JP2754596B2 - Alloyed hot-dip galvanized steel sheet excellent in workability, paintability, and corrosion resistance, and method for producing the same - Google Patents
Alloyed hot-dip galvanized steel sheet excellent in workability, paintability, and corrosion resistance, and method for producing the sameInfo
- Publication number
- JP2754596B2 JP2754596B2 JP24126488A JP24126488A JP2754596B2 JP 2754596 B2 JP2754596 B2 JP 2754596B2 JP 24126488 A JP24126488 A JP 24126488A JP 24126488 A JP24126488 A JP 24126488A JP 2754596 B2 JP2754596 B2 JP 2754596B2
- Authority
- JP
- Japan
- Prior art keywords
- plating
- less
- dip galvanized
- hot
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Coating With Molten Metal (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] この発明は、自動車や家電機器或は建材等に使用され
るFe−Zn合金めっき鋼板に関するものである。Description: TECHNICAL FIELD The present invention relates to a Fe—Zn alloy plated steel sheet used for automobiles, home electric appliances, building materials, and the like.
[従来技術] 亜鉛めっき鋼板は安価で耐食性や強度に優れた材料と
して広く使われており、なかでも自動車の内外板には耐
食性に加えて、加工性や塗装性を考慮したものが多量に
使われている。亜鉛めっき鋼板の量産法として一般的に
は電気めっき法と溶融めっき法とがあるが、電気めっき
法では、低温で処理するので熱影響による相変化が無く
成分コントロールも容易であるが、めっき付着量を多く
するには処理時間を増さねばならない。これに対して、
溶融めっき法では処理時間を増すことなく簡単に付着量
を増すことが出来るが、めっき皮膜組成と生成される相
のコントロールに工夫を要する。近年自動車用の鋼板で
は、塩害への対処等もあってより高度の耐食性が要求さ
れ、これに呼応して、付着量が容易に確保出来、且つ経
済的な溶融亜鉛めっきを主体に、めっき組成や相コント
ロールを上手に行い、高い耐食性を確保しながらその上
で加工性や塗装性を合わせ持っためっき鋼板が求められ
ている。[Prior art] Galvanized steel sheets are widely used as materials that are inexpensive and have excellent corrosion resistance and strength. Among them, the inner and outer plates of automobiles are made of a large amount of materials that take into account not only corrosion resistance but also workability and paintability. Have been done. In general, there are electroplating and hot-dip galvanizing methods for mass production of galvanized steel sheets.Electroplating processes at low temperatures, so there is no phase change due to heat effects and component control is easy. To increase the volume, the processing time must be increased. On the contrary,
In the hot-dip plating method, the amount of coating can be easily increased without increasing the processing time, but it requires some measures to control the composition of the plating film and the phase formed. In recent years, steel sheets for automobiles have been required to have a higher level of corrosion resistance due to measures against salt damage, etc., and in response to this, the coating composition can be easily secured and the economical hot-dip galvanizing is mainly used. There is a demand for a plated steel sheet that performs well and phase control and ensures high corrosion resistance while also having good workability and paintability.
加工性で最も問題になるのが耐パウダリング性であ
り、塗装性で問題になるのが耐クレータリング性であ
る。パウダリングとは、プレス成形の際にめっき皮膜が
紛状になって脱落する現象であり、クレータリングと
は、めっき皮膜に化成処理を施した後行う電着塗装処理
において塗膜に目視できる凹凸(クレータ)が発生する
現象である。前者はめっき皮膜中に鉄含有率の高いГ相
(Fe3Zn10,Fe20〜28wt%)が生成され、これが硬くて脆
いために起こり、後者はめっき皮膜表面の不均一さ(表
面形状、酸化膜、めっき皮膜相構造等)に起因して発生
する。The most problematic in workability is powdering resistance, and the problem in paintability is cratering resistance. Powdering is a phenomenon in which the plating film becomes powdery and falls off during press molding, and cratering is the unevenness that can be visually observed on the coating film in the electrodeposition coating process after the chemical conversion treatment is performed on the plating film. (Craters). In the former, a Г phase (Fe 3 Zn 10 , Fe 20 to 28 wt%) with a high iron content is generated in the plating film, which is caused by the hardness and brittleness, and the latter is caused by unevenness of the plating film surface (surface shape, oxidation Film, plating film phase structure, etc.).
従来、自動車用に使用されている合金化溶融亜鉛めっ
き鋼板は、溶融めっき後全めっき皮膜平均の鉄含有率が
10wt%前後に達するまで合金化処理を施し、めっき表面
までFeを拡散させて耐食性、特に塗装後耐食性を向上さ
せたものである。即ち、鋼帯に連続的に前処理(熱処理
を含む)を施して素材を調整した後、亜鉛を溶融しため
っき浴に浸漬してめっきし、後続してこのめっき鋼帯を
合金化炉内で500℃から700℃の温度に急速に昇温させ短
時間(10〜30秒)保持して、めっき皮膜の鉄含有率を10
%前後に合金化させたものである。しかし、このように
して作られる合金化溶融亜鉛めっき鋼板は急速な昇温に
よって高温に加熱されるので、めっき皮膜中の鉄含有量
が場所により異なりがちで、めっき皮膜の面方向及び深
さ方向共に合金化が不均一になること、これに加えて、
表層の鉄含有量を確保するための鋼素地との界面の鉄含
有率が高まりГ相の生成が避けられないこと、更に高温
処理と急速冷却によりめっき皮膜に熱応力が発生するこ
と等の問題を抱えている。Conventionally, alloyed hot-dip galvanized steel sheets used for automobiles have an average iron content of all coating films after hot-dip coating.
Alloying treatment is performed until it reaches about 10 wt%, and Fe is diffused to the plating surface to improve corrosion resistance, especially after coating. That is, after the steel strip is continuously subjected to pretreatment (including heat treatment) to adjust the material, the steel strip is immersed in a plating bath in which zinc is melted, plated, and subsequently, the plated steel strip is placed in an alloying furnace. Raise the temperature rapidly from 500 ° C to 700 ° C and hold for a short time (10 to 30 seconds) to reduce the iron content of the plating film to 10%.
% Alloyed. However, the alloyed hot-dip galvanized steel sheet produced in this way is heated to a high temperature by rapid temperature rise, so that the iron content in the plating film tends to vary depending on the location, and the surface direction and depth direction of the plating film In both cases, the alloying becomes non-uniform,
Problems such as an increase in the iron content at the interface with the steel base to secure the iron content in the surface layer, the inevitable formation of a phase, and the occurrence of thermal stress in the plating film due to high-temperature treatment and rapid cooling. I have
一方、合金化処理を一次と二次の二工程に分けて処理
する方法が提案されている。例えば、特公昭59−14541
号では、一時加熱において、めっき皮膜の平滑性を得る
ためにZnめっき被膜を再溶融させる急速昇温高温加熱を
行う。この加熱では鉄含有率が2.2〜5.5wt%の低い範囲
に留まるので、この一時加熱の結果に応じて、二次加熱
を亜鉛の融点以下の低温で時間をかけて行い、鉄含有率
を6〜13wt%の範囲に納めるものである。On the other hand, a method has been proposed in which the alloying treatment is divided into two steps, a primary step and a secondary step. For example, Japanese Patent Publication No. 59-14541
In (1), in the temporary heating, rapid heating and high-temperature heating for remelting the Zn plating film is performed to obtain the smoothness of the plating film. In this heating, the iron content stays in the low range of 2.2 to 5.5 wt%. Therefore, according to the result of the temporary heating, the secondary heating is performed at a low temperature below the melting point of zinc, and the iron content is reduced to 6%. It should be within the range of ~ 13wt%.
他方、めっき皮膜表層のみの鉄含有率を高めて耐クレ
ータリング性を改善したものも提案されている。例え
ば、特公昭58−15554号の提案は、耐食性金属層を内層
としその上に鉄含有率の高いFe−Zn合金被覆層を付して
カチオン電着塗装性を向上させためっき鋼板である。こ
の提案では、内層である前記耐食性金属層として溶融亜
鉛めっき後に熱処理によりFe−Zn合金化した合金化溶融
亜鉛めっき層が開示されている。On the other hand, there has also been proposed one in which the iron content of only the surface layer of the plating film is increased to improve the cratering resistance. For example, Japanese Patent Publication No. Sho 58-15554 proposes a plated steel sheet in which a corrosion-resistant metal layer is provided as an inner layer and a Fe-Zn alloy coating layer having a high iron content is provided thereon to improve the cationic electrodeposition coating property. In this proposal, an alloyed hot-dip galvanized layer in which an Fe—Zn alloy is formed by heat treatment after hot-dip galvanizing is disclosed as the inner corrosion-resistant metal layer.
[発明が解決しようとする課題] しかしながら、特公昭59−14541号では耐クレータリ
ング性を満足するものではない。耐クレータリング性に
関しては、表面の鉄含有率は不十分であり、又、耐パウ
ダリング性に関しても、溶融亜鉛めっき後急速昇温高温
加熱によって合金化処理を行うので合金化反応が不均一
に進むことが避けられず、その結果、加工性に劣るГ層
が成長してしまう。又、場合によっては、合金化されな
い部分と合金化の進んだ部分とが混在していわゆる焼け
むらの現象を呈したりする。このように、一次加熱が不
均一になり易いので、一次加熱の結果を基にした二次加
熱条件が極めて複雑になり実操業ではその実施に大きな
困難を伴う。[Problems to be Solved by the Invention] However, Japanese Patent Publication No. 59-14541 does not satisfy the cratering resistance. Regarding the cratering resistance, the iron content of the surface is insufficient, and the powdering resistance is also non-uniform since the alloying treatment is performed by rapid temperature rise and high temperature heating after hot dip galvanizing. It is inevitable to proceed, and as a result, a layer with poor workability grows. Further, in some cases, a portion that is not alloyed and a portion where alloying has progressed are mixed, and a phenomenon of so-called uneven burning is exhibited. As described above, since the primary heating is likely to be non-uniform, the secondary heating conditions based on the result of the primary heating become extremely complicated, and there are great difficulties in carrying out the actual operation.
特公昭58−15554号は、めっき表面の鉄濃度を飛躍的
に高めたので、耐クレータリング性は改善されるが、溶
融亜鉛めっき後の熱処理によって合金化を完結させてい
るので、特公昭59−14541号と同様に合金化の不均一さ
の問題があり、加えてめっき皮膜内での鉄濃度勾配が大
きくなり、鉄濃度の高くなる鋼素地との界面ではГ相が
成長してしまう。又、急熱急冷による熱応力も耐パウダ
リング性にとっては好ましくない。In Japanese Patent Publication No. 58-15554, cratering resistance is improved because the iron concentration on the plating surface is dramatically increased, but alloying is completed by heat treatment after hot-dip galvanizing. Similar to -14541, there is a problem of non-uniform alloying. In addition, the iron concentration gradient in the plating film becomes large, and the Г phase grows at the interface with the steel base where the iron concentration becomes high. Further, thermal stress due to rapid thermal quenching is not preferable for powdering resistance.
このように、耐パウダリング性、耐久クレータリング
性を満たすべく工夫がなされてきたが、未だ両特性を共
に満足させる溶融亜鉛めっき鋼板は得られていない。As described above, efforts have been made to satisfy powdering resistance and durable cratering properties, but a hot-dip galvanized steel sheet satisfying both properties has not yet been obtained.
この問題を解決するために、この発明はなされたもの
で、耐食性に加えて耐パウダリング性と耐クレータリン
グ性と共に満たすめっき鋼板とその製造法を提供するこ
とを目的とするものである。In order to solve this problem, the present invention has been made, and an object of the present invention is to provide a plated steel sheet which satisfies not only corrosion resistance but also powdering resistance and cratering resistance, and a method for producing the same.
[課題を解決するための手段及び作用] この目的を達成するための手段は、鋼板の少なくとも
片面に、付着量が0.5g/m2以上10g/m2以下でMn含有率が3
0wt%以上のMn−Zn合金の外層部と付着量が30g/m2以上9
0g/m2以下で厚さ0.5μmの鋼素地との境界を除いてГ相
を含まないMn−Fe合金化Znの内層部とからなり、それら
の両層部が境界において相互に熱拡散された一体構造を
形成し、且つ合金成分含有率の分布が面方向に均一であ
るめっき皮膜を有することを特徴とする加工性、塗装性
に優れた合金化溶融亜鉛めっき鋼板である。そして上記
の合金化溶融亜鉛めっき鋼板を製造する方法として次の
ものがある。[Means and Actions for Solving the Problems] Means for achieving this object are as follows: at least one surface of the steel sheet has an adhesion amount of 0.5 g / m 2 or more and 10 g / m 2 or less and an Mn content of 3
The adhesion amount and the outer layer of 0 wt% or more of Mn-Zn alloy 30 g / m 2 to 9
Except for the boundary between the base steel having a thickness of 0.5μm at 0 g / m 2 or less made of an inner layer portion of the Mn-Fe alloy Zn containing no Г phase, both layers portions thereof are mutually thermally diffused at the boundary An alloyed hot-dip galvanized steel sheet having excellent workability and paintability, characterized in that it has a plated film that forms an integrated structure and that has a uniform distribution of the alloy component content in the plane direction. The following is a method for producing the alloyed hot-dip galvanized steel sheet.
その一つは、以下の工程を含むことを特徴とする加工
性、塗装性に優れた合金化溶融亜鉛めっき鋼板の製造方
法である。One of them is a method for producing an alloyed hot-dip galvanized steel sheet having excellent workability and coatability, which includes the following steps.
(イ)通常の前処理を施した鋼帯をAl0.05wt%以上0.3w
t%以下且つPb0.2wt%以下を含有する溶融亜鉛めっき浴
に浸漬して30g/m2以上90g/m2以下の亜鉛めっきを施す工
程。(A) A steel strip that has been subjected to a normal pretreatment is Al 0.05 wt% or more and 0.3 w
t% or less and Pb0.2Wt% step was immersed in a molten zinc plating bath subjected to 30 g / m 2 or more 90 g / m 2 or less of galvanized containing the following.
(ロ)めっき皮膜が溶融状態であるうちにスパングルの
微細化処理を施す工程。(B) A step of performing spangle refining while the plating film is in a molten state.
(ハ)めっき皮膜が固化した後スキンパス処理を行い、
溶融亜鉛めっき皮膜の表面を平滑化する工程。(C) After the plating film is solidified, a skin pass treatment is performed.
A step of smoothing the surface of the hot-dip galvanized film.
(ニ)この溶融亜鉛めっき鋼帯の片面又は両面に付着量
0.5g/m2以上10g/m2以下のMn40wt%以上のMn−Zn合金め
っきを施す工程。(D) Adhesion amount on one or both sides of this galvanized steel strip
A step of applying a Mn-Zn alloy plating of not less than 0.5 g / m 2 and not more than 10 g / m 2 and not less than 40 wt% of Mn.
(ホ)前記工程でめっきを施した鋼帯を非酸化性又は還
元性雰囲気に維持したバッチ式焼鈍炉内でオープンコイ
ルの状態で320℃以上亜鉛の融点以下の温度範囲で10分
から50時間加熱する工程。(E) Heating the steel strip plated in the above process in a batch type annealing furnace maintained in a non-oxidizing or reducing atmosphere in an open coil state at a temperature in the range of 320 ° C or more and the melting point of zinc for 10 minutes to 50 hours. Process.
もう一つは、以下の工程を含むことを特徴とする加工
性、塗装性に優れた合金化溶融亜鉛めっき鋼板の製造方
法である。The other is a method for producing an alloyed hot-dip galvanized steel sheet having excellent workability and coatability, which includes the following steps.
(イ)通常の前処理を施した鋼帯をAl0.05wt%以上0.3w
t%以下且つPb0.2wt%以下を含有する溶融亜鉛めっき浴
に浸漬して30g/m2以上〜90g/m2以下のめっきを施す工
程。(A) A steel strip that has been subjected to a normal pretreatment is Al 0.05 wt% or more and 0.3 w
t% or less and Pb0.2Wt% or less by immersion in molten zinc plating bath containing 30 g / m 2 or more ~90g / m 2 step of applying the following plating.
(ロ)めっき皮膜が溶融状態であるうちに鋼帯の片面又
は両面にMn40wt%以上のMn−Zn合金パウダーを吹き付け
て0.5g/m2以上10g/m2以下の上層めっきを施す工程。(B) plating film step of performing one or both surfaces Mn40wt% or more Mn-Zn alloy by spraying powder 0.5 g / m 2 or more 10 g / m 2 or less of the upper layer plating of the steel strip while it is molten.
(ハ)めっき層が固化した後スキンパス処理を行い溶融
亜鉛めっき皮膜の表面を平滑化する工程。(C) A step of smoothing the surface of the hot-dip galvanized film by performing a skin pass treatment after the plating layer is solidified.
(ニ)前記工程で平滑化した皮膜を持つ鋼帯を非酸化性
又は還元性雰囲気に維持したバッチ式焼鈍炉内でオープ
ンコイルの状態で320℃以上亜鉛の融点以下の範囲内の
温度で10分から50時間加熱する工程。(D) In a batch type annealing furnace in which the steel strip having the film smoothed in the above step is maintained in a non-oxidizing or reducing atmosphere, in an open coil state at a temperature within the range of 320 ° C or more and the melting point of zinc or less. Heating for minutes to 50 hours.
以上の手段について、その作用も含め詳しく述べる。 The above means will be described in detail, including the operation thereof.
先ず、めっき用の鋼帯は冷延鋼帯でも熱延鋼帯でもよ
く、通常の前処理として表面調整とともに焼鈍処理を施
してもよい。First, the steel strip for plating may be a cold-rolled steel strip or a hot-rolled steel strip, and may be subjected to an annealing treatment together with a surface adjustment as a normal pretreatment.
めっき皮膜外層部のMnの含有率を30wt%以上とする
と、電着装着時のクレータ発生が防止される。即ち、合
金化溶融亜鉛めっき鋼板は、めっき面に燐酸塩処理を施
した後カチオン電着装着が施されるが、この化成処理に
よって燐酸塩結晶が生成される。このとき、めっき面に
Znのみが存在すると、ホパイト[Zn3(PO4)24H2O]と
称する粗大な針状結晶が生成されるが、Mnが存在すると
これが溶出し結晶中のZnの一部に置換わり結晶が緻密に
なる。一方クレータ発生の原因の一つに化成処理皮膜欠
陥部への局所的な電流集中が考えられるが、結晶が緻密
であれば欠陥部も少なくクレータは生じにくくなる。Mn
のこの効果はMn濃度が30wt%以上になると顕著に現れク
レータの発生は急激に減少する。このMn濃度の高い外層
部の量については、めっき面全体にわたって十分にMnを
供給するには0.5g/m2の付着量が必要であるが、10g/m2
を超えた場合にはその効果は飽和し、逆にコスト的には
不利になる。When the content of Mn in the outer layer portion of the plating film is 30 wt% or more, crater generation during electrodeposition is prevented. That is, the alloyed hot-dip galvanized steel sheet is subjected to a cation electrodeposition after a phosphate treatment is performed on the plated surface. Phosphate crystals are generated by the chemical conversion treatment. At this time, the plating surface
When only Zn is present, although hopeite [Zn 3 (PO 4) 2 4H 2 O] and referred coarse needle-shaped crystals are produced, if Mn is present which is eluted replaces the part of Zn in the crystal the crystal Becomes dense. On the other hand, one of the causes of crater generation is considered to be local current concentration on the chemical conversion film defect, but if the crystal is dense, the number of defect portions is small and craters are unlikely to occur. Mn
This effect becomes remarkable when the Mn concentration becomes 30 wt% or more, and the generation of craters sharply decreases. Regarding the amount of the outer layer portion having a high Mn concentration, an adhesion amount of 0.5 g / m 2 is necessary to sufficiently supply Mn over the entire plating surface, but 10 g / m 2
If it exceeds, the effect saturates, and on the contrary, it becomes disadvantageous in terms of cost.
めっき皮膜の内層部は、外層部ほどMn含有率を高くす
る必要はないが、ZnにMnが合金化させると裸耐食性が飛
躍的に向上し、Mn或はFeを合金化させると塗装後耐食性
が向上する。したがって、Mn−Fe合金化溶融亜鉛めっき
では亜鉛めっきより付着量が少なくても耐食性は確保さ
れるが、高耐食化に対応するためには付着量30g/m2以上
が必要である。一方、付着量が多すぎても過剰品質とな
るばかりか、合金化処理において長時間を要し生産性を
低下させることになる。又、一般にめっき皮膜が厚くな
ると加工時に皮膜の破壊や剥離が起こることがあり、合
金化溶融亜鉛めっき鋼板の場合ではパウダリングが起こ
り易くなるので、90g/m2を超えて付着させることは得策
ではない。内層部は鋼板と接しており鋼素地との境界に
Г相が生成する可能性があるが、このГ相が検出されな
いめっき皮膜は耐パウダリング性が良好である。そして
Г相が0.5μm以上の厚さに成長していないと検出する
ことは困難である。耐パウダリングに関して、最も大き
く影響するのは、めっき皮膜の大半を占める内層の材質
であり、硬く脆いГ相の検出されないMn−Fe合金化溶融
亜鉛めっき皮膜はパウダリングを起さない。The inner layer of the plating film does not need to have a higher Mn content than the outer layer, but when Mn is alloyed with Zn, the bare corrosion resistance is dramatically improved, and when Mn or Fe is alloyed, the corrosion resistance after painting is improved. Is improved. Therefore, in the case of Mn-Fe alloyed hot-dip galvanizing, corrosion resistance is ensured even if the amount of adhesion is smaller than that of zinc plating, but an amount of adhesion of 30 g / m 2 or more is required to cope with high corrosion resistance. On the other hand, if the amount of adhesion is too large, not only the quality becomes excessive, but also a long time is required in the alloying treatment, and the productivity is reduced. Also, in general, when the plating film becomes thicker, the film may be broken or peeled off during processing, and in the case of an alloyed hot-dip galvanized steel sheet, powdering is likely to occur, so it is advisable to adhere over 90 g / m 2 is not. The inner layer is in contact with the steel sheet and a Г phase may be formed at the boundary with the steel substrate. However, the plating film in which this Г phase is not detected has good powdering resistance. It is difficult to detect that the Г phase has not grown to a thickness of 0.5 μm or more. Regarding the powdering resistance, the most significant influence is given to the material of the inner layer that occupies most of the plating film, and the hard and brittle Mn—Fe alloyed hot-dip galvanized film in which no Г phase is detected does not cause powdering.
この内層部と前述した外層部とは、はっきりと層別さ
れるものではなく、後に詳述するが、製造途中では二層
であったものが相互に熱拡散し一体構造となったもので
あり、それら両層部の付着量を明確に数字で表現出来る
ものではなく、前記二層の状態での付着量をもって外層
部及び内層部と定義するものである。両層部が互に熱拡
散し一体構造となり組成が連続していて断絶がないと、
機械的性質が電気化学的性質が隣接した部分で極端に異
なることが無く、加工性においても又耐食性においても
弱点がなくなる。The inner layer and the outer layer described above are not clearly separated from each other, but will be described in detail later. However, the amount of adhesion between the two layers cannot be clearly expressed by numbers, and the amount of adhesion in the two-layer state is defined as an outer layer portion and an inner layer portion. If both layers thermally diffuse with each other and become an integrated structure, the composition is continuous and there is no break,
There is no extreme difference in mechanical properties between adjacent parts of electrochemical properties, and there is no weak point in workability or corrosion resistance.
めっき鋼板のような材料では、皮膜中に不均一箇所が
あると、そこが腐食の開始点となったり或は加工時の破
壊開始点になったりするが、皮膜が面方向に均一である
とこれらの開始点が無くなり、品質が極めて安定すると
共にその特性が最大限発揮される。In the case of a material such as a plated steel sheet, if there is a non-uniform part in the coating, it may be the starting point of corrosion or the starting point of breakage during processing, but if the coating is uniform in the plane direction, These starting points are eliminated, and the quality is extremely stable and the properties are maximized.
使用法によっては、片面にのみ外観の平滑性が要求さ
れることがある。この場合他面には、Mn含有率30wt%以
上の外層部は必要とせず、溶融亜鉛めっき皮膜のみでよ
い。Depending on the usage, smoothness of appearance may be required only on one side. In this case, the other surface does not require an outer layer portion having a Mn content of 30% by weight or more, and only the hot-dip galvanized film is sufficient.
以下に、製造方法についてその作用を述べる。溶融亜
鉛めっき浴には通常、Fe−Zn合金反応の抑制やめっき面
の平滑化等のためAlが0.2%前後添加されており、スパ
ングル調整のためPbが含まれている。このうちAlは合金
化抑制効果を持つので、0.05wt%以上添加し、溶融亜鉛
めっき浴浸漬後のFe−Zn合金が部分的且つ不均一に生成
することを防ぐ。この工程で不均一にFe−Zn合金を生成
させないことは重要なことであり、一旦不均一化すると
後の工程で修正することが出来ない。Alの添加量が多過
ぎて0.3wt%を超えると合金化の抑制効果が過剰とな
り、後の合金化処理に時間が掛かり過ぎ工業的には不適
切になる。Pbは合金化反応には直接関与しないが、多量
のPbは耐パウダリング性を低下させるので、0.2wt%以
下に制限しなければならない。The operation of the manufacturing method will be described below. Usually, about 0.2% of Al is added to the hot-dip galvanizing bath for suppressing the reaction of the Fe-Zn alloy and smoothing the plated surface, and contains Pb for adjusting the spangle. Of these, Al has an alloying suppression effect, so that it is added in an amount of 0.05 wt% or more to prevent the Fe-Zn alloy after immersion in the hot-dip galvanizing bath from being partially and non-uniformly formed. It is important not to generate the Fe-Zn alloy non-uniformly in this step, and once it is made non-uniform, it cannot be corrected in a later step. If the addition amount of Al is too large and exceeds 0.3% by weight, the effect of suppressing alloying becomes excessive, and the subsequent alloying process takes too much time, which is industrially unsuitable. Although Pb does not directly participate in the alloying reaction, a large amount of Pb lowers the powdering resistance, so it must be limited to 0.2 wt% or less.
この溶融亜鉛めっき皮膜が溶融状態であるうちにスパ
ングルを微細化し、更にめっき皮膜が固化した後スキン
パス処理を行うことによって平滑なめっき面が得られ、
この後に施す上層めっきの被覆率が向上する。その結
果、耐クリータリング性を効率的に向上させるとができ
ると共に、塗装後の鮮映性を得ることもできる。スキン
パスは伸長率0.3%以上で行うとめっき面は平滑となる
が、伸長率が大き過ぎて5%を超えると、一般的薄板用
鋼材では加工性に影響するおそれがある。While this hot-dip galvanized film is in a molten state, the spangles are refined, and a smooth plated surface is obtained by performing skin pass treatment after the plated film is solidified.
The coverage of the upper plating applied thereafter is improved. As a result, the anti-cretering property can be efficiently improved, and the sharpness after painting can be obtained. When the skin pass is performed at an elongation ratio of 0.3% or more, the plated surface becomes smooth. However, when the elongation ratio is too large and exceeds 5%, the workability of a general thin steel sheet material may be affected.
Mn含有率30wt%以上のMn−Zn合金めっきは、耐クリー
タリング性を確保すると共に、この後の加熱処理におい
て先に施した溶融亜鉛めっき層へMnを拡散させるために
行う。即ち、内層部では加熱時にこの上層からMnが拡散
するので、鋼素地からのFeの拡散量を押さえることがで
き、鋼素地境界でのΓ相の生成機会を減ずることにな
る。同時に内層部はFe−Mn−Zn合金となるので、耐食性
も大幅に向上する。The Mn-Zn alloy plating with a Mn content of 30 wt% or more is performed to ensure the creeping resistance and to diffuse Mn into the hot-dip galvanized layer previously applied in the subsequent heat treatment. That is, since Mn diffuses from the upper layer in the inner layer during heating, the amount of Fe diffusion from the steel substrate can be suppressed, and the opportunity for the generation of the Γ phase at the boundary of the steel substrate is reduced. At the same time, the inner layer is made of an Fe-Mn-Zn alloy, so that the corrosion resistance is greatly improved.
この上層合金めっきの処理方法は、亜鉛の融点より高
い温度で処理する方法でなければ、電気めっき、蒸着め
っき、溶射等どのような方法でもよい。この合金めっき
処理を合金パウダー吹き付けで行うときは、先の溶融亜
鉛めっき層が溶融状態のうちに行うとスパングルの微細
化も同時に行われ、工程を一つ省くことが出来る。The upper layer alloy plating may be performed by any method such as electroplating, vapor deposition plating, and thermal spraying, as long as the method is not a method of processing at a temperature higher than the melting point of zinc. When this alloy plating process is performed by spraying alloy powder, if the preceding hot-dip galvanized layer is performed while it is in a molten state, the spangles can be miniaturized at the same time, and one step can be omitted.
上記した二度のめっき工程を経ためっき鋼帯を加熱処
理するが、非酸化性又は還元性雰囲気で行うのは表面の
酸化を防ぎ,塗装前の化成処理において化成皮膜結晶が
不均一になることを避けるためであり、バッチ式焼鈍炉
内で行うのは低温で時間を掛けて処理するからである。
オープンコイルの状態で加熱するのは、均一に加熱する
ことによって合金化にむらが生ずることを防止すると同
時にめっき面同士が付着して欠陥が発生することを防ぐ
ためである。タイトコイルの状態では、温度分布が不均
一となり、部分的に合金化速度の大きい部分と小さい部
分とができてしまう。特に、鋼帯長手方向にこの不均一
が生じ、高品質製品は得られ難い。加熱は低温で行う
が、320℃以上の温度は必要である。320℃未満では塗装
後耐食性を確保するに足るMn,Fe含有率を得るのに時間
が掛かり過ぎる。温度を亜鉛の融点(419.5℃)よりも
高くすると、合金化が急速に進む箇所が現れ又内層部と
鋼素地境界でΓ相の生成も無視できなくなる。更にオー
プンコイルの鋼帯間に挿入するスペーサーがめっき面に
痕跡を残すおそれも出てくる。第1図は上記の温度範囲
で、パウダリングとクレータの両者が共に発生しない条
件を調べたもので、横軸は加熱時間縦軸は加熱温度であ
る。図で、点a,b,c,dを結ぶ線で囲まれた範囲が、パウ
ダリング及びクレータを発生させない実操業上好ましい
条件範囲で、加熱時間については、a点の時間座標から
c点の時間座標まで、即ち10分以上50時間以下となる。
上記の加熱条件で熱処理を行うと、このめっき皮膜は急
速な高温加熱を受けていないので、面に沿っても合金成
分含有率が均一となる。又、Fe含有率も内層部では3wt
%から20wt%の範囲に、外層部ではMnが30%以上に収ま
りプレス成形時のパウダリングが発生しなくなると共
に、塗装時のクレータリングも防ぐことが出来る。しか
し、実操業時に起こりがちな条件のバラツキ等を考える
と特に好ましいのは、加熱温度が320℃から380℃まで、
加熱時間が30分から10時間までである。更に、この熱処
理によって、上層部と内層部との境界はMn−Znの拡散に
よって組成が連続し一体構造となる。Heating the coated steel strip after the two plating steps described above is performed in a non-oxidizing or reducing atmosphere to prevent oxidation of the surface and to make the conversion film crystals non-uniform during the chemical conversion treatment before painting. This is because the treatment is performed in a batch-type annealing furnace at a low temperature for a long time.
The reason why the heating is performed in the state of the open coil is to prevent unevenness in the alloying due to the uniform heating and also to prevent the plating surfaces from adhering to each other and generating defects. In the state of the tight coil, the temperature distribution becomes non-uniform, and a part having a high alloying rate and a part having a small alloying rate are partially formed. In particular, this unevenness occurs in the longitudinal direction of the steel strip, and it is difficult to obtain a high quality product. Heating is performed at low temperatures, but temperatures above 320 ° C are required. If the temperature is lower than 320 ° C., it takes too much time to obtain the Mn and Fe contents sufficient to secure the corrosion resistance after coating. When the temperature is higher than the melting point of zinc (419.5 ° C.), a portion where alloying proceeds rapidly appears, and the formation of a Γ phase at the boundary between the inner layer and the steel base cannot be ignored. Furthermore, the spacer inserted between the steel strips of the open coil may leave traces on the plating surface. FIG. 1 shows the conditions under which neither powdering nor craters occur in the above temperature range. The horizontal axis represents the heating time and the vertical axis represents the heating temperature. In the figure, a range surrounded by a line connecting points a, b, c, and d is a preferable condition range for practical operation in which powdering and craters do not occur. The time is up to the time coordinate, that is, 10 minutes or more and 50 hours or less.
When the heat treatment is performed under the above heating conditions, the plating film is not subjected to rapid high-temperature heating, so that the alloy component content becomes uniform even along the surface. Also, the Fe content is 3 wt% in the inner layer.
% To 20% by weight, and Mn in the outer layer portion is 30% or more, so that powdering during press molding does not occur and cratering during painting can be prevented. However, considering the variability of conditions that tend to occur during actual operation, it is particularly preferable that the heating temperature be from 320 ° C to 380 ° C.
The heating time is from 30 minutes to 10 hours. Further, by this heat treatment, the boundary between the upper layer portion and the inner layer portion has a continuous composition due to the diffusion of Mn-Zn to form an integrated structure.
[実施例] 二種類の鋼板を使用し、溶融亜鉛めっき条件、上層め
っき条件及び合金化処理条件を変えて処理した17例の合
金化溶融亜鉛めっき鋼板について、めっき皮膜中の合金
成分含有率を調べ、パウダリング試験及びクレータリン
グ試験を行って評価した。なお比較のために、この発明
の範囲外の条件で処理した6例(比較例)及び従来技術
による3例(従来例)についても同様に調べた。条件の
詳細は以下の通りである。[Example] For 17 alloyed hot-dip galvanized steel sheets using two types of steel sheets and changing the hot-dip galvanizing conditions, upper layer plating conditions, and alloying treatment conditions, the alloy component content in the plating film was determined. It was evaluated by conducting a powdering test and a cratering test. For comparison, six cases (comparative example) and three cases (conventional example) according to the prior art, which were processed under conditions outside the scope of the present invention, were similarly examined. Details of the conditions are as follows.
用いた鋼板は板圧0.8mmの冷延鋼板で、汎用されてい
る薄板用低炭素Alキルド(素材A)及び高加工用でパウ
ダリングを起こし易いと言われている超低炭チタン含有
鋼(素材B)とである。各々の成分を第1表に示す。The steel sheet used is a cold-rolled steel sheet with a sheet pressure of 0.8 mm. It is a low-carbon Al killed (material A) for thin sheets that is widely used, and an ultra-low-carbon titanium-containing steel (for high-processing, which is said to be prone to powdering). Material B). Each component is shown in Table 1.
溶融亜鉛めっきは、無酸化炉、還元加熱炉を備えた連
続式めっき設備で行い、めっき浴直後に設けられた気体
絞り装置によって付着量の調整を行い、つづいてミスト
スプレイによりスパングルを微細化し、めっき層が冷却
後伸長率1.5%でスキンパスを行い表面を平滑にした。 Hot-dip galvanizing is performed in a continuous plating facility equipped with a non-oxidizing furnace and a reduction heating furnace, the amount of coating is adjusted by a gas throttle device provided immediately after the plating bath, and then spangles are refined by mist spraying. After cooling, the plating layer was skin-passed at an elongation of 1.5% to smooth the surface.
Mn−Zn合金めっきには、電気めっき、プラズマ溶射又
はパウダースプレイの方法を用いたが、各々次の条件で
処理した。Electroplating, plasma spraying, or powder spraying was used for the Mn-Zn alloy plating, and each was processed under the following conditions.
(1)電気めっき ZnSO4・7H2O: 50〜150g/, MnSO4・H2O: 50〜150g/, Na3C6H5O7・2H7O: 180g/, 浴温: 50℃,陰極電流密度: 30〜50A/dm2 (2)プラズマ溶射 プラズマガス: Ar,溶射入熱: 20KW, 溶射距離: 100mm,平均粉末粒径(Mn70%): 約5μ
m, 粉末供給速度: 5g/min・dm2 (3)パウダースプレイ 平均粉末粒径(Mn70%): 約5μm,粉末供給速度:
3g/min・dm2 めっき皮膜中の合金化成分含有率は、グリムグロー放
電発光分光分析によって、めっき外層部及びめっき内層
部とを調べた。(1) Electroplating ZnSO 4 · 7H 2 O: 50~150g /, MnSO 4 · H 2 O: 50~150g /, Na 3 C 6 H 5 O 7 · 2H 7 O: 180g /, bath temperature: 50 ° C. , Cathode current density: 30-50A / dm 2 (2) Plasma spraying Plasma gas: Ar, spraying heat input: 20KW, spraying distance: 100mm, average powder particle size (Mn70%): about 5μ
m, powder supply rate: 5 g / min · dm 2 (3) powder spray Average powder particle size (Mn 70%): about 5 μm, powder supply rate:
The content of the alloying component in the 3 g / min · dm 2 plating film was determined for the outer layer portion of the plating and the inner layer portion of the plating by Grimm-glow discharge emission spectroscopy.
耐パウダリング性は、曲率半径2mmで90度曲げ後、曲
げの内側に粘着テープを貼り付け、これを剥して、パウ
ダーがこの粘着テープに付着した状況を目視観察し、点
数付けて評価した。評点の基準は、 1;全く付着無し、2;極くわずかに付着、 3;わずかに付着、4;少し付着、 5;かなり付着、 の五段階である。The powdering resistance was evaluated by bending the sheet 90 degrees at a radius of curvature of 2 mm, applying an adhesive tape to the inside of the bend, peeling the adhesive tape off, visually observing the state in which the powder adhered to the adhesive tape, and giving a score. The evaluation criteria are as follows: 1; no adhesion, 2; extremely slight adhesion, 3; slight adhesion, 4; slight adhesion, 5; considerable adhesion.
耐クリータリング性は、めっき面に化成処理を施し、
次いで電着塗装を行い、このとき発生したクレータの数
で評価した。化成処理には市販されている浸漬型の燐酸
塩系処理剤を用いた。電着塗装にはやはり市販されてい
るカチオン電着塗料を用いたが、調合後一週間攪拌し、
極間距離4cmで電着電圧300vを瞬時に印加して電着し
た。The anti-cretering resistance is achieved by subjecting the plated surface to a chemical conversion treatment.
Next, electrodeposition coating was performed, and the number of craters generated at this time was evaluated. For the chemical conversion treatment, a commercially available immersion type phosphate treatment agent was used. For the electrodeposition coating, a commercially available cationic electrodeposition coating was also used, but after mixing, the mixture was stirred for one week.
Electrodeposition was performed by instantaneously applying an electrodeposition voltage of 300 V at a distance between the electrodes of 4 cm.
これらの例の各々の処理条件と調査結果を第2表に示
す。Table 2 shows the processing conditions and results of each of these examples.
実施例では、素材Bでも耐パウダリング性に劣るもの
はなく、限界付着量のNo.6及び限界加熱時間に近い実施
例No.17とで、極く僅かにパウダリングが認められた
が、実用上は問題がない。耐クリータリング性では、外
層部のMn含有率が下限界に近いNo.11で1個内至2個の
小さなクレータが発見されたが、これも実用上は問題な
い。このように、実施例では全ての合金化溶融亜鉛めっ
き鋼板が耐パウダリング性と耐クレータリング性とを兼
ね備えている。又、内層の合金成分含有率も3wt%から1
0wt%の範囲内にあり、塗装後耐食性を十分に確保する
ものである。 In the examples, there is no inferior powdering resistance even in the material B, and in the case of No. 6 of the critical adhesion amount and Example No. 17 close to the critical heating time, extremely slight powdering was observed. There is no problem in practical use. Regarding the resistance to creeping, no more than two small craters were found in No. 11 in which the Mn content of the outer layer was near the lower limit, but this was not a problem in practical use. Thus, in the examples, all the alloyed hot-dip galvanized steel sheets have both powdering resistance and cratering resistance. In addition, the content of the alloy component in the inner layer is 3wt% to 1wt.
It is within the range of 0 wt%, and sufficiently ensures corrosion resistance after painting.
一方、発明の範囲から外れた条件で処理された比較例
では、溶融亜鉛めっき浴中にAlを含まないNo.1、加熱時
間過剰のNo.2、浴中Pbの多いNo.3、付着量の多すぎるN
o.4、外層部の無いNo.5、加熱温度の高過ぎるNo.6等耐
パウダリング性か耐クレータリング性の何れかに問題が
ある。On the other hand, in Comparative Examples treated under conditions outside the scope of the invention, No. 1 containing no Al in the hot dip galvanizing bath, No. 2 with excessive heating time, No. 3 with a large amount of Pb in the bath, adhesion amount Too many N
o.4, No.5 without outer layer, No.6 with too high heating temperature, etc. There is a problem in either powdering resistance or cratering resistance.
従来例では、No.1は急速昇温高温加熱のみにより合金
化したもので両特性に問題があり、例No.2は急速昇温高
温加熱の後低温で合金化調整したもので耐クレータリン
グが劣り、No.3は急速昇温高温加熱によって合金化しそ
の上に鉄含有率の高いめっき層を付したもので、耐パウ
ダリング性に劣る。このように、両特性が同時には満足
されていない。In the conventional example, No. 1 was alloyed only by rapid heating and high temperature heating, and there was a problem in both characteristics.Example No. 2 was alloyed and adjusted at low temperature after rapid heating and high temperature, and was resistant to cratering. No. 3 is alloyed by rapid temperature rise and high temperature heating and is provided with a plating layer having a high iron content thereon, which is inferior in powdering resistance. Thus, both characteristics are not satisfied at the same time.
なお、実施例No.14の合金化溶融亜鉛めっきコイル
(幅1800mm)の幅方向について、200mm間隔でめっき皮
膜内層部の合金成分含有率を調べた。この結果を従来例
No.2と比較して第2図に示す。第2図で横軸はコイル左
端からの距離、縦軸は合金成分であるFeの含有率であ
り、実施例については○印で、従来例については●印で
示してある。実施例では、鉄含有率の平均値は8.2wt%
であり、全ての測定点が8.0wt%から8.4wt%の間に分布
していた。一方、従来例では、平均値が8.3wt%で測定
値は7.9wt%から8.9wt%の範囲にバラツイていた。In addition, in the width direction of the alloyed hot-dip galvanized coil (width 1800 mm) of Example No. 14, the alloy component content of the inner layer portion of the plating film was examined at intervals of 200 mm. This result is compared with the conventional example
FIG. 2 shows a comparison with No. 2. In FIG. 2, the horizontal axis represents the distance from the left end of the coil, and the vertical axis represents the content of Fe, which is an alloying component. In the example, the average value of the iron content is 8.2 wt%
And all the measurement points were distributed between 8.0 wt% and 8.4 wt%. On the other hand, in the conventional example, the average value was 8.3 wt%, and the measured value was in a range from 7.9 wt% to 8.9 wt%.
又、めっき皮膜の底部にΓ相に存在しているか否かに
ついて、実施例1から17迄の合金化溶融亜鉛めっき処理
を施した試料について、上層約三分の二を取り除きX線
回折を行った結果、何れの試料についてもΓ相は検出さ
れなかった。Also, as to whether or not there is a Γ phase at the bottom of the plating film, about two-thirds of the upper layer was removed from the samples subjected to the galvannealing treatment of Examples 1 to 17, and X-ray diffraction was performed. As a result, no Δ phase was detected in any of the samples.
[発明の効果] この発明によれば、めっき皮膜中に脆いΓ相は実質的
に存在せず、表層はMnの含有率が高く内層はFe−Mn−Zn
合金でしかも面方向に均一な皮膜を持った合金化溶融亜
鉛めっき鋼板となっているので、十分な耐食性に加えて
優れた耐パウダリング性と耐クレータリング性とを有し
ている。このような表面処理鋼板を複雑な工程を経ずに
製造できるようにしたこの発明の産業上の効果は大き
い。[Effects of the Invention] According to the present invention, there is substantially no brittle Γ phase in the plating film, the surface layer has a high Mn content, and the inner layer is Fe-Mn-Zn.
Since it is an alloyed hot-dip galvanized steel sheet having an even coating in the plane direction, it has excellent powdering resistance and cratering resistance in addition to sufficient corrosion resistance. The industrial effect of the present invention in which such a surface-treated steel sheet can be manufactured without going through a complicated process is great.
第1図は本発明の主要部を説明するための熱処理条件と
特性適正との関係を示す図、第2図は本発明の一実施例
の鉄含有率の分布を示す図である。FIG. 1 is a diagram showing the relationship between heat treatment conditions and proper characteristics for explaining the main part of the present invention, and FIG. 2 is a diagram showing the distribution of iron content in one embodiment of the present invention.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C23C 2/06 C23C 2/26 - 2/28 C23C 28/02──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) C23C 2/06 C23C 2/26-2/28 C23C 28/02
Claims (3)
2以上10g/m2以下でMn含有率が30wt%以上のMn−Zn合金
の外層部と付着量が30g/m2以上90g/m2以下で厚さ0.5μ
mの鋼素地との境界を除いてГ相を含まないMn−Fe合金
化Znの内層部とからなり、それらの両層部が境界におい
て相互に熱拡散された一体構造を形成し、且つ合金成分
含有率の分布が面方向に均一であるめっき皮膜を有する
ことを特徴とする加工性、塗装性に優れた合金化溶融亜
鉛めっき鋼板。Claims: 1. An adhesion amount of 0.5 g / m on at least one surface of a steel sheet.
2 to 10 g / m 2 and Mn content 30 wt% or more Mn-Zn alloy outer layer and adhesion amount 30 g / m 2 to 90 g / m 2 and thickness 0.5 μm
m, except for the boundary with the steel base of m, the inner layer of Mn-Fe alloyed Zn that does not contain a Г phase, and both layers form an integrated structure thermally diffused mutually at the boundary, and An alloyed hot-dip galvanized steel sheet having excellent workability and coatability, characterized by having a plating film having a uniform component content distribution in the plane direction.
性、塗装性に優れた合金化溶融亜鉛めっき鋼板の製造方
法。 (イ)通常の前処理を施した鋼帯をAl0.05wt%以上0.3w
t%以下且つPb0.2wt%以下を含有する溶融亜鉛めっき浴
に浸漬して、30g/m2以上90g/m2以下の亜鉛めっきを施す
工程。 (ロ)めっき皮膜が溶融状態であるうちにスパングルの
微細化処理を施す工程。 (ハ)めっき皮膜が固化した後スキンパス処理を行い、
溶融亜鉛めっき皮膜の表面を平滑化する工程。 (ニ)この溶融亜鉛めっき鋼帯の片面又は両面に付着量
0.5g/m2以上10g/m2以下のMn40wt%以上のMn−Zn合金め
っきを施す工程。 (ホ)前記工程でめっきを施した鋼帯を非酸化性又は還
元性雰囲気に維持したバッチ式焼鈍炉内でオープンコイ
ルの状態で320℃以上亜鉛の融点以下の温度範囲で10分
から50時間加熱する工程。2. A method for producing an alloyed hot-dip galvanized steel sheet having excellent workability and paintability, comprising the following steps. (A) A steel strip that has been subjected to a normal pretreatment is Al 0.05 wt% or more and 0.3 w
a step of immersing in a hot-dip galvanizing bath containing t% or less and Pb 0.2 wt% or less to apply a zinc plating of 30 g / m 2 or more and 90 g / m 2 or less. (B) A step of performing spangle refining while the plating film is in a molten state. (C) After the plating film is solidified, a skin pass treatment is performed.
A step of smoothing the surface of the hot-dip galvanized film. (D) Adhesion amount on one or both sides of this galvanized steel strip
A step of applying a Mn-Zn alloy plating of not less than 0.5 g / m 2 and not more than 10 g / m 2 and not less than 40 wt% of Mn. (E) Heating the steel strip plated in the above process in a batch type annealing furnace maintained in a non-oxidizing or reducing atmosphere in an open coil state at a temperature in the range of 320 ° C or more and the melting point of zinc for 10 minutes to 50 hours. Process.
性、塗装性に優れた合金化溶融亜鉛めっき鋼板の製造方
法。 (イ)通常の前処理を施した鋼帯をAl0.05wt%以上0.3w
t%以下且つPb0.2wt%以下を含有する溶融亜鉛めっき浴
に浸漬して30g/m2以上〜90g/m2以下のめっきを施す工
程。 (ロ)めっき皮膜が溶融状態であるうちに鋼帯の片面又
は両面にMn40wt%以上のMn−Zn合金パウダーを吹き付け
て0.5g/m2以上10g/m2以下の上層めっきを施す工程。 (ハ)めっき層が固化した後スキンパス処理を行い溶融
亜鉛めっき皮膜の表面を平滑化する工程。 (ニ)前記工程で平滑化した皮膜を持つ鋼帯を非酸化性
又は還元性雰囲気に維持したバッチ式焼鈍炉内でオープ
ンコイルの状態で320℃以上亜鉛の融点以下の範囲内の
温度で10分から50時間加熱する工程。3. A method for producing an alloyed hot-dip galvanized steel sheet having excellent workability and coatability, comprising the following steps. (A) A steel strip that has been subjected to a normal pretreatment is Al 0.05 wt% or more and 0.3 w
t% or less and Pb0.2Wt% or less by immersion in molten zinc plating bath containing 30 g / m 2 or more ~90g / m 2 step of applying the following plating. (B) plating film step of performing one or both surfaces Mn40wt% or more Mn-Zn alloy by spraying powder 0.5 g / m 2 or more 10 g / m 2 or less of the upper layer plating of the steel strip while it is molten. (C) A step of smoothing the surface of the hot-dip galvanized film by performing a skin pass treatment after the plating layer is solidified. (D) In a batch type annealing furnace in which the steel strip having the film smoothed in the above step is maintained in a non-oxidizing or reducing atmosphere, in an open coil state at a temperature within the range of 320 ° C or more and the melting point of zinc or less. Heating for minutes to 50 hours.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24126488A JP2754596B2 (en) | 1988-09-27 | 1988-09-27 | Alloyed hot-dip galvanized steel sheet excellent in workability, paintability, and corrosion resistance, and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24126488A JP2754596B2 (en) | 1988-09-27 | 1988-09-27 | Alloyed hot-dip galvanized steel sheet excellent in workability, paintability, and corrosion resistance, and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0288752A JPH0288752A (en) | 1990-03-28 |
JP2754596B2 true JP2754596B2 (en) | 1998-05-20 |
Family
ID=17071666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24126488A Expired - Lifetime JP2754596B2 (en) | 1988-09-27 | 1988-09-27 | Alloyed hot-dip galvanized steel sheet excellent in workability, paintability, and corrosion resistance, and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2754596B2 (en) |
-
1988
- 1988-09-27 JP JP24126488A patent/JP2754596B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0288752A (en) | 1990-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010089910A1 (en) | Galvannealed steel sheet and process for production thereof | |
JPS5891162A (en) | Manufacture of galvanized steel plate | |
JPH0753901B2 (en) | Hot dip galvanizing method | |
JPH0645853B2 (en) | Method for producing galvannealed steel sheet | |
JP2754596B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability, paintability, and corrosion resistance, and method for producing the same | |
JP2727598B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same | |
JP2727595B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same | |
JP2727596B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same | |
JP2754590B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same | |
JP2727597B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same | |
JPH02118088A (en) | Production of hot-dip galvanized alloyed steel sheet excellent in workability and coating property | |
JP3580541B2 (en) | Surface-treated steel sheet excellent in workability and corrosion resistance of processed part and method for producing the same | |
JP3016122B2 (en) | Galvannealed steel sheet with excellent paintability and its manufacturing method | |
JPH02138481A (en) | Production of alloyed hot dip galvanizing steel sheet having excellent workability and paintability | |
JPH0128098B2 (en) | ||
JPH02138482A (en) | Production of steel plate coated with alloyed zinc by galvanization having excellent workability and paintability | |
JP2783457B2 (en) | Manufacturing method of hot-dip Zn-Al plated steel sheet | |
KR20010018653A (en) | A method for manufacturing hot-dip galvanized steel sheets having good coating quality properties | |
JP2574011B2 (en) | Manufacturing method of galvannealed steel sheet | |
JPH02122082A (en) | Production of alloyed hot dip galvanized steel sheet having superior workability and coatability | |
JPH02166261A (en) | Manufacture of alloyed hot dip galvanized steel sheet excellent in workability and coating suitability | |
JP2000169948A (en) | Hot dip galvannealed steel sheet and its production | |
JPH02145777A (en) | Production of alloyed hot-dip galvanized steel sheet excellent in workability and suitability for coating | |
JP3643559B2 (en) | Surface-treated steel sheet excellent in workability and corrosion resistance of machined part and method for producing the same | |
JPH02166264A (en) | Manufacture of alloyed hot dip galvanized steel sheet having excellent workability and coating characteristics |