is in a molten state, and can also serve as a finer spangle. However, in this case, the surface cannot be expected to be smooth after the upper layer plating, so it is necessary to smooth the surface by skin pass treatment. This skin pass processing has an elongation rate of 0.
.. If the elongation is carried out at 3% or more, the attached surface will be smooth, but if the elongation is too large and exceeds 5%, there is a risk that the workability of ordinary thin steel sheets will be affected.

又、用途によっては片面の外観を問題にしないこともあ
り、このような場合片面にはこの上層めっき皮膜がなく
てもよく、又他のめつき皮膜を付してもよい。
Furthermore, depending on the application, the appearance of one side may not be a problem, and in such cases, one side may not have this upper plating film, or may be provided with another plating film.

最後の工程ではめつき鋼板を再度加熱する。即ち、二度
にわたって施しためつき層を低温で丁寧に加熱し、「相
の生成を防ぎながら、合金化を完成させ同時に両層間の
成分拡散によって組成を連続させて一体構造のめつき皮
膜に造り上げる。この再加熱処理の条件は、250℃以
上亜鉛の融点以下の温度範囲で20秒から15時間の加
熱である。250°C未満ではめつき層中でのFe原子
の拡散促進効果が低く、塗装後耐食性を確保するに足る
合金化度を得るのに時間が掛かり過ぎ工業的でない、逆
に温度を亜鉛の融点(419,5℃)よりも高くすると
、部分的にFe原子の拡散が促されることがあり、合金
化が急速に進む箇所が現れ却って不均一さや熱歪みを助
長しかねなく、又「相の生成も無視できなくなる。第1
図は上記の温度範囲で、パウダリングとクレータの両者
が共に発生しない条件を調べたもので、横軸は加熱時間
縦軸は加熱温度である0図で、点a、b、c。
In the final step, the plated steel plate is heated again. In other words, the plating layer applied twice is carefully heated at a low temperature to complete alloying while preventing the formation of phases, and at the same time, the composition is made continuous by diffusion of ingredients between both layers, creating a monolithic plating film. The conditions for this reheating treatment are heating for 20 seconds to 15 hours at a temperature range of 250°C or higher and lower than the melting point of zinc.If it is lower than 250°C, the effect of promoting diffusion of Fe atoms in the plating layer is low; It takes too much time to obtain a degree of alloying sufficient to ensure corrosion resistance after painting, which is not industrially practical.On the other hand, if the temperature is higher than the melting point of zinc (419.5℃), the diffusion of Fe atoms is partially promoted. This may lead to the appearance of areas where alloying progresses rapidly, which may even promote non-uniformity and thermal distortion, and the formation of phases cannot be ignored.
The figure shows the conditions under which both powdering and cratering do not occur in the above temperature range. The horizontal axis is the heating time, and the vertical axis is the heating temperature. Points a, b, and c are shown in the figure.

dを結ぶ線で囲まれた範囲が、パウダリング及びクレー
タを発生させない実操業上好ましい条件範囲で、加熱時
間については、a点の時間座標から0点の時間座標まで
、即ち20秒以上15時間以下となる0以上の加熱条件
で再加熱処理を行うと、上層めっき側からはMnが拡散
するので下層めっき層へ鋼索地側から拡散するFeの量
は少なくて済み、内層の鋼素地側に局部的にFe濃度の
高い箇所が出来ずに適正な合金化が達成される。
The range surrounded by the line connecting d is the preferred range for actual operation to avoid powdering and cratering, and the heating time is from the time coordinate of point a to the time coordinate of point 0, that is, 20 seconds or more and 15 hours. When reheating is performed under the following heating conditions of 0 or more, Mn diffuses from the upper plating side, so the amount of Fe that diffuses from the steel cable side to the lower plating layer is small, and the amount of Fe diffuses from the steel cable side to the inner layer. Appropriate alloying is achieved without creating locally high Fe concentration areas.

このとき下層には上層に近い部分はどη相が残っている
ので、上下両眉間の拡散が進行し易い、このため、残っ
ていたη相は消滅し、「相は実質的に生成せず、耐食性
のよいMn−Zn合金や塗装後耐食性に好結果を与える
δ1相、ζ相のみからなるめっき皮膜が得られる。めっ
き皮膜と鋼素地との境界層で「相が0.5μm以上の厚
さに成長していないと検出することは困難であるが、こ
の条件で処理されためっき皮膜ではr相は検出されず、
δ1相とζ相とのみが検出される。そして、このめっき
皮膜は、急速な高温加熱を避けているので鉄含有率は面
に沿って均一となりめっき鋼板のどの部分でも所定の耐
食性、加工性、を発現し、品質の非常に安定した製品と
なる。又、鉄含有率も5wt%から20wt%の範囲に
収まる。しかし、実操業時に起こりがちな条件のバラツ
キ等を考えると特に好ましいのは、加熱温度が260℃
から400℃まで、加熱時間が10分から10時間まで
である。この場合めっき皮膜の鉄含有率は5wt%から
10wt%の範囲に収まる。更に、この熱処理によって
、上層と下層はMn−Znの熱拡散によって一体構造と
なり、各々めっき皮膜の外層部と内層部とを形成すると
共に熱歪みも除去される。これによってめっき皮膜は機
械的性質や電気化学的性質が隣接した部分で極端に異な
ることが無くなるので、上層と内層との密着も完全とな
り同時に加工性及び耐食性においても優れたものとなる
。この加熱処理は、非酸化性又は還元性雰囲気に維持し
た炉内で行うが、非酸化性又は還元性雰囲気で行うのは
表面の酸化を防ぎ、塗装前の化成処理において化成皮膜
結晶が不均一になることを避けるためであり、短時間で
処理する場合は連続炉を用い、長時間掛けて処理する場
合はバッチ式焼鈍炉を用いるとよい。
At this time, since some η phase remains in the lower layer near the upper layer, diffusion between the upper and lower glabella tends to proceed. Therefore, the remaining η phase disappears, and "no phase is substantially generated." , a plating film consisting only of the Mn-Zn alloy with good corrosion resistance and the δ1 phase and ζ phase that gives good results in corrosion resistance after painting is obtained.At the boundary layer between the plating film and the steel base, the phase has a thickness of 0.5 μm or more. Although it is difficult to detect if the phase does not grow, the r-phase was not detected in the plating film treated under these conditions.
Only the δ1 phase and the ζ phase are detected. Since this plating film avoids rapid high-temperature heating, the iron content is uniform along the surface, and any part of the plated steel sheet exhibits the specified corrosion resistance and workability, resulting in a product with extremely stable quality. becomes. Further, the iron content falls within the range of 5 wt% to 20 wt%. However, considering the variations in conditions that tend to occur during actual operation, it is particularly preferable to set the heating temperature to 260°C.
to 400° C., and the heating time is from 10 minutes to 10 hours. In this case, the iron content of the plating film falls within the range of 5 wt% to 10 wt%. Further, by this heat treatment, the upper layer and the lower layer become an integral structure due to thermal diffusion of Mn-Zn, forming an outer layer portion and an inner layer portion of the plating film, respectively, and also removing thermal distortion. As a result, the mechanical properties and electrochemical properties of the plating film do not differ significantly between adjacent parts, so that the adhesion between the upper layer and the inner layer is perfect, and at the same time, it has excellent workability and corrosion resistance. This heat treatment is performed in a furnace maintained in a non-oxidizing or reducing atmosphere, but doing so in a non-oxidizing or reducing atmosphere prevents oxidation of the surface and causes uneven chemical conversion coating crystals during the chemical conversion treatment before painting. This is to avoid this, and if the process is to be carried out in a short period of time, a continuous furnace is used, and if the process is to be carried out over a long period of time, it is recommended to use a batch type annealing furnace.

[実施例] 二種類の鋼板を使用し、溶融亜鉛めっき条件、上層めっ
き条件及び合金化処理条件を変えて処理した17例(実
施例)の合金化溶融亜鉛めっき鋼板について、めっき皮
膜中の合金成分含有率(Fe、Mn)を調べ、パウダリ
ング試験及びクレータリング試験を行って評価した。な
お比較のために、この発明の範囲外の条件で処理した7
例(比較例)及び従来技術による3例(従来例)につい
ても同様に調べた0条件の詳細は以下の通りである。用
いた鋼板は板厚0.8韻の冷延鋼板で、汎用されている
薄板用低炭素AJキルト(素材A)及び高加工用でパウ
ダリングを起こし易いと言われている超低炭チタン含有
鋼(素材B)とである、各々の成分を第1表に示す。
[Example] Regarding the alloyed hot-dip galvanized steel sheets of 17 examples (Examples) in which two types of steel sheets were used and the hot-dip galvanizing conditions, upper layer plating conditions, and alloying treatment conditions were changed, the alloy in the plating film was The component content (Fe, Mn) was investigated and evaluated by performing a powdering test and a cratering test. For comparison, 7 samples were treated under conditions outside the scope of this invention.
The details of the 0 condition similarly investigated for the example (comparative example) and three examples (conventional example) according to the prior art are as follows. The steel plates used were cold-rolled steel plates with a thickness of 0.8 mm, including low carbon AJ quilt (Material A) for thin plates, which is commonly used, and ultra-low carbon titanium, which is said to easily cause powdering for high processing purposes. Table 1 shows the respective components of steel (Material B).

下層の溶融亜鉛めっきは、無酸化炉、還元加熱炉を備え
た連続式めっき設備で行ない、めっき浴面後に設けられ
た気体絞り装置によって付着量を調整した後、連続して
合金化処理を行った。めっき層が冷却後伸長率1.5%
でスキンパスを行い表面を平滑にし、この上にMn−Z
n合金の上層めっき層を形成した。再加熱処理は、実施
例阻16及び比較例NIL7では連続炉を用い、他の例
ではバッチ炉を用いた。上層めっきには、電気めっき、
プラズマ溶射又はパウダースプレィの方法を用いたが、
これらは各々次の条件で処理した。
The hot-dip galvanizing of the lower layer is carried out in a continuous plating facility equipped with a non-oxidizing furnace and a reduction heating furnace, and after adjusting the coating amount with a gas throttle device installed after the surface of the plating bath, alloying treatment is carried out continuously. Ta. The plating layer has an elongation rate of 1.5% after cooling.
A skin pass is performed to smooth the surface, and Mn-Z is applied on top of this.
An upper plating layer of n alloy was formed. For the reheating treatment, a continuous furnace was used in Example No. 16 and Comparative Example NIL7, and a batch furnace was used in the other examples. For upper layer plating, electroplating,
Although plasma spraying or powder spraying methods were used,
Each of these was processed under the following conditions.

(1)電気めっき Zn2 SO4・7H2 MnSO4・H2O N a5 c、 H507。(1) Electroplating Zn2 SO4・7H2 MnSO4・H2O N a5 c, H507.

浴温 陰極電流密度 (2プラズマ溶射 プラズマガス 溶射入熱 溶射距離 平均粉末粒径 粉末供給速度 r 0KW 00am 約5μm 5 g/mts −d m” 0  50〜150g/ρ 50〜150g#1 282 0  180g/41 50℃ 30〜50 A / d m” (Mn70%) (3)パウダースプレィ 平均粉末粒径(Mn70%)   約5μm粉末供給速
度        3 g/mia −d m”めっき
皮膜外層部中及びめっき皮膜内層部中の鉄およびマンガ
ン含有率は、オージェ電子分光分析及びグリムグロー放
電発光分光分析によって調べた。
Bath temperature cathode current density (2 Plasma spraying Plasma gas spraying Heat input thermal spraying distance Average powder particle size Powder supply rate r 0KW 00am Approx. 5μm 5 g/mts -d m” 0 50-150g/ρ 50-150g #1 282 0 180g /41 50℃ 30-50 A / d m" (Mn70%) (3) Powder spray average powder particle size (Mn70%) Approx. 5 μm Powder supply rate 3 g/mia -d m" Plating film outer layer and plating film The iron and manganese contents in the inner layer were investigated by Auger electron spectroscopy and Grim glow discharge emission spectroscopy.

耐パウダリング性は、曲率半径2龍で90度に曲げた後
、曲げの内側に粘着テープを貼り付け、これを剥して、
パウダーがこの粘着テープに付着した状況を目視観察し
、点数付けて評価した。評点の基準は、1;全く付着無
し、2;極くわずかに付着、3:わずかに付着、4;少
し付着、5・かなり付着、の五段階である。
Powdering resistance is determined by bending the material 90 degrees with a radius of curvature of 2, attaching adhesive tape to the inside of the bend, and peeling it off.
The adhesion of the powder to this adhesive tape was visually observed and evaluated by giving a score. The rating criteria is on a five-point scale: 1: no adhesion at all, 2: very little adhesion, 3: slightly adhesion, 4: a little adhesion, and 5: considerable adhesion.

耐クレータリング性は、めっき面に化成処理を施し、次
いで電着塗装を行い、このとき発生したクレータの数で
評価した。化成処理には市販されている浸漬型の燐酸塩
系処理剤を用いた。電着塗装にはやはり市販されている
カチオン電着塗料を用い、塗料調合後−週間攪拌し、極
間距離4C1lで電着電圧300■を瞬時に印加して電
着した。
Cratering resistance was evaluated by applying a chemical conversion treatment to the plated surface, followed by electrodeposition coating, and evaluating the number of craters generated at this time. A commercially available dipping type phosphate treatment agent was used for the chemical conversion treatment. For the electrodeposition coating, a commercially available cationic electrodeposition paint was used, and after the paint was prepared, it was stirred for one week, and electrodeposition was carried out by instantaneously applying an electrodeposition voltage of 300 cm with a distance between electrodes of 4C1l.

これらの例の各々の処理条件と調査結果を第2表に示す
The processing conditions and investigation results for each of these examples are shown in Table 2.

実施例では、素材Bでも耐パウダリング性に劣るものは
なく、上限付着量であるNo6で極く僅かにパウダリン
グが認められたが実用上は問題がない、耐クレータリン
グ性では、上層めっきのMn含有率が下限である実施例
N1L11及び上層めっき付着量が下限である実施例N
113で、1個乃至2個の小さなりレータが発見された
が、これも実用上は問題ない、このように、実施例では
全ての合金化溶融亜鉛めっき鋼板が耐パウダリング性と
耐クレータリング性とを兼ね備えている。又、内層部の
鉄含有率も6wL%から10wt%の範囲内にあり、塗
装後耐食性を十分に確保するものである。
In the examples, material B was not inferior in powdering resistance, and although very slight powdering was observed at No. 6, which is the upper limit coating amount, there was no problem in practical use. Example N1L11 where the Mn content of is the lower limit and Example N where the upper layer plating amount is the lower limit
113, one or two small lubrication plates were found, but this also poses no practical problem.In this way, in the examples, all alloyed hot-dip galvanized steel sheets had good powdering resistance and cratering resistance. It has both gender. Further, the iron content of the inner layer is within the range of 6wL% to 10wt%, which ensures sufficient corrosion resistance after painting.

一方、発明の範囲から外れた条件で処理された比較例で
は、溶融亜鉛めっき洛中にAIIを含まないNα1、加
熱時間過剰のNa2、下層めっき後の合金化で鉄含有率
8wt%を超えな隘3、浴中pbの多いNo、 4 、
付着量の多すぎるN[L5 、再加熱温度の高過ぎるN
a、 7等で耐パウダリング性に問題があり、上層めっ
きを施さないN[L6では耐クレータリング性が劣って
いる。
On the other hand, in a comparative example processed under conditions outside the scope of the invention, Nα1 did not contain AII during hot-dip galvanizing, Na2 was heated for an excessive amount of time, and iron content did not exceed 8 wt% in alloying after lower layer plating. 3. No. 4 with a lot of PB in the bath.
Too much N [L5] attached, too high reheating temperature
A, 7, etc. have problems with powdering resistance, and N[L6, which is not coated with upper layer plating, has poor cratering resistance.

従来例では、阻1は急速昇温高温加熱のみにより合金化
したもので両特性に問題があり、N[L2は急速昇温高
温加熱の後低温で合金化調整したもので耐クレータリン
グが劣り、阻3は急速昇温高温加熱によって合金化し、
その上に鉄含有率8゜wt、%のFe−Zn合金めっき
層を付しか再加熱を行わなかったもので、耐パウダリン
グ性に劣る。
In the conventional examples, N[L2 is alloyed by rapid heating at high temperature and then alloyed at low temperature, and has poor cratering resistance. , 3 is alloyed by rapid heating and high temperature heating,
A Fe--Zn alloy plating layer with an iron content of 8% wt.

このように、両特性が同時には満足されていない。In this way, both characteristics are not satisfied at the same time.

次に本発明によるめっき皮膜の内層部の鉄含有率分布を
調べた。
Next, the iron content distribution in the inner layer of the plating film according to the present invention was investigated.

実施例Na 1の合金化溶融亜鉛めっきコイル(幅18
00mm)の幅方向について、200 m+*間隔でめ
っき皮膜内層部の鉄含有率を調べ、従来例N[L 2と
比較した。この結果を第2図に示す0図において横軸は
コイル左端からの距離、縦軸は鉄含有率であり、O印は
実施例N+L1について、・印は従来例Na 2につい
てプロットしたものである0図から明らかなように実施
1例N[Llの鉄含有率は平均6.8wt%であり、全
ての測定点が6.6wt%がら7.OwL%の間に分布
していた。これに対して従来例N[L 2の鉄含有率は
平均8.3wt%であり、全ての測定点が7.9wt%
がら8.9wt%の間に分布しバラツキが大きかった。
Alloyed hot-dip galvanized coil of Example Na 1 (width 18
The iron content of the inner layer of the plating film was examined at intervals of 200 m+* in the width direction of 00 mm) and compared with conventional example N[L 2. The results are shown in Figure 2. In Figure 2, the horizontal axis is the distance from the left end of the coil, the vertical axis is the iron content, the O mark is plotted for Example N+L1, and the * mark is plotted for Conventional Example Na2. As is clear from Figure 0, the iron content of Example 1 N[Ll was 6.8 wt% on average, and all measurement points ranged from 6.6 wt% to 7.0 wt%. It was distributed between OwL%. On the other hand, the iron content of conventional example N[L 2 is 8.3 wt% on average, and 7.9 wt% at all measurement points.
However, it was distributed between 8.9 wt% and there was a large variation.

なお、めっき皮膜と鋼素地との境界部にF相が存在して
いるか否かを調べるため、実施例Na 1がらN[Li
2迄の試料について、めっき皮膜の上層約三分の二を取
り除きX線回折を行った結果、何れの試料についてもr
相は検出されなかった。
In addition, in order to investigate whether or not the F phase exists at the boundary between the plating film and the steel base, N[Li
As a result of removing about two-thirds of the upper layer of the plating film and performing X-ray diffraction on the samples up to 2, it was found that r
No phase was detected.

[発明の効果] この発明によれば、めっき皮膜中にr相が実質的に存在
せず、鉄含有率が高い外層部と適正な鉄含有率をもつ内
層部とが一体構造になり、しがも鉄含有率の分布が面方
向に均一な皮膜を有する溶融亜鉛めっき鋼板、即ち、十
分な耐食性に加えて1憂れた耐パウダリング性と耐クレ
ータリング性とを兼ね備え且つ品質の極めて安定した溶
融亜鉛めっき鋼板が製造される。このような優れた製品
を簡明な工程で容易に製造出来るこの発明の産業上の効
果は大きい。
[Effects of the Invention] According to the present invention, there is substantially no r-phase in the plating film, and the outer layer with a high iron content and the inner layer with an appropriate iron content have an integral structure. A hot-dip galvanized steel sheet with a film that has a uniform distribution of iron content in the surface direction, that is, it has sufficient corrosion resistance, excellent powdering resistance and cratering resistance, and extremely stable quality. A hot-dip galvanized steel sheet is produced. The industrial effects of the present invention, which allow such excellent products to be easily manufactured through simple steps, are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の詳細な説明するための熱処理条件と
特性適正との関係を示す図、第2図は本発明の一実施例
の鉄含有率の分布を示す図である。
FIG. 1 is a diagram showing the relationship between heat treatment conditions and appropriate characteristics for detailed explanation of the present invention, and FIG. 2 is a diagram showing the distribution of iron content in one embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)以下の工程を含むことを特徴とする加工性、塗装
性に優れた合金化溶融亜鉛めっき鋼板の製造方法。 (イ)通常の前処理を施した鋼板をAl0.05wt%
以上0.3wt%以下、且つPb0.2wt%以下を含
有する溶融亜鉛めっき浴に浸漬して30g/m^2以上
90g/m^2以下のめっきを施す工程、 (ロ)前記めっきを施す工程に連続して合金化処理炉に
亜鉛めっきされた鋼板を導入してめっき皮膜中の鉄含有
率を3wt%以上8wt%以下の範囲、且つ皮膜中の亜
鉛の一部が未合金のまま残る状態に合金化処理を行う工
程、 (ハ)前記合金化処理された溶融亜鉛めっき鋼板の片面
又は両面に0.5g/m^2以上10g/m^2以下の
Mn35wt%以上のMn−Zn合金めっきを施す工程
、 (ニ)前記工程でめつきを施した鋼板を非酸化性又は還
元性雰囲気に維持した炉内で250℃以上亜鉛の融点以
下の温度範囲で20秒以上15時間以下再加熱する工程
(1) A method for producing an alloyed hot-dip galvanized steel sheet with excellent workability and paintability, which includes the following steps. (b) Steel plate subjected to normal pretreatment with Al0.05wt%
A step of applying plating of 30 g/m^2 to 90 g/m^2 by immersion in a hot-dip galvanizing bath containing Pb of 0.3 wt% or less and Pb of 0.2 wt% or less; (b) A step of applying the plating. Continuously introducing a galvanized steel sheet into an alloying treatment furnace, the iron content in the plating film is in the range of 3 wt% or more and 8 wt% or less, and a part of the zinc in the film remains unalloyed. (c) Mn-Zn alloy plating of 35 wt% or more of Mn of 0.5 g/m^2 or more and 10 g/m^2 or less on one or both sides of the hot-dip galvanized steel sheet subjected to the alloying treatment. (d) Reheating the steel plate plated in the above step in a furnace maintained in a non-oxidizing or reducing atmosphere at a temperature range of 250°C or higher and below the melting point of zinc for 20 seconds or more and 15 hours or less. Process.
(2)以下の工程を含むことを特徴とする加工性、塗装
性に優れた合金化溶融亜鉛めっき鋼板の製造方法。 (イ)通常の前処理を施した鋼板をAl0.05wt%
以上0.3wt%以下且つPb0.2wt%以下を含有
する溶融亜鉛めっき浴に浸漬して30g/m^2以上9
0g/m^2以下のめっきを施す工程、 (ロ)前記めっきを施す工程に連続して合金化処理炉に
亜鉛めっきされた鋼板を導入してめっき皮膜中の鉄含有
率を3wt%以上8wt%以下の範囲、且つ皮膜中の亜
鉛の一部が未合金のまま残る状態に合金化処理を行う工
程、 (ハ)めっき皮膜が溶融状態であるうちに鋼板の片面又
は両面にMn35wt%以上のMn−Zn合金パウダー
を吹き付けて0.5g/m^2以上10g/m^2以下
の上層めっきを施す工程、 (ニ)めっき皮膜が固化した後スキンパス処理を行い溶
融亜鉛めっき皮膜の表面を平滑化する工程、 (ホ)前記工程で平滑化しためっき皮膜を有する鋼板を
非酸化性又は還元性雰囲気に維持した炉内で250℃以
上亜鉛の融点以下の温度範囲で20秒以上15時間以下
再加熱する工程。
(2) A method for producing an alloyed hot-dip galvanized steel sheet with excellent workability and paintability, the method comprising the following steps. (b) Steel plate subjected to normal pretreatment with Al0.05wt%
30g/m^2 or more by immersion in a hot-dip galvanizing bath containing 0.3wt% or less and 0.2wt% or less of Pb9
A step of applying plating of 0g/m^2 or less, (b) Continuing to the above-mentioned plating step, introducing a galvanized steel sheet into an alloying treatment furnace to increase the iron content in the plating film to 3wt% or more 8wt % or less and a part of the zinc in the film remains unalloyed. Spraying Mn-Zn alloy powder to apply upper layer plating of 0.5 g/m^2 to 10 g/m^2; (d) After the plating film has solidified, skin pass treatment is performed to smooth the surface of the hot-dip galvanized film. (e) Re-processing the steel plate with the smoothed plating film in the above step in a furnace maintained in a non-oxidizing or reducing atmosphere at a temperature range of 250°C or higher and below the melting point of zinc for 20 seconds or more and 15 hours or less. The process of heating.
JP27518188A 1988-10-31 1988-10-31 Production of alloyed hot dip galvanized steel sheet having superior workability and coatability Pending JPH02122082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27518188A JPH02122082A (en) 1988-10-31 1988-10-31 Production of alloyed hot dip galvanized steel sheet having superior workability and coatability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27518188A JPH02122082A (en) 1988-10-31 1988-10-31 Production of alloyed hot dip galvanized steel sheet having superior workability and coatability

Publications (1)

Publication Number Publication Date
JPH02122082A true JPH02122082A (en) 1990-05-09

Family

ID=17551803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27518188A Pending JPH02122082A (en) 1988-10-31 1988-10-31 Production of alloyed hot dip galvanized steel sheet having superior workability and coatability

Country Status (1)

Country Link
JP (1) JPH02122082A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371342A (en) * 2001-06-14 2002-12-26 Sumitomo Metal Ind Ltd Hot-dip galvanized steel sheet and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371342A (en) * 2001-06-14 2002-12-26 Sumitomo Metal Ind Ltd Hot-dip galvanized steel sheet and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US5409553A (en) Process for manufacturing galvannealed steel sheets having high press-formability and anti-powdering property
JPH0753901B2 (en) Hot dip galvanizing method
JP3382697B2 (en) Manufacturing method of galvannealed steel sheet
JPH02118088A (en) Production of hot-dip galvanized alloyed steel sheet excellent in workability and coating property
JPH02122082A (en) Production of alloyed hot dip galvanized steel sheet having superior workability and coatability
JP2727598B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JPH02145777A (en) Production of alloyed hot-dip galvanized steel sheet excellent in workability and suitability for coating
JP2727595B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JPH02138481A (en) Production of alloyed hot dip galvanizing steel sheet having excellent workability and paintability
JP3580541B2 (en) Surface-treated steel sheet excellent in workability and corrosion resistance of processed part and method for producing the same
JPH02138482A (en) Production of steel plate coated with alloyed zinc by galvanization having excellent workability and paintability
JP2525165B2 (en) Method for manufacturing high strength galvanized steel sheet
JP2754596B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability, paintability, and corrosion resistance, and method for producing the same
JP2727596B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JPH02166264A (en) Manufacture of alloyed hot dip galvanized steel sheet having excellent workability and coating characteristics
JPH02166261A (en) Manufacture of alloyed hot dip galvanized steel sheet excellent in workability and coating suitability
JPH0128098B2 (en)
JP2727597B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JP2754590B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JPH02166265A (en) Manufacture of alloyed hot dip galvanized steel sheet having excellent workability and coating characteristics
JP3016122B2 (en) Galvannealed steel sheet with excellent paintability and its manufacturing method
JPS62256959A (en) Manufacture of alloying-plated steel sheet
JPH02166262A (en) Manufacture of alloyed hot dip galvanized steel sheet having excellent workability and coating characteristics
JPH02133583A (en) Production of alloyed hot dip galvanized steel sheet having superior workability and coatability
JPH02118089A (en) Production of alloyed hot dip galvanized steel sheet having superior workability and coatability