JP2512147B2 - Method for producing galvannealed steel sheet with excellent powdering resistance - Google Patents

Method for producing galvannealed steel sheet with excellent powdering resistance

Info

Publication number
JP2512147B2
JP2512147B2 JP1131069A JP13106989A JP2512147B2 JP 2512147 B2 JP2512147 B2 JP 2512147B2 JP 1131069 A JP1131069 A JP 1131069A JP 13106989 A JP13106989 A JP 13106989A JP 2512147 B2 JP2512147 B2 JP 2512147B2
Authority
JP
Japan
Prior art keywords
temperature
alloying
steel sheet
heat treatment
powdering resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1131069A
Other languages
Japanese (ja)
Other versions
JPH02310352A (en
Inventor
昭彦 西本
淳一 稲垣
正哉 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP1131069A priority Critical patent/JP2512147B2/en
Publication of JPH02310352A publication Critical patent/JPH02310352A/en
Application granted granted Critical
Publication of JP2512147B2 publication Critical patent/JP2512147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は自動車車体、電化製品等に用いられる合金
化溶融亜鉛めっき鋼板の製造方法に関連し、詳しくは、
溶融亜鉛めっきの後工程である合金化冷却条件も含め適
正化することにより、加工或は成形時に皮膜の剥離が起
こりにくい、いわゆる耐パウダリング性に優れた合金化
溶融亜鉛めっき鋼板を連続製造する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a method for producing a galvannealed steel sheet for use in automobile bodies, electric appliances, etc.
By optimizing the alloying cooling conditions, which is a post-process of hot dip galvanizing, it is possible to continuously produce alloyed hot dip galvanized steel sheets with excellent so-called powdering resistance, in which peeling of the coating does not easily occur during processing or forming. It is about the method.

[従来技術] 合金化溶融亜鉛めっき鋼板は、優れた耐食性と共に塗
装性、塗料密着性及び溶接性等を兼ね備えているので、
自動車や家電製品等に広く、且つ、大量に用いられてい
る。
[Prior Art] Since galvannealed steel sheet has excellent corrosion resistance as well as paintability, paint adhesion, weldability, etc.,
Widely used in automobiles and home appliances, etc.

このような合金化溶融亜鉛めっき鋼板は、一般に、次
のようにして製造されている。即ち、冷間圧延された鋼
板を亜鉛めっきライン(以下、CGLと称す)を通すこと
によって連続的に処理するが、先ず前処理のための無酸
化加熱炉を通して鋼の再結晶温度を超える温度に加熱し
て焼鈍を行い、次いで450℃乃至500℃まで冷却してか
ら、溶融した亜鉛の浴中に浸漬することにより亜鉛めっ
きを施す。その後、めっき付着量を調整し、500℃乃至6
50℃に加熱し合金を生成した後放冷或いは強制的に冷却
する。合金化熱処理の方法としては、このほかに、めっ
きラインとは別の熱処理炉を用いて、バッチ方式で行う
方法もあるが、設備コスト、ランニングコスト共に高く
なる問題がある。どちらの方法でも、このような合金化
熱処理を受けると、鋼板と亜鉛層との間には合金化反応
が起こり、ζ相(FeZn13),δ1相(FeZn7),Γ相(Fe
3Zn10)と呼ばれるFe-Zn系合金相が順次形成される。こ
れらのFe-Zn系合金相が皮膜全体に形成されると、表面
には微細な凹凸が形成されるため塗装性或は塗料密着性
が改善され、しかも皮膜中に鉄を含むため溶接性も向上
する。ところが、Fe-Zn系合金相は下地鋼板よりも硬度
が高く、しかもζ相、δ1相、Γ相の順に脆弱になって
いくために、プレス成形等の加工を受けると皮膜が粉状
となって剥離するいわゆるパウダリング現象が起こり易
くなる。パウダリングが起こると皮膜の健全性が損なわ
れるばかりでなく、剥離した粉がプレスの成形型に堆積
しプレス部品に疵を付けるなどの弊害が生じたりする。
近年、特に自動車車体の耐食性強化に対する要求から、
厚目付合金化溶融亜鉛めっき鋼板の採用が検討されてい
るが、上述したパウダリング現象は皮膜の付着量が増加
するにつれて急激に起こり易くなるため、耐パウダリン
グ性の向上に対する要求は益々強くなっている。
Such an alloyed hot-dip galvanized steel sheet is generally manufactured as follows. That is, cold-rolled steel sheet is continuously treated by passing it through a galvanizing line (hereinafter referred to as CGL), but first, it is passed through a non-oxidizing heating furnace for pretreatment to a temperature exceeding the recrystallization temperature of the steel. It is annealed by heating, then cooled to 450 ° C to 500 ° C, and then galvanized by being immersed in a bath of molten zinc. After that, adjust the amount of plating to be applied at 500 ℃ to 6 ℃.
After heating to 50 ° C to form an alloy, it is allowed to cool or forcedly cooled. In addition to this, as a method of alloying heat treatment, there is a method of using a heat treatment furnace different from the plating line and performing it in a batch method, but there is a problem that both equipment cost and running cost increase. In either method, when subjected to such alloying heat treatment, an alloying reaction occurs between the steel sheet and the zinc layer, and the ζ phase (FeZn 13 ), δ 1 phase (FeZn 7 ), Γ phase (Fe
Fe-Zn alloy phase called 3 Zn 10 ) is formed in sequence. When these Fe-Zn alloy phases are formed on the entire coating, fine irregularities are formed on the surface to improve paintability or paint adhesion, and since iron is contained in the coating, weldability is also improved. improves. However, since the Fe-Zn alloy phase has a higher hardness than the base steel sheet and becomes weaker in the order of the ζ phase, the δ 1 phase, and the Γ phase, the film becomes powdery when subjected to processing such as press forming. A so-called powdering phenomenon in which peeling occurs is likely to occur. When powdering occurs, not only the soundness of the film is impaired, but also peeled powder accumulates on the press molding die, which may cause flaws on the press parts.
In recent years, especially from the demand for strengthening the corrosion resistance of automobile bodies,
The adoption of heavy-weight alloyed hot-dip galvanized steel sheets is being considered, but the above-mentioned powdering phenomenon tends to occur rapidly as the coating amount increases, so there is an increasing demand for improved powdering resistance. ing.

このような耐パウダリング性の改善対策として、合金
化熱処理温度を低くして加熱時間を増す方法、めっき浴
中のAlの添加量を増やす方法、めっき浴の温度を下げる
方法等が報告されている。即ち、これらの方法は、合金
化反応を遅らせることによって、過度の合金化を避けて
皮膜の主成分を比較的軟質のζ相とδ1相とにするもの
である。確かに、被膜中のFe含有率を8%未満とし皮膜
を軟質化すると、耐パウダリング性は改善される。しか
し、このような皮膜では、プレス成形時に工具との摺動
によって、フレーキングと称する片状剥離を起こし易く
なり、パウダリングと同様の問題を惹起する。
As measures for improving such powdering resistance, a method of lowering the alloying heat treatment temperature to increase the heating time, a method of increasing the addition amount of Al in the plating bath, a method of lowering the temperature of the plating bath, etc. have been reported. There is. That is, in these methods, by delaying the alloying reaction, excessive alloying is avoided and the main components of the film are made relatively soft ζ phase and δ 1 phase. Certainly, if the Fe content in the coating is less than 8% and the coating is softened, the powdering resistance is improved. However, such a coating is likely to cause flaking called flaking due to sliding contact with a tool during press molding, which causes the same problem as powdering.

従来、自動車用鋼板に要求されてきた諸特性には、耐
食性の他に、耐パウダリング性や耐フレーキング性や含
めたプレス成形等の加工性、化成処理性や塗料密着性等
の塗装性、溶接性等があり、合金化溶融亜鉛めっき鋼板
では、これらの諸特性をある程度満足させる合金化度は
Fe含有率が8%乃至14%程度で、めっき皮膜がδ1相を
主体とするのものであると言われている。上記の方法を
用いて、フレーキングが発生しない程度にFe含有率を増
すためには、合金化熱処理温度を低下した場合は勿論、
Alの添加量増加やめっき浴温低下の場合でも、ラインの
長さを増加したり或はライン速度を低下したりしなけれ
ばならず、改善の度合いに較べ生産性低下の度合いが大
きすぎる。
Various properties that have been conventionally required for steel sheets for automobiles include, in addition to corrosion resistance, powdering resistance, flaking resistance, workability such as press forming including paintability, coating property such as chemical conversion treatment and paint adhesion. , Weldability, etc., and the degree of alloying that satisfies these various characteristics to some extent in a galvannealed steel sheet
It is said that the Fe content is about 8% to 14% and the plating film is mainly composed of the δ 1 phase. Using the above method, in order to increase the Fe content to the extent that flaking does not occur, of course, when the alloying heat treatment temperature is lowered,
Even if the amount of Al added is increased or the plating bath temperature is decreased, the length of the line must be increased or the line speed must be decreased, and the degree of reduction in productivity is too large compared to the degree of improvement.

一方、合金化の度合いを一定の範囲内に制御すると耐
パウダリング性が向上するとの見解があり、例えば特開
昭62-290894号では、被膜中のFe含有率を15乃至35%に
限定する方法が提案されている。
On the other hand, there is an opinion that the powdering resistance is improved by controlling the degree of alloying within a certain range. For example, in JP-A-62-290894, the Fe content in the coating is limited to 15 to 35%. A method has been proposed.

[発明が解決しようとする課題] しかしながら、この方法で製造された皮膜は耐食性及
び化成処理性が劣り、したがってこの合金化溶融亜鉛め
っき皮膜の上に、更にFe,Zn,Ni,Co,Sn,As等のめっき皮
膜を付す等の特殊な処理を必要とするので、設備的にも
又資材的にもコスト高となることが避けられないという
問題を残している。
[Problems to be Solved by the Invention] However, the coating produced by this method is inferior in corrosion resistance and chemical conversion treatment property, and therefore, Fe, Zn, Ni, Co, Sn, Since a special treatment such as applying a plating film such as As is required, there is a problem that the cost is unavoidable in terms of equipment and materials.

この発明は、このような問題を解決するためになされ
たもので、皮膜のFe含有率を8wt%以上14wt%以下に保
ちδ1相を主体にした皮膜とし、合金化溶融亜鉛めっき
鋼板が持つ種々の優れた特性を維持したまま、合金化後
の冷却過程も含め合金化熱処理条件を制御することによ
って、耐パウダリング性に優れた合金化溶融亜鉛めっき
鋼板の製造方法を提供することを目的とするものであ
る。
The present invention has been made to solve such a problem, and the Fe content of the coating is kept at 8 wt% or more and 14 wt% or less, a coating mainly composed of the δ 1 phase, and the alloyed hot-dip galvanized steel sheet has An object of the present invention is to provide a method for producing an alloyed hot dip galvanized steel sheet having excellent powdering resistance by controlling the alloying heat treatment conditions including the cooling process after alloying while maintaining various excellent properties. It is what

[課題を解決するための手段帯及び作用] この目的を達成するための手段は、通常のめっき浴即
ちAlを0.05wt%以上0.30wt%以下Pbを0.20wt%以下残部
がZnおよび不可避的不純物からなる溶融亜鉛めっき浴に
鋼板を浸漬し、引き続き合金化熱処理を行う合金化溶融
亜鉛めっき鋼板の製造方法において、合金化熱処理の加
熱及び冷却条件を次のように限定する。即ち、合金化熱
処理中の最高到達温度を450℃以上525℃以下とし、めっ
き皮膜中のFe含有率が8wt%以上14wt%以下となるよう
に所定時間加熱した後、350℃以下250℃以上の間の温度
Tまで25℃/秒以上の冷却速度で急冷し、その後、前記
温度Tから250℃までは、適当な滞留時間を費やして徐
冷することが重要であるが、この適当な滞留時間tは下
に示す式(1)で示される。そしてこの滞留時間tで通
過させる工程を経た後最終冷却する耐パウダリング性に
優れた合金化溶融亜鉛めっき鋼板の製造方法である。
[Means for Solving Problems and Actions] Means for achieving this object are as follows: Ordinary plating bath, that is, Al of 0.05 wt% or more and 0.30 wt% or less, Pb of 0.20 wt% or less, and the balance Zn and inevitable impurities. In a method for producing an alloyed hot-dip galvanized steel sheet, in which the steel sheet is immersed in a hot dip galvanizing bath consisting of and then the alloying heat treatment is performed, heating and cooling conditions for the alloying heat treatment are limited as follows. That is, the maximum temperature reached during the alloying heat treatment is 450 ° C or higher and 525 ° C or lower, and after heating for a predetermined time so that the Fe content in the plating film is 8 wt% or higher and 14 wt% or lower, 350 ° C or lower and 250 ° C or higher It is important to rapidly cool to a temperature T between them at a cooling rate of 25 ° C./sec or more, and then gradually cool by spending an appropriate residence time from the temperature T to 250 ° C. t is represented by the formula (1) shown below. Then, it is a method for producing an alloyed hot-dip galvanized steel sheet having excellent powdering resistance, which is subjected to final cooling after passing through the step of passing through this residence time t.

8.5×10-4×exp{5840/(T+273)}≦t≦300……
(1) 但し、T:急冷終了温度(℃) t:急冷終了温度Tから250℃までの温度範囲にお
ける滞留時間(秒) 又、上記の合金化溶融亜鉛めっき鋼板の製造方法にお
いて、滞留時間tで通過させる工程が、前記温度Tにお
いて均熱処理を行う工程である耐パウダリング性に優れ
た合金化溶融亜鉛めっき鋼板の製造方法も同様に目的を
達成するものである。
8.5 × 10 -4 × exp {5840 / (T + 273)} ≦ t ≦ 300 ……
(1) where T: quenching end temperature (° C) t: residence time in the temperature range from the quenching end temperature T to 250 ° C (seconds) In addition, in the method for manufacturing the galvannealed steel sheet, the residence time t The method of producing a galvannealed steel sheet having excellent powdering resistance, which is a step of performing soaking at the temperature T, similarly achieves the object.

以下に、詳細にその作用とともに説明する。この発明
を実施するためには、通常の方法で製造した酸洗(熱
延)コイル或は冷延コイルをCGLに通板し亜鉛めっきを
施すが、CGL通板前に脱炭や材質改善を目的としたバッ
チ焼鈍等の前処理を施してもよい。
The operation will be described in detail below. In order to carry out the present invention, a pickling (hot rolling) coil or a cold rolling coil produced by a normal method is passed through CGL and galvanized, but the purpose is to decarburize or improve the material before passing the CGL. Pretreatment such as batch annealing may be performed.

亜鉛めっき浴中には、通常Fe-Zn合金化反応の抑制を
目的としてAlが、又非合金化材のスパングル調整を目的
としてPbが各々添加されている。浴中のAl含有量が0.05
wt%未満ではFe-Zn合金化反応の抑制効果が不十分で、
合金化処理時に過度に合金化し易くなり、一方、0.3wt
%を超えると抑制効果が過度になるので、加熱温度や加
熱時間等他の条件が厳しくなりFe-Zn合金化反応の不均
一性が助長され、パウダリング性を劣化させることにな
る。したがって、Alの添加量範囲は0.05wt%以上0.3wt
%以下とする。
Al is usually added to the galvanizing bath for the purpose of suppressing the Fe-Zn alloying reaction, and Pb is added for the purpose of adjusting the spangle of the non-alloyed material. Al content in the bath is 0.05
If it is less than wt%, the effect of suppressing the Fe-Zn alloying reaction is insufficient,
During alloying process, it becomes excessively easy to alloy, while 0.3wt
If it exceeds 0.1%, the suppression effect becomes excessive, so that other conditions such as heating temperature and heating time become strict, which promotes non-uniformity of the Fe—Zn alloying reaction and deteriorates the powdering property. Therefore, the added amount range of Al is 0.05 wt% or more and 0.3 wt%
% Or less.

Pbは合金化材を製造する場合には積極的に添加する必
要はないが、一般に非合金化材と合金化材とは同一のCG
Lを用いて製造することが行われ、必然的に含まれてい
る。Pbの合金化反応への影響はすくないが、浴中に過度
に含有する場合は、パウダリング性を劣化する方向に作
用するので、上限を0.2wt%とする。
Pb does not need to be added positively when manufacturing alloyed materials, but in general, the same CG is used for non-alloyed and alloyed materials.
Manufactured using L is done and inevitably included. The effect of Pb on the alloying reaction is small, but when it is contained excessively in the bath, it acts to deteriorate the powdering property, so the upper limit is made 0.2 wt%.

上記の浴で亜鉛をめっきされためっき鋼帯は、めっき
皮膜の付着量を調整された後、Fe-Zn合金化のため合金
化炉に導かれ、加熱処理を受ける。この加熱処理が一連
の合金化熱処理のなかで最も高温となる工程で、ここで
は、450℃以上で525℃以下の温度に加熱する。この場合
加熱温度に合わせ保持時間を制御して、めっき皮膜中の
Fe含有率が8wt%から14wt%の範囲になるように合金化
する。このとき、525℃よりも高い温度に加熱するとΓ
相が成長し易くなり、耐パウダリング性が劣化する。他
方、450℃以下の温度では、合金化完了までに長時間を
要し生産性の低下を来す。合金化の度合いを一定範囲に
限定するのは、Fe含有率が8wt%未満では、前述したよ
うに、工具との摺動によりフレーキングが発生し易くな
り、14wt%を超えると耐パイダリング性が著しく低下す
るためである。
The plated steel strip plated with zinc in the above bath is adjusted in the amount of the coating to be applied, then introduced into an alloying furnace for Fe—Zn alloying, and subjected to heat treatment. This heat treatment is the highest temperature in a series of alloying heat treatments, and here, heating is performed at a temperature of 450 ° C. or higher and 525 ° C. or lower. In this case, the holding time is controlled according to the heating temperature, and the
Alloy the Fe content to be in the range of 8 wt% to 14 wt%. At this time, if heated to a temperature higher than 525 ° C, Γ
The phases are likely to grow and the powdering resistance is deteriorated. On the other hand, at a temperature of 450 ° C. or lower, it takes a long time to complete alloying, resulting in a decrease in productivity. Limiting the degree of alloying to a certain range is that if the Fe content is less than 8 wt%, flaking tends to occur due to sliding with a tool as described above, and if it exceeds 14 wt%, the pedaling resistance becomes poor. This is because it is significantly reduced.

次に、350℃以下250℃以上の間の温度Tまで急冷し、
更にこの温度Tから250℃までは徐冷するが、この徐冷
は必要な滞留時間tをかけて行わなければならない。発
明者らは、合金化過程と合金化溶融亜鉛めっき鋼板の耐
パウダリング性との関係をつぶさに調べ、その結果、適
正な合金化熱処理パターンを選択することによって、Fe
含有率が同じであっても、耐パウダリング性が更に改善
されることを見出した。この合金化熱処理パターンにつ
いて、第1図及び第2図を用いて説明する。第2図で、
(a)図及び(b)図は合金化熱処理パターンで、縦軸
は温度、横軸は時間である。何れも500℃まで加熱昇温
して10秒間で合金化を完了させ、その後の冷却パターン
を変え室温近くまで冷却したものである。(a)図で、
は50℃/秒で、は20℃/秒で、は5℃/秒で各々
急冷したものであり、(b)図で、各々、は50℃/秒
で400℃まで急冷した後その温度に10秒間保持し冷却し
たもの、は50℃/秒で350℃まで急冷した後その温度
に30秒間保持し冷却したもの、は50℃/秒で300℃ま
で急冷した後その温度に30秒間保持し冷却したもの、
は50℃/秒で250℃まで急冷した後その温度に200秒間保
持し冷却したものである。(c)図は、これらの合金化
処理鋼板についての耐パウダリング性を調べた結果で、
後に説明するビード引き抜きによる剥離量でその結果を
示している。この剥離量が少ないほど耐パウダリング性
に優れるが、、とに較べ、、とが耐パウダ
リング性に優れている。即ち、急冷後低温帯に保持した
ものがよい結果を示しているが、だけが例外となって
いる。の場合、保持した温度が400℃と高かったため
と考えられる。なお、(a)図の及びは従来行われ
ていた合金加熱処理のパターンで、急速加熱急速冷却熱
サイクルである。急速加熱急速冷却ではFe-Zn系合金相
が不均一に発達し易く、又形成される合金層は組成的或
は結晶構造的に平衡状態からずれたものである。このよ
うな不均質な合金層を加工すると、部分的にめっき皮膜
剥離が起こりに易くなり耐パウダリング性が劣ることに
なる。これに対して、350℃乃至250℃で保持した、
とで耐パウダリング性が改善されていたのは、これら
の処理が不均質な合金化反応を著しく進行させない比較
的低温での均熱処理であり、この温度帯に滞留したこと
によって、めっき被膜内で原子の拡散が起こり皮膜構造
が均質化されたものと考えられる。この観点から、上記
滞留と耐パウダリング性との関係を詳細に調べ、その結
果を第1図に示した。図は、合金化完了後の急冷が終わ
り徐冷の始まる時の温度即ち急冷終了温度と、この急冷
終了温度から250℃まで徐冷されるまでこの温度帯にあ
った時間即ち滞留時間との耐パウダリング性に及ぼす効
果を示したものである。図で、縦軸は急冷終了温度、横
軸は滞留時間、数字は耐パウダリング性改善率である。
この調査では、480℃で15秒間合金化熱処理を施し、急
冷を25℃/秒で行ったが、耐パウダリング性の改善率
は、この急冷条件で室温まで冷却したものを基準とし
た。即ち、基準合金化溶融亜鉛めっき鋼板の剥離量を
P0,対象合金化溶融亜鉛めっき鋼板の剥離量P1(%),
改善率Pとして、 P=100−(P1/P0)×100, によって求めた値である。図で、改善率が10以上となる
点は点A,B,C,Dで囲まれた範囲内に分布している。言い
換えると、10%以上の改善を期待するならばこの範囲内
の条件で冷却すればこの期待を実現することが出来る。
この範囲について、急冷終了温度の上限は直線ABで350
℃、下限は曲線ACDである。又、同じく、滞留時間の下
限は曲線ACDであるが、上限は実用上の観点から300秒で
実験を打ち切ったものである。そして、曲線ACDは次の
式で近似することができる。
Next, it is rapidly cooled to a temperature T between 350 ° C and 250 ° C,
Further, the temperature is gradually cooled from the temperature T to 250 ° C., but this slow cooling must be performed for a required residence time t. The inventors thoroughly investigated the relation between the alloying process and the powdering resistance of the galvannealed steel sheet, and as a result, by selecting an appropriate alloying heat treatment pattern, Fe
It has been found that the powdering resistance is further improved even if the contents are the same. This alloying heat treatment pattern will be described with reference to FIGS. 1 and 2. In Figure 2,
Figures (a) and (b) are alloying heat treatment patterns, where the vertical axis is temperature and the horizontal axis is time. In each case, the temperature was raised to 500 ° C, alloying was completed in 10 seconds, and then the cooling pattern was changed to cool to near room temperature. In Fig. (A),
Is 50 ° C / sec, is 20 ° C / sec and is 5 ° C / sec, respectively, and in Fig. (B), each is rapidly cooled to 400 ° C at 50 ° C / sec. What was held and cooled for 10 seconds, was rapidly cooled to 350 ° C at 50 ° C / second and then held at that temperature for 30 seconds, and what was cooled to 300 ° C at 50 ° C / second and then held at that temperature for 30 seconds Chilled,
Is the one that was rapidly cooled to 250 ° C at 50 ° C / sec, then held at that temperature for 200 seconds and cooled. Figure (c) shows the results of investigating the powdering resistance of these alloyed steel sheets.
The result is shown by the amount of peeling due to bead pull-out described later. The smaller the amount of peeling, the better the powdering resistance, but the and are more excellent in the powdering resistance than the and. That is, what was held in the low temperature zone after rapid cooling showed good results, but the only exception was. In the case of, it is considered that the held temperature was as high as 400 ° C. It is to be noted that and in (a) of FIG. 8 are patterns of the alloy heat treatment that has been conventionally performed, which is a rapid heating rapid cooling thermal cycle. In the rapid heating and rapid cooling, the Fe-Zn alloy phase is likely to develop inhomogeneously, and the formed alloy layer is compositionally or crystallographically out of equilibrium. When such an inhomogeneous alloy layer is processed, the plating film is likely to be partially peeled off, resulting in poor powdering resistance. On the other hand, the temperature was kept at 350 ° C to 250 ° C,
The powdering resistance was improved in and by the soaking treatment at a relatively low temperature at which these treatments do not significantly progress the heterogeneous alloying reaction. It is considered that the diffusion of atoms occurred and the film structure was homogenized. From this viewpoint, the relationship between the retention and the powdering resistance was investigated in detail, and the results are shown in FIG. The figure shows the resistance between the temperature at the end of quenching after alloying is completed and the start of slow cooling, that is, the end temperature of quenching, and the time in this temperature range from this end temperature of quenching to 250 ° C, that is, the retention time. It shows the effect on the powdering property. In the figure, the vertical axis shows the quenching end temperature, the horizontal axis shows the residence time, and the numbers show the powdering resistance improvement rate.
In this investigation, alloying heat treatment was performed at 480 ° C. for 15 seconds and rapid cooling was performed at 25 ° C./second, but the improvement rate of powdering resistance was based on the cooling rate to room temperature under this rapid cooling condition. That is, the peeling amount of the standard galvannealed steel sheet
P 0 , the amount of peeling of the target galvannealed steel sheet P 1 (%),
The improvement rate P is a value obtained by P = 100− (P 1 / P 0 ) × 100. In the figure, the points where the improvement rate is 10 or more are distributed within the range surrounded by points A, B, C, and D. In other words, if you expect an improvement of 10% or more, you can achieve this expectation by cooling under conditions within this range.
In this range, the upper limit of the quenching end temperature is 350 on the straight line AB.
C, lower limit is curve ACD. Also, similarly, the lower limit of the residence time is the curve ACD, but the upper limit is the one that was discontinued in 300 seconds from the practical viewpoint. Then, the curve ACD can be approximated by the following equation.

t=8.5×10-4×exp{5840/(T+273)}……(2) これらの調査結果に基づいて考察すると、350℃を超
える温度に滞留させると、鋼板からめっき皮膜へのFeの
溶出が起こり、冷却過程でも合金化反応が進行するた
め、めっき皮膜の厚さ方向に合金化度合いの不均質性が
助長される。したがって、合金化熱処理後350℃を超え
る温度帯は短時間に通過させる必要があるが、この急冷
過程では、冷却速度が25℃/秒以上であれば、鋼板から
めっき皮膜へのFe溶出は無視することができる。そし
て、冷却終了温度が350℃以下であれば、不均質な合金
化反応を進行させないのみならず、滞留することによっ
て、めっき被膜内で原子の拡散が起こり皮膜構造が均質
化される。但し、冷却終了温度が250℃未満では原子の
拡散速度が小さく、均質化に非実用的に長時間を要す
る。又、均質化には350℃以下250℃以上の温度帯に滞留
する適正な時間を必要とし、この時間はこの範囲内の温
度によって異なりその時間の下限は(2)式で表され
る。この時間の上限は自然現象としては非常に大きいも
のと考えられるが、実用上300秒とする。したがって、
滞留時間を(1)式の範囲にすることによって、適切に
めっき皮膜を均質化することができる。
t = 8.5 × 10 -4 × exp {5840 / (T + 273)} …… (2) Considering based on these investigation results, when it is retained at a temperature over 350 ° C, Fe is leached from the steel sheet to the plating film. Occurs and the alloying reaction proceeds even in the cooling process, which promotes non-uniformity of the alloying degree in the thickness direction of the plating film. Therefore, after the alloying heat treatment, it is necessary to pass the temperature zone over 350 ° C in a short time, but in this quenching process, if the cooling rate is 25 ° C / sec or more, Fe elution from the steel sheet to the plating film is neglected. can do. When the cooling end temperature is 350 ° C. or lower, not only does the heterogeneous alloying reaction not proceed, but the retention also causes the diffusion of atoms in the plating film to homogenize the film structure. However, if the cooling end temperature is less than 250 ° C., the diffusion rate of atoms is small, and it takes an impractical long time for homogenization. Further, homogenization requires an appropriate time for staying in a temperature range of 350 ° C. or lower and 250 ° C. or higher. This time depends on the temperature within this range, and the lower limit of the time is represented by the formula (2). Although the upper limit of this time is considered to be very large as a natural phenomenon, it is set to 300 seconds for practical use. Therefore,
By setting the residence time within the range of formula (1), the plating film can be appropriately homogenized.

8.5×10-4×exp{5840/(T+273)}≦t≦300……
(1) [実施例] 実施例1 板厚0.8mm、幅200mmの冷延コイルを連続溶融亜鉛めっ
きラインに通板し、種々の条件で合金化熱処理を行い、
耐パウダリング性を評価した。
8.5 × 10 -4 × exp {5840 / (T + 273)} ≦ t ≦ 300 ……
(1) [Example] Example 1 A cold rolled coil having a plate thickness of 0.8 mm and a width of 200 mm was passed through a continuous hot-dip galvanizing line, and alloying heat treatment was performed under various conditions.
The powdering resistance was evaluated.

用いた冷延コイルの鋼種は三種でこれらの組成を第1
表に示す。
There are three types of cold-rolled coil steels and
Shown in the table.

めっき前処理として、820℃で60秒間加熱し焼鈍処理
を施した。めっき浴へ侵入する時の鋼帯温度は470℃、
めっき浴温は460℃、めっき浴組成は、0.12wt%Al-0.08
wt%Pb-0.04wt%Fe−残部Znであった。めっき浴から出
た鋼帯について、ガスワイピングにより付着量を60g/m2
に調整し、引き続き合金化熱処理を行った。合金化熱処
理では、520℃で7秒間加熱し合金化を完了させ、平均3
0秒/秒の冷却速度で急冷した後、急冷終了温度Tから2
50℃まで滞留時間tをかけて徐冷し、その後従来行われ
ている通常の速さで冷却した。なお、合金化完了後30℃
/秒の急冷で室温近くまで冷却した従来例と、急冷温度
終了T或は滞留時間tが本発明の範囲から外れた比較例
とについて、他の条件を同じくして試験を行い比較し
た。これらの合金化熱処理パターンを第3図に示す。図
で、縦軸は温度、横軸は時間であり、R点からS点まで
が加熱過程でS点以降が冷却過程である。合金化熱処理
パターンAは滞留時間のない従来のパターン、Bは急冷
終了温度350℃で250℃まで十分な滞留時間で徐冷したパ
ターン、CとDは各々急冷終了温度300℃、250℃でBと
同様十分な滞留時間で徐冷したパターンであり、Eは滞
留時間が不十分、Fは急冷終了温度の高過ぎたパターン
である。
As a pretreatment for plating, annealing was performed by heating at 820 ° C for 60 seconds. Steel strip temperature when entering the plating bath is 470 ℃,
Plating bath temperature is 460 ℃, plating bath composition is 0.12wt% Al-0.08
wt% Pb-0.04 wt% Fe-balance Zn. For the steel strip coming out of the plating bath, the deposition amount was 60 g / m 2 by gas wiping.
The alloying heat treatment was subsequently performed. In alloying heat treatment, heating at 520 ℃ for 7 seconds to complete alloying, average 3
After quenching at a cooling rate of 0 sec / sec, 2 from the quenching end temperature T
The mixture was gradually cooled to 50 ° C. over a residence time t, and then cooled at a conventional speed. 30 ° C after alloying is completed
A conventional example in which the temperature was rapidly cooled to near room temperature with a cooling rate of / sec and a comparative example in which the quenching temperature end T or the residence time t was out of the range of the present invention were tested and compared under the other conditions. These alloying heat treatment patterns are shown in FIG. In the figure, the vertical axis is temperature, the horizontal axis is time, the heating process is from R point to S point, and the cooling process is from S point onward. Alloying heat treatment pattern A is a conventional pattern with no residence time, B is a pattern that is gradually cooled at a quenching end temperature of 350 ° C to 250 ° C with a sufficient residence time, and C and D are B at a quenching end temperature of 300 ° C and 250 ° C, respectively. Similarly, the pattern E is a pattern slowly cooled with a sufficient residence time, the pattern E is an insufficient retention time, and the pattern F is an excessively high quenching end temperature.

耐パウダリング性の評価はビード引抜き試験及び深絞
り試験によって行った。ビード引抜き試験は試験機を用
いて試験片を引抜いた後、めっき層を粘着テープで剥離
し、成形前の試験片重量とテープ剥離後の試験片重量と
の差を算出し剥離量とした。深絞り試験でも、同様に深
絞り加工後にめっき層を粘着テープで剥離しその剥離量
を算出した。これらの試験機の要部を第5図に示す。
(a)図はビード引抜き試験機、(b)図は深絞り試験
機の各々試験部で、1は試験片、2はダイス、3はポン
チ、4は皺抑えである。ビード引抜き試験では試験片1
をダイス2とポンチ3との間に挟み一定の圧力で押さえ
た状態で験片を引抜いた。ポンチ3の先端は0.5Rに作ら
れており、試験片はここでしごかれ、めっき皮膜の密着
力の小さい部分はその後粘着テープにより引きはがされ
剥離した。深絞り試験では、ポンチ3の径50mm、ダイス
肩5Rの深絞り試験機を用いたが、径100mmの円盤に打ち
抜いた試験片をダイス2と皺抑え4との間に挟んで押さ
え、ポンチ3を押し込み絞り加工を行った。加工後、ビ
ード引抜き試験と同様、粘着テープを適用し重量を測定
することにより剥離量を調べた。なお、深絞り試験では
同時にフレーキングについても観察した。又、剥離量に
ついては、鋼種別に、合金化熱処理パターンAの従来例
を基準として改善率を算出し評価の比較を行った。これ
らの結果を第2表に示す。
The powdering resistance was evaluated by a bead drawing test and a deep drawing test. In the bead pull-out test, after pulling out the test piece using a tester, the plating layer was peeled off with an adhesive tape, and the difference between the weight of the test piece before molding and the weight of the test piece after peeling the tape was calculated as the peeled amount. In the deep drawing test as well, the plating layer was peeled off with an adhesive tape after the deep drawing, and the peeled amount was calculated. The essential parts of these testers are shown in FIG.
(A) is a bead pull-out tester, (b) is a deep-drawing tester, and 1 is a test piece, 2 is a die, 3 is a punch, and 4 is a wrinkle suppressor. Specimen 1 in the bead pull-out test
The sample was pulled out while being sandwiched between the die 2 and the punch 3 with a constant pressure. The tip of the punch 3 was made to have a radius of 0.5R, the test piece was wrung here, and the portion of the plating film having a small adhesion was then peeled off with an adhesive tape. In the deep drawing test, a deep drawing tester with a punch 3 diameter of 50 mm and a die shoulder of 5R was used, but a punched test piece on a disc with a diameter of 100 mm was sandwiched between the die 2 and the wrinkle restrainer 4 and then pressed. Was pressed and drawn. After processing, as in the bead pull-out test, the amount of peeling was examined by applying an adhesive tape and measuring the weight. In the deep drawing test, flaking was also observed. As for the amount of peeling, the improvement rate was calculated for each steel type with reference to the conventional example of the alloying heat treatment pattern A, and the evaluations were compared. Table 2 shows the results.

実施例、比較例、従来例とで、めっき被膜中のFe含有
率はほぼ変わらないが、改善率には明確に相違があり、
実施例ではビード引抜き試験及び深絞り試験の両加工で
改善率が10%を超えたが、比較例では数%にとどまって
いた。
The Fe content in the plating film is almost the same as in the Examples, Comparative Examples, and Conventional Examples, but there is a clear difference in the improvement rate.
In the working example, the improvement rate exceeded 10% in both the bead pulling test and the deep drawing test, but in the comparative example, it was only a few percent.

しかも、この効果は用いた鋼種の全てについて得られて
おり、合金化熱処理パターンによって得られた効果であ
ることが明瞭であった。なお、フレーキングは何れの例
にも発生していなかった。
Moreover, this effect was obtained for all of the steel types used, and it was clear that this effect was obtained by the alloying heat treatment pattern. Note that flaking did not occur in any of the examples.

実施例2 板厚0.8mm、幅200mmの冷延コイルを連続溶融亜鉛めっ
きラインに通板し、種々の条件で合金化熱処理を行い、
耐パウダリング性を評価した。
Example 2 A cold-rolled coil having a plate thickness of 0.8 mm and a width of 200 mm is passed through a continuous hot-dip galvanizing line and subjected to alloying heat treatment under various conditions,
The powdering resistance was evaluated.

用いた冷延コイルの鋼種は二種で、第1表に示す
(い)及び(ろ)である。
There are two types of steel for the cold-rolled coil, which are (i) and (b) shown in Table 1.

めっき前処理として、820℃で70秒間加熱し焼鈍処理
を施した。めっき浴へ侵入する時の鋼帯温度は465℃、
めっき浴温は458℃、めっき浴組成は、0.10wt%Al-0.03
wt%Pb-0.05wt%Fe−残部Znであった。めっき浴から出
た鋼帯についてガスワイピングにより付着量を75g/m2
調整し、引き続き合金化処理を行った。合金化処理で
は、475℃で30秒間加熱し合金化を完了させ、平均30秒
/秒の冷却速度で急冷した後、急冷終了温度Tから250
℃まで徐冷する間の滞留時間tを変えた。なお、合金化
完了後30℃/秒の急冷で室温近くまで冷却した従来例
と、急冷温度T或は滞留時間tが発明の範囲から外れた
比較例とについて、他の条件を同じくして試験を行い比
較した。これらの合金化熱処理パターンを第4図に示
す。図で、縦軸は温度、横軸は時間であり、R点からS
点までが合金化の加熱過程でS点以降が冷却過程であ
る。合金化熱処理パターンGは滞留時間のないしたがっ
て均熱過程の無い従来のパターン、Hは急冷終了温度35
0℃で十分な滞留時間の均熱処理過程を経たもの、Iと
Jは各々急冷終了温度300℃、250℃でHと同様十分な滞
留時間の均熱処理過程を経たパターンであり、Kは滞留
時間が不十分、Lは急冷終了温度の高過ぎる、そしてM
は急冷終了温度が低すぎるパターンである。
As a pretreatment for plating, annealing was performed by heating at 820 ° C for 70 seconds. Steel strip temperature when entering the plating bath is 465 ℃,
Plating bath temperature is 458 ℃, plating bath composition is 0.10wt% Al-0.03
wt% Pb-0.05 wt% Fe-balance Zn. The amount of adhesion of the steel strip coming out of the plating bath was adjusted to 75 g / m 2 by gas wiping, and subsequently alloying treatment was performed. In the alloying treatment, the alloying was completed by heating at 475 ° C for 30 seconds, followed by rapid cooling at an average cooling rate of 30 seconds / second, and then from the quenching end temperature T to 250
The residence time t during gradual cooling to ° C was changed. In addition, the same conditions were tested for the conventional example in which it was cooled to near room temperature by quenching at 30 ° C./sec after completion of alloying and the comparative example in which the quenching temperature T or the residence time t was out of the range of the invention. And compared. These alloying heat treatment patterns are shown in FIG. In the figure, the vertical axis is temperature and the horizontal axis is time.
The process up to the point is the heating process for alloying, and the process after the point S is the cooling process. The alloying heat treatment pattern G is a conventional pattern with no residence time and therefore no soaking process, and H is the quenching end temperature 35
After soaking process with sufficient residence time at 0 ° C, I and J are patterns after rapid soaking process with quenching end temperature of 300 ° C and 250 ° C with sufficient residence time like H, and K is residence time. Is insufficient, L is too high at the end temperature of quenching, and M
Is a pattern in which the quenching end temperature is too low.

耐パウダリング性の評価はビード引抜き試験及び深絞
り試験により、実施例1と同様に行った。なお、フレー
キングについての観察、及び剥離量について鋼種別に合
金化熱処理パターンGの従来例を基準とした改善率の算
出も同様に行った。これらの結果を第3表に示す。
The powdering resistance was evaluated in the same manner as in Example 1 by a bead drawing test and a deep drawing test. In addition, observation of flaking and calculation of an improvement rate with respect to the amount of peeling based on the conventional example of the alloying heat treatment pattern G for each steel type were performed in the same manner. The results are shown in Table 3.

実施例、比較例、従来例とで、めっき被膜中のFe含有
率はほぼ変わらないが、改善率には明確に相違があり、
実施例ではビード引抜き試験及び深絞り試験の両加工で
改善率は十数%が得られたが、比較例では数%にとどま
っていた。しかも、この効果は鋼種が異なっても同じよ
うに得られており、合金化熱処理パターンによって得ら
れた効果であることが明瞭であった。なお、フーキング
は何れの例にも発生していなかった。
The Fe content in the plating film is almost the same as in the Examples, Comparative Examples, and Conventional Examples, but there is a clear difference in the improvement rate.
In the example, the improvement rate was more than 10% in both the bead pulling test and the deep drawing test, but in the comparative example, it was only several%. Moreover, this effect was obtained in the same manner even if the steel types were different, and it was clear that this effect was obtained by the alloying heat treatment pattern. Hooking did not occur in any of the examples.

実施例3 板厚0.8mm、幅200mmの冷延コイルを連続溶融亜鉛めっ
きラインに通板し、種々の条件で合金化熱処理を行い、
耐パウダリング性を評価した。
Example 3 A cold-rolled coil having a plate thickness of 0.8 mm and a width of 200 mm was passed through a continuous hot-dip galvanizing line and subjected to alloying heat treatment under various conditions,
The powdering resistance was evaluated.

用いた冷延コイルの鋼種は第1表に示した(ろ)の組
成のものである。
The steel type of the cold-rolled coil used has the (ro) composition shown in Table 1.

実施例1と同様に焼鈍処理を施した鋼帯温度を460℃
でめっき浴へ侵入させた。めっき浴温は455℃、めっき
浴組成は、0.15wt%Al-0.12wt%Pb-0.03wt%Fe−残部Zn
であった。実施例1と同様に付着量を60g/m2に調整し、
引き続き合金化熱処理を行った。加熱処理では、440℃
から530℃の間で加熱温度を変えてその影響を調べた。
急冷速度は40℃/秒であったが、急冷終了温度300℃で
均熱した実施例と、加熱処理時の最高到達温度或は合金
化の範囲が外れた場合の比較例及び急冷により室温近く
まで冷却した従来例とを比較した。耐パウダリング性の
評価は深絞り試験により、実施例1と同様に行い、フレ
ーキングについての観察、及び剥離量について従来例を
基準とした改善率の算出も行った。これらの結果を第4
表に示す。
As in Example 1, the temperature of the steel strip subjected to the annealing treatment was 460 ° C.
To penetrate into the plating bath. Plating bath temperature is 455 ℃, plating bath composition is 0.15wt% Al-0.12wt% Pb-0.03wt% Fe-balance Zn
Met. Adjust the amount of coating to 60 g / m 2 as in Example 1,
Subsequently, alloying heat treatment was performed. 440 ℃ in heat treatment
The effect was investigated by changing the heating temperature from 0 to 530 ℃.
The rapid cooling rate was 40 ° C / sec. However, an example of soaking at the quenching end temperature of 300 ° C, a comparative example in which the maximum temperature reached during heat treatment or the range of alloying was out, and near room temperature due to rapid cooling It compared with the conventional example cooled to. The powdering resistance was evaluated by a deep drawing test in the same manner as in Example 1, and the flaking was observed and the improvement rate of the amount of peeling was calculated based on the conventional example. Fourth of these results
Shown in the table.

実施例では改善率十数%が得られ、フレーキングも発
生していなかった。比較例の最高到達温度の高過ぎた試
験No.5では、耐パウダリング性が改善はされているが、
深絞り剥離量150mgと高く、又、合金化の加熱処理温度
を低くし(試験No.6)及び加熱処理時間を短くし(試験
No.7)てめっき被膜中のFe含有率を下げたものは、深絞
り剥離量は少ないが、フレーキングが発生した。
In the example, an improvement rate of more than 10% was obtained, and flaking did not occur. In the test No. 5 in which the highest temperature reached in the comparative example was too high, the powdering resistance was improved,
The deep drawing peeling amount is as high as 150 mg, the heat treatment temperature for alloying is low (Test No. 6), and the heat treatment time is short (Test
No. 7), in which the Fe content in the plating film was lowered, the amount of deep drawing peeling was small, but flaking occurred.

[発明の効果] 以上述べてきたように、この発明では溶融亜鉛めっき
鋼板のめっき皮膜を合金化するに際して、適正な鉄含有
率を得た後急速に350℃以下に冷却し、この温度から250
℃までの温度帯で所定の時間をかけて合金めっき皮膜の
均一化を図っている。このため得られる製品は、耐食性
や塗装性、溶接性を損なうことなく、耐パウダリング性
が改善され且つフレーイングも発生することのない加工
性に優れたものである。自動車用鋼板等、耐食性に加え
て益々厳しい加工性が要求される産業分野にあって、こ
のように優れた加工性を持つ合金化溶融亜鉛めっき鋼板
の製造を可能としたこの発明の効果は大きい。
[Effects of the Invention] As described above, according to the present invention, when the galvannealed steel sheet is alloyed, it is rapidly cooled to 350 ° C or less after obtaining a proper iron content,
The alloy plating film is made uniform over a predetermined time in the temperature range up to ℃. Therefore, the product obtained is excellent in workability without impairing corrosion resistance, paintability, and weldability, improving powdering resistance, and causing no flaring. In industrial fields such as steel sheets for automobiles that require increasingly severe workability in addition to corrosion resistance, the effect of the present invention that enables the production of alloyed hot-dip galvanized steel sheet having such excellent workability is great. .

【図面の簡単な説明】[Brief description of drawings]

第1図は作用を説明するための滞留条件と耐パウダリン
グ性改善率の関係を示す図、第2図は作用を説明するた
めの合金化熱処理パターンと耐パウダリング性との関係
を示す図、第3図は実施例1の合金化熱処理パターンを
示す図、第4図は実施例2の合金化熱処理パターンを示
す図、第5図はビード引抜き試験機及び深絞り試験機主
要部の概要図である。 1……試験片、2……ダイス、3……ポンチ、4……皺
抑え。
FIG. 1 is a diagram showing the relationship between residence conditions and powdering resistance improvement rate for explaining the action, and FIG. 2 is a diagram showing the relationship between alloying heat treatment pattern and powdering resistance for explaining the action. FIG. 3 is a diagram showing an alloying heat treatment pattern of Example 1, FIG. 4 is a diagram showing an alloying heat treatment pattern of Example 2, and FIG. 5 is an outline of main parts of a bead drawing tester and a deep drawing tester. It is a figure. 1 ... test piece, 2 ... die, 3 ... punch, 4 ... wrinkle suppression.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−88751(JP,A) 特開 昭61−207560(JP,A) 特開 昭61−223174(JP,A) 特開 昭53−73431(JP,A) ─────────────────────────────────────────────────── --- Continuation of the front page (56) References JP-A-2-88751 (JP, A) JP-A 61-207560 (JP, A) JP-A 61-223174 (JP, A) JP-A 53- 73431 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】A1を0.05wt%以上0.30wt%以下Pbを0.20wt
%以下残部がZnおよび不可避的不純物からなる溶融亜鉛
めっき浴に鋼板を浸漬し、引き続き連続的に合金化熱処
理を行う合金化溶融亜鉛めっき鋼板の製造方法におい
て、合金化熱処理の最高到達温度を450℃以上525℃以下
とし、めっき皮膜中のFe含有率が8wt%以上14wt%以下
となるように所定時間加熱した後、350℃以下250℃以上
の間の温度Tまで25℃/秒以上の冷却速度で急冷し、前
記温度Tから250℃までの温度範囲を下式で示される滞
留時間tで通過させる工程を経て、その後最終冷却する
ことを特徴とする耐パウダリング性に優れた合金化溶融
亜鉛めっき鋼板の製造方法。 8.5×10-4×exp{5840/(T+273)}≦t≦300 但し、T:急冷終了温度(℃) t:急冷終了温度Tから250℃までの温度範囲における滞
留時間(秒)
1. A1 is 0.05 wt% or more and 0.30 wt% or less Pb is 0.20 wt%
% Or less The balance is Zn and hot dip galvanizing bath consisting of unavoidable impurities, the steel sheet is immersed in a hot dip galvanized steel sheet manufacturing method in which the alloying heat treatment is continuously performed. ℃ or more and 525 ℃ or less, and after heating for a predetermined time so that the Fe content in the plating film is 8 wt% or more and 14 wt% or less, then cool at 25 ℃ / sec or more to a temperature T between 350 ℃ and 250 ℃ An alloying melt having excellent powdering resistance, which comprises rapid cooling at a speed and passing through a temperature range from the temperature T to 250 ° C. for a residence time t represented by the following formula, followed by final cooling. Manufacturing method of galvanized steel sheet. 8.5 x 10 -4 x exp {5840 / (T + 273)} ≤ t ≤ 300 where T: quenching end temperature (° C) t: quenching end temperature Residence time (sec) in the temperature range from T to 250 ° C
【請求項2】滞留時間tで通過させる工程が、前記温度
Tにおいて均熱処理を行う工程である請求項1記載の耐
パウダリング性に優れた合金化溶融亜鉛めっき鋼板の製
造方法。
2. The method for producing an alloyed hot-dip galvanized steel sheet having excellent powdering resistance according to claim 1, wherein the step of allowing the material to pass through for a residence time t is a step of soaking at the temperature T.
JP1131069A 1989-05-24 1989-05-24 Method for producing galvannealed steel sheet with excellent powdering resistance Expired - Fee Related JP2512147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1131069A JP2512147B2 (en) 1989-05-24 1989-05-24 Method for producing galvannealed steel sheet with excellent powdering resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1131069A JP2512147B2 (en) 1989-05-24 1989-05-24 Method for producing galvannealed steel sheet with excellent powdering resistance

Publications (2)

Publication Number Publication Date
JPH02310352A JPH02310352A (en) 1990-12-26
JP2512147B2 true JP2512147B2 (en) 1996-07-03

Family

ID=15049273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1131069A Expired - Fee Related JP2512147B2 (en) 1989-05-24 1989-05-24 Method for producing galvannealed steel sheet with excellent powdering resistance

Country Status (1)

Country Link
JP (1) JP2512147B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914541B2 (en) * 1976-12-14 1984-04-05 日新製鋼株式会社 Alloying treatment method for galvanized steel sheets
JPS61223174A (en) * 1985-03-28 1986-10-03 Sumitomo Metal Ind Ltd Production of zinc alloyed and hot dipped steel sheet

Also Published As

Publication number Publication date
JPH02310352A (en) 1990-12-26

Similar Documents

Publication Publication Date Title
WO2007119665A1 (en) Process for producing alloyed hot-dip zinc-coated steel sheet satisfactory in processability, non-powdering property, and sliding property
JP4987510B2 (en) Alloyed hot-dip galvanized steel sheet with excellent paint sharpness and press formability and method for producing the same
JP2008231448A (en) Steel sheet for hot dip galvannealing and hot dip galvannealed steel sheet
JP2970445B2 (en) Hot-dip galvanizing method for Si-added high tensile steel
JPH0581662B2 (en)
JP2512147B2 (en) Method for producing galvannealed steel sheet with excellent powdering resistance
JPH06212383A (en) Hot dip galvanizing method for silicon-containing steel sheet
JPS5811770A (en) Manufacture of molten aluminum plated steel plate with excellent corrosion resistance and plating adhesion
JP2512148B2 (en) Method for producing galvannealed steel sheet with excellent powdering resistance
JP2674429B2 (en) Hot-dip galvanizing method for silicon-containing steel sheet
JP3082438B2 (en) Adjustment method for surface roughness of galvannealed steel sheet
JPH05106001A (en) Hot-dip galvanizing method for silicon-containing steel sheet
JPS63171871A (en) Production of high strength steel plated with zinc by vapor deposition
JPH08144036A (en) Production of galvanized steel sheet by using hot rolled steel sheet as base metal
JP4600951B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and its manufacturing method
JP3946338B2 (en) Manufacturing method of steel strip for coating with excellent bending workability
JP2000273611A (en) Galvannealed steel sheet and production thereof
JPH111755A (en) Galvanized steel sheet and its production
KR100280724B1 (en) A method for manufacturing a hot-dip galvanized hot-rolled steel sheet excellent in thermal resistance and plating adhesion
JPH07243012A (en) Production of galvannealed steel sheet excellent in external appearance of surface
JPS6240353A (en) Production of alloyed zinc plated steel sheet
JP2574011B2 (en) Manufacturing method of galvannealed steel sheet
JPH05320853A (en) Production of galvannealed steel sheet having good plating adhesion
JPH10287964A (en) Galvannealed steel sheet excellent in powdering resistance and its production
JPH0681044A (en) Production of steel sheet excellent in deep drawability as well as in fatigue characteristic

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees