JPH04341550A - Production of galvannealed steel sheet - Google Patents

Production of galvannealed steel sheet

Info

Publication number
JPH04341550A
JPH04341550A JP40214190A JP40214190A JPH04341550A JP H04341550 A JPH04341550 A JP H04341550A JP 40214190 A JP40214190 A JP 40214190A JP 40214190 A JP40214190 A JP 40214190A JP H04341550 A JPH04341550 A JP H04341550A
Authority
JP
Japan
Prior art keywords
steel sheet
alloying
heating
phase
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP40214190A
Other languages
Japanese (ja)
Inventor
Motohiro Nakayama
元宏 中山
Makoto Itomi
糸見 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP40214190A priority Critical patent/JPH04341550A/en
Publication of JPH04341550A publication Critical patent/JPH04341550A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To improve the finishing appearance in the coating of a steel sheet by heating a plated steel sheet to a specified temp., thereafter heating it to a specified temp. as unalloyed and next executing rapid cooling at a specified cooling rate. CONSTITUTION:A steel sheet is plated by a galvanizing bath constituted of, by weight, 0.04 to O.12% Al and the balance Zn with inevitable impurities, and after the regulation of the coating weight, it is subjected to allaying treatment under heating by an allaying furnace. At this time, after the regulation of the coating weight, allaying under heating in a primary stage is executed by an allaying furnace. In this stage, it is heated at the sheet temp. of 500 to 600 deg.C. After that, by alloying under heating in a secondary stage as unalloyed, this steel sheet is heated in the sheet temp. range of 510 to 470 deg.C to complete the allaying. Next, the steel sheet is rapidly cooled at >=30 deg.C/S cooling rate. The coating weight is regulated to 45 to 90g/m<2>, the thickness of a xsi phase on the surface of the plated layer to <=0.5mum and the thickness of a gamma phase on the boundary of the iron base to <=0.7mum. In this way, the product of quality can stably be manufactured at low cost in high efficiency.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は合金化溶融亜鉛めっき鋼
板の製造方法に関するものである。詳しくは、成形時の
めっき層の耐剥離性と成形後の電着塗装仕上がり性に優
れた合金化溶融亜鉛めっき鋼板の製造方法である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an alloyed hot-dip galvanized steel sheet. Specifically, the present invention is a method for producing an alloyed hot-dip galvanized steel sheet that has excellent peeling resistance of the plating layer during molding and excellent electrodeposition coating finish after molding.

【0002】0002

【従来の技術】合金化溶融亜鉛めっき鋼板は、溶融めっ
き後加熱して素地鋼板の鉄をめっき層中に拡散させ、鉄
−亜鉛合金層を形成したものである。一般の亜鉛めっき
鋼板と比較して塗装耐食性や溶接性に優れることから、
自動車、家電用途で広く使用されている。最近は塗装耐
食性の要求がますます高まり、合金化溶融亜鉛めっき鋼
板の採用が急増している。しかも使用部位の拡大につれ
て、より厳しい加工を受ける部位に適用されることから
、プレス性などの加工性向上が強く望まれるようになっ
た。また、最近では電着塗装や粉体塗装が一般的に行わ
れるようになったが、これらの塗装用途で塗装仕上がり
性が劣るため、その改善向上が強く望まれている。
BACKGROUND OF THE INVENTION Alloyed hot-dip galvanized steel sheets are produced by heating after hot-dip plating to diffuse iron in the base steel sheet into the plating layer, thereby forming an iron-zinc alloy layer. Compared to general galvanized steel sheets, it has superior coating corrosion resistance and weldability.
Widely used in automobiles and home appliances. Recently, there has been an increasing demand for paint corrosion resistance, and the use of alloyed hot-dip galvanized steel sheets is rapidly increasing. Moreover, as the number of areas in which they are used expands, they are being applied to areas that undergo more severe processing, and there is a strong desire for improved workability such as pressability. In addition, electrodeposition coating and powder coating have recently become common practice, but since the finish quality of these coatings is poor, there is a strong desire for improvement.

【0003】成形時の耐剥離性や成形後の塗装仕上がり
性を改善するには、めっき層の成形性を改善する必要が
ある。すなわち、合金化溶融亜鉛めっき鋼板は硬くて脆
い金属間化合物からなるため、成形時にめっき層が浮き
上がったり剥離したりする現象があり、剥離すると成形
時にダイスや鋼板に転着したり、堆積するため、押し傷
や型かじりなどの品質・欠陥を生ずる。まためっき層が
浮き上がる場合は、脱脂や化成処理工程でこの部分に生
成した反応物が、電着塗装や粉体塗装の焼き付け時の硬
化過程で脱水反応により水分を発生するため、「ブツ」
と称する凹凸状の塗装欠陥を起こす。以上の成形加工に
伴う諸問題を解決することが強く望まれており、プレス
性と塗装仕上がり性の良い合金化亜鉛めっき鋼板の開発
が強く望まれている。
[0003] In order to improve the peeling resistance during molding and the coating finish after molding, it is necessary to improve the moldability of the plating layer. In other words, since alloyed hot-dip galvanized steel sheets are made of hard and brittle intermetallic compounds, the plating layer may lift or peel off during forming, and if it peels off, it transfers or deposits on the die or steel sheet during forming. , resulting in quality defects such as press scratches and mold scratches. In addition, if the plating layer lifts up, the reaction products generated in this area during the degreasing and chemical conversion treatment processes will generate moisture due to dehydration reaction during the curing process during baking of electrodeposition coating and powder coating, so "bumps" will occur.
This causes uneven paint defects called . There is a strong desire to solve the above-mentioned problems associated with forming, and there is a strong desire to develop an alloyed galvanized steel sheet with good pressability and paint finish.

【0004】0004

【発明が解決しようとする課題】合金化溶融亜鉛めっき
鋼板は熱拡散処理により製造されることから、鉄素地界
面では硬くて脆いΓ相(Γ相またはΓ1 相であるが、
ここではΓ相と総称する)が生成する。Γ相厚の増加に
つれて耐剥離性が劣化するため、曲げ戻し加工や縮みフ
ランジ加工などの圧縮加工時にめっき剥離を起こす問題
がある。一方、絞りビード部分などの高面圧で摺動変形
を伴う部分では、摩擦せん断力によりめっき層が剥離し
易くなるが、この場合はめっき表層の硬さが重要で、軟
質なζ相やη相が多く残存するほど、摩擦抵抗が増大し
、めっき剥離が増加する。成形時にめっき剥離すると成
形品質や成形作業性を著しく損なうため、めっき層のΓ
相やζ相を抑制しδ1 相を主体とするめっき構造とす
ることで、めっき層の耐剥離性を向上させることが重要
である。
[Problems to be Solved by the Invention] Since alloyed hot-dip galvanized steel sheets are manufactured by thermal diffusion treatment, there is a hard and brittle Γ phase (Γ phase or Γ1 phase) at the interface with the iron substrate.
(hereinafter collectively referred to as the Γ phase) is generated. Since the peeling resistance deteriorates as the Γ phase thickness increases, there is a problem that the plating peels off during compression processing such as bending back processing and shrinkage flange processing. On the other hand, in areas where sliding deformation occurs due to high surface pressure, such as drawing beads, the plating layer tends to peel off due to frictional shearing force, but in this case, the hardness of the plating surface layer is important, and the soft ζ phase and As more phases remain, frictional resistance increases and plating peeling increases. If the plating peels off during molding, the molding quality and molding workability will be significantly impaired.
It is important to improve the peeling resistance of the plating layer by suppressing the phase and ζ phase and creating a plating structure mainly composed of the δ1 phase.

【0005】電着塗装や粉体塗装で問題となるブツによ
る塗装仕上がり不良は、成形時にめっき層と鉄素地界面
にクラックが発生し、めっき層が剥離することなく浮き
上がるため、この部分がミクロ的な袋構造となり、塗装
前処理工程でこの部分に生成した反応生成物が塗膜の焼
き付け硬化過程で、脱水反応により水分を発生するため
塗膜内に水蒸気ガス気泡を生成して「ブツ」状の塗膜欠
陥を生ずると推定される。従って、この場合も、成形時
の耐剥離性やクラックの耐伝播性を改善することが重要
である。上記のように、成形性に優れ、かつ成形後の塗
装仕上がり性を改善するには、Γ相厚0.7m以下、ζ
相厚を0.5μm以下とすることが必要である。本発明
はめっき層の耐剥離性や耐クラック伝播性を改善するた
め、Γ相およびζ相の生成量を極力抑制し、δ1 相主
体のめっき構造とする合金化溶融亜鉛めっき鋼板の製造
方法を提供するものである。
[0005] Poor paint finish due to particles, which is a problem in electrodeposition coating and powder coating, occurs when cracks occur at the interface between the plating layer and the iron base during molding, and the plating layer lifts up without peeling off. The reaction product generated in this area during the pre-painting treatment process generates moisture through a dehydration reaction during the baking and curing process of the paint film, creating water vapor gas bubbles within the paint film, resulting in a "bumpy" appearance. It is estimated that this will cause paint film defects. Therefore, in this case as well, it is important to improve peeling resistance and crack propagation resistance during molding. As mentioned above, in order to have excellent moldability and improve the paint finish after molding, the Γ phase thickness is 0.7 m or less, the ζ
It is necessary that the phase thickness is 0.5 μm or less. In order to improve the peeling resistance and crack propagation resistance of the coating layer, the present invention provides a method for manufacturing an alloyed hot-dip galvanized steel sheet in which the amount of Γ phase and ζ phase produced is suppressed as much as possible, and the coating structure is mainly composed of δ1 phase. This is what we provide.

【0006】[0006]

【課題を解決するための手段】本発明はAl0.04〜
0.12wt%、残亜鉛および不可避的不純物からなる
亜鉛めっき浴でめっきを施し、次いで目付け量制御を行
った後、合金化処理炉で加熱して合金化処理を行うに際
して、第一段階として500℃以上で600℃以下の板
温度に加熱し、合金化完了直前の未合金化状態のままで
、第二段階の熱処理として、510℃以下で470℃以
上の板温度に冷却して合金化を完了させ、その後は30
℃/s以上の冷却速度で400℃以下の温度域に急冷す
ることを特徴とする合金化溶融亜鉛めっき鋼板の製造方
法である。なお、合金化処理炉の昇温過程で浴内浸漬後
、7秒以内に上記最高温度に加熱処理すること、合金化
処理炉の合金化過程で510℃以下で470℃以上の加
熱時間を3秒以内で合金化を達成すること、目付け量を
45〜90g/m2 、Γ相厚0.7μm以下としかつ
ζ相厚を0.5μm以下とすること、合金化亜鉛めっき
鋼板の上層に鉄を主体とし、残部亜鉛からなる電気めっ
きを施すことは好ましい。
[Means for solving the problems] The present invention provides Al0.04~
After plating with a galvanizing bath consisting of 0.12 wt%, residual zinc and unavoidable impurities, and then controlling the basis weight, heating in an alloying treatment furnace is performed.As the first step, 500% The plate is heated to a temperature of 600°C or higher between 510°C and 600°C, and in the unalloyed state immediately before alloying is completed, it is cooled to a temperature of 470°C or higher at a temperature of 510°C or lower for alloying. Complete it and then 30
This is a method for producing an alloyed hot-dip galvanized steel sheet, which is characterized by rapidly cooling to a temperature range of 400°C or less at a cooling rate of 0°C/s or more. In addition, during the temperature raising process of the alloying furnace, heat treatment must be carried out to the maximum temperature mentioned above within 7 seconds after immersion in the bath, and during the alloying process of the alloying furnace, the heating time must be 510°C or lower and 470°C or higher for 3 times. Alloying should be achieved within seconds, the basis weight should be 45 to 90 g/m2, the Γ phase thickness should be 0.7 μm or less, and the ζ phase thickness should be 0.5 μm or less, and iron should be added to the upper layer of the alloyed galvanized steel sheet. It is preferable to perform electroplating consisting mainly of zinc and the remainder zinc.

【0007】[0007]

【作用】亜鉛めっき浴中のAlを0.04〜0.12w
t%(ここでは浴中の有効Al濃度で表し、以下同じ。 )にする理由は、この組成範囲でAl〜Fe〜Zn系の
合金層が鋼板表面に局所的に生成し、短時間であるが、
鉄素地と亜鉛との反応を抑制する効果がある。この抑制
効果により低温域の合金化反応で生成し易いζ相の生成
が抑制される効果がある。すなわち、0.04wt%よ
り低いAl濃度ではめっき浴中でζ相を主体とする合金
層の生成量が増大し、本発明を適用してもめっき表層に
ζ相が厚く残存したり、またはζ相の消滅まで温度を上
げたり加熱時間を長くするとΓ相が厚く成長するため効
果がない。また浴内へのFe溶出が大きいためドロスの
生成が増加し、めっき品質を損なうので好ましくない。
[Action] 0.04 to 0.12w of Al in the galvanizing bath
The reason for using t% (expressed here as the effective Al concentration in the bath, the same applies hereinafter) is that in this composition range, an Al~Fe~Zn alloy layer is locally formed on the steel sheet surface and is short-lived. but,
It has the effect of suppressing the reaction between the iron base and zinc. This suppressing effect has the effect of suppressing the formation of the ζ phase that is likely to be formed in alloying reactions in the low temperature range. That is, when the Al concentration is lower than 0.04 wt%, the amount of alloy layer mainly composed of ζ phase increases in the plating bath, and even if the present invention is applied, the ζ phase remains thick on the plating surface layer, or Raising the temperature or lengthening the heating time until the phase disappears is ineffective because the Γ phase grows thicker. Further, since a large amount of Fe elutes into the bath, dross generation increases, which impairs plating quality, which is not preferable.

【0008】一方、Alが0.12wt%超になると、
めっき浴内においてAl濃度の高い三元合金層が鋼板表
面の全面に生成するため、合金化反応を顕著に抑制する
ことになる。このため、合金化熱処理時間が顕著に増大
するため、極めて長い合金化炉が必要となるため設備コ
ストが過大となること、また通常の合金化炉では通板速
度を低下して加熱時間を増加させる必要があり、生産性
が顕著に劣化するので実用的でない。また、温度を増加
させて合金化速度をあげると、600℃より高い温度に
加熱する必要があるため、過大な加熱能力が必要となる
問題がある他に、めっき表層が高温のため燃焼したり、
めっき層が部分的に垂れ流れて、めっき厚が不均一とな
り、めっき外観が極めて劣化するため商品価値が低下す
る問題がある。そのうえ、その後の冷却過程でΓ相厚が
過大となるため、本発明の適用効果がなくなる問題があ
る。
On the other hand, when Al exceeds 0.12 wt%,
Since a ternary alloy layer with a high Al concentration is generated over the entire surface of the steel sheet in the plating bath, the alloying reaction is significantly suppressed. For this reason, the alloying heat treatment time increases significantly, requiring an extremely long alloying furnace, resulting in excessive equipment costs, and in a normal alloying furnace, the threading speed is reduced and the heating time is increased. This is not practical as it would significantly reduce productivity. In addition, if the alloying speed is increased by increasing the temperature, it will be necessary to heat the alloy to a temperature higher than 600°C, so there is a problem in that excessive heating capacity is required, and the surface layer of the plating may burn due to the high temperature. ,
There is a problem that the plating layer partially drips and the plating thickness becomes non-uniform, and the appearance of the plating is extremely deteriorated, resulting in a decrease in commercial value. Moreover, the thickness of the Γ phase becomes excessive in the subsequent cooling process, so there is a problem that the application effect of the present invention is lost.

【0009】上記亜鉛めっき浴でめっき後、ガスワイピ
ング法など一般に知られた方法で目付け制御を行い、加
熱合金化処理する。この場合、昇温過程での合金化温度
は500℃以上で600℃以下とする理由は、500℃
より低い温度ではζ相が生成し易く、本発明の目的とす
るδ1 相主体のめっき構造は如何なる合金化条件にお
いても確保できない。また、600℃より高い場合には
めっき層表面の亜鉛蒸気が燃焼しめっき外観が劣化する
問題がある他に、亜鉛の流動性が増加するため、未合金
化状態のめっき層が流れて垂れるため、めっき厚が不均
一になったり、垂れ模様が浮き出てめっき外観が損なわ
れる問題がある。また、温度が600℃より高い状態で
合金化処理を完了すると、その後の冷却過程において、
どのような加熱条件を適用しても、また工業的に可能な
冷却速度を適用してもΓ相厚が0.7μm以下に確保し
た条件で合金化を達成できないので不適である。
After plating in the above-mentioned zinc plating bath, the area weight is controlled by a generally known method such as a gas wiping method, and a heat alloying treatment is performed. In this case, the reason why the alloying temperature in the heating process is set to 500℃ or more and 600℃ or less is that 500℃
At lower temperatures, the ζ phase tends to form, and the plating structure consisting mainly of the δ1 phase, which is the object of the present invention, cannot be ensured under any alloying conditions. Furthermore, if the temperature is higher than 600°C, there is a problem that the zinc vapor on the surface of the plating layer will burn and the appearance of the plating will deteriorate, and the fluidity of zinc will increase, causing the unalloyed plating layer to flow and sag. However, there are problems in that the plating thickness becomes non-uniform and the appearance of the plating is impaired due to the appearance of dripping patterns. Additionally, if the alloying process is completed at a temperature higher than 600°C, in the subsequent cooling process,
No matter what heating conditions or industrially possible cooling rates are applied, alloying cannot be achieved under conditions where the Γ phase thickness is maintained at 0.7 μm or less, which is unsuitable.

【0010】ところで、上記温度範囲で行う合金化処理
は完全に合金化を達成することは望ましくない。すなわ
ち、この高温域で合金化熱処理を行う場合は、めっき表
面にη相が残存する状態で、ひき続いて冷却を行い、5
10℃未満で470℃以上の比較的低温域で合金化を達
成することが肝要である。この場合、めっき表層に残存
せしめるη相は、一般的には5μm以下とすることが好
ましい。5μmより多いとその後の低温域での合金化熱
処理でζ相が成長し易いため不利である。
By the way, it is not desirable to achieve complete alloying in the alloying treatment carried out in the above temperature range. In other words, when alloying heat treatment is performed in this high temperature range, cooling is performed successively with the η phase remaining on the plating surface.
It is important to achieve alloying in a relatively low temperature range of below 10°C and above 470°C. In this case, it is generally preferable that the η phase remaining on the plating surface layer be 5 μm or less. If it is more than 5 μm, it is disadvantageous because the ζ phase tends to grow during the subsequent alloying heat treatment in a low temperature range.

【0011】なお、η相が5μm以下では第一段階の5
00〜600℃の比較的高い温度域での加熱合金化処理
において、η相中のFe濃度が十分に高くなるため、そ
の後の低温域での加熱合金化処理においてζ相を生成し
難くなる効果がある。またη相がめっき表層に存在する
場合には、このような比較的高い温度域においてもГ相
が成長し難い特徴がある。これは、この温度域で主体的
に成長しているδ1 相の粒界拡散を通じて亜鉛と鉄素
地界面のFeとが反応するため、Fe濃度の高いГ相は
生成し難く、Zn濃度の高いδ1 相が主として成長し
易いことによる。
[0011] If the η phase is less than 5 μm, the first stage 5
In heat alloying treatment in a relatively high temperature range of 00 to 600°C, the Fe concentration in the η phase becomes sufficiently high, making it difficult to generate ζ phase in subsequent heat alloying treatment in a low temperature range. There is. Furthermore, when the η phase is present in the plating surface layer, the Γ phase is difficult to grow even in such a relatively high temperature range. This is because zinc reacts with Fe at the interface of the iron substrate through grain boundary diffusion of the δ1 phase, which grows primarily in this temperature range, making it difficult to form a Г phase with a high Fe concentration, and This is mainly due to the fact that the phase is easy to grow.

【0012】ところで低温域での合金化処理において最
適な温度範囲の存在する理由は、510℃より高い温度
で合金化するとζ相の生成は抑制できるが、合金化完了
後の冷却過程において、たとえば気水冷却など工業的に
行われている急速冷却法を適用する場合でもГ相の成長
を抑制できず、Г相厚:0.7μm以下を確保できない
ため好ましくない。
By the way, the reason why there is an optimal temperature range in alloying treatment at low temperatures is that, although alloying at a temperature higher than 510° C. can suppress the formation of ζ phase, in the cooling process after alloying is completed, for example, Even when industrially used rapid cooling methods such as air-water cooling are applied, the growth of the Γ phase cannot be suppressed and a Γ phase thickness of 0.7 μm or less cannot be ensured, which is not preferable.

【0013】また、470℃より低い温度では、めっき
表層に残存するη相が合金化過程でζ相を生成するため
好ましくない。一旦生成したζ相を消滅するまで合金化
熱処理すると、かなり早い速度でГ相が成長するため本
発明のめっき構造を確保できなくなる。また温度が低く
なるほど合金化完了にまで加熱時間が長くなるため生産
性が低下する問題がある。
Furthermore, a temperature lower than 470° C. is not preferable because the η phase remaining in the plating surface layer forms a ζ phase during the alloying process. If the alloying heat treatment is performed until the ζ phase once generated disappears, the Г phase will grow at a fairly rapid rate, making it impossible to secure the plating structure of the present invention. Furthermore, the lower the temperature, the longer the heating time required to complete alloying, resulting in a reduction in productivity.

【0014】ところで、5μm以下のη相を合金化する
に要する合金化時間は合金化温度により異なるが、一般
的には3秒以内である。すなわち逆にいえば第二段階の
加熱は、470〜510℃の中間温度域での加熱が3秒
以内で完了するように、前段の500〜600℃の高温
域での加熱時間を確保することで、ζ相とГ相を抑制し
た合金化反応を行うことができる。この場合、高温域で
の加熱温度が高いほどδ1 相の成長が促進され有利で
ある。いずれにしろ、高温域での加熱によりη相が5μ
m以下に加熱することが、引き続いて行う第二段階の中
温域での加熱のために肝要である。
Incidentally, the alloying time required to alloy the η phase of 5 μm or less varies depending on the alloying temperature, but is generally within 3 seconds. In other words, in the second stage of heating, the heating time in the high temperature range of 500 to 600 °C in the previous stage must be ensured so that heating in the intermediate temperature range of 470 to 510 °C is completed within 3 seconds. , it is possible to perform an alloying reaction that suppresses the ζ and Г phases. In this case, the higher the heating temperature in the high temperature range, the more advantageous the growth of the δ1 phase will be promoted. In any case, the η phase becomes 5μ due to heating in the high temperature range.
Heating to below m is essential for the subsequent heating in the intermediate temperature range in the second stage.

【0015】ところで、目付け制御の後、加熱合金化処
理にあたり、500℃以上で600℃の温度範囲に加熱
するまでの所用時間は鋼板がめっき浴に浸漬してから7
秒以内が望ましい。鋼板がめっき浴に浸漬すると、浴中
に添加された微量のAlと優先的に反応しAl濃度の高
いAl〜Fe〜Zn系の合金層(ここではAlバリアー
層と呼ぶ)を形成する。これが、素地鉄とZnとの反応
を抑制する効果がある。この抑制時間は極めて短時間で
浸漬後7秒以内であることから、この時間以内に500
℃以上で600℃以下の温度範囲に加熱することが望ま
しい。7秒より長いと反応抑制時間を過ぎてしまうため
、500℃以下の低温域で合金化反応が開始するためこ
とになる。500℃以下ではζ相が生成し易く、本発明
の効果が得られない。Alバリアー層による合金化反応
抑制時間である7秒以内に500℃以上に加熱すれば十
分であるが、この加熱昇温時間は短時間であればあるほ
どζ相の抑制効果が顕著となる。
By the way, after controlling the basis weight, the time required to heat the steel sheet to a temperature range of 600°C from 500°C to 600°C during the heating alloying treatment is 7 days after the steel plate is immersed in the plating bath.
Preferably within seconds. When a steel plate is immersed in a plating bath, it preferentially reacts with a small amount of Al added to the bath to form an Al-Fe-Zn alloy layer with a high Al concentration (herein referred to as an Al barrier layer). This has the effect of suppressing the reaction between the base iron and Zn. This suppression time is extremely short, within 7 seconds after immersion, so within this time 500
It is desirable to heat to a temperature range of 600°C or higher. If it is longer than 7 seconds, the reaction suppression time will pass and the alloying reaction will start in a low temperature range of 500° C. or lower. If the temperature is below 500°C, ζ phase is likely to be generated, and the effects of the present invention cannot be obtained. It is sufficient to heat to 500° C. or higher within 7 seconds, which is the alloying reaction suppression time by the Al barrier layer, but the shorter the heating temperature rise time, the more pronounced the effect of suppressing the ζ phase.

【0016】本発明の特徴は浴中に添加した微量Alに
より鋼板表面に形成されるAlバリアー層を活用して、
ζ層生成し易い500℃以下の低温域での合金化反応を
実質的に抑制し、Alバリアー層の合金化抑制時間内に
500℃以上に急速加熱して、δ1 相が析出生成し易
い500℃以上で加熱拡散反応を行うことにある。
The feature of the present invention is to utilize the Al barrier layer formed on the surface of the steel plate by a trace amount of Al added to the bath.
It substantially suppresses the alloying reaction in the low temperature range below 500°C where the ζ layer is likely to be formed, and is rapidly heated to 500°C or above within the alloying suppression time of the Al barrier layer, where the δ1 phase is likely to precipitate and form. The purpose is to carry out a heating diffusion reaction at temperatures above ℃.

【0017】本発明の適用にあたり、加熱方式としては
、ガスバーナー、電気ヒーターなどの外部加熱法、およ
び誘導加熱や抵抗加熱などの内部加熱方式などを適用で
きる。急速加熱が容易で鋼板のサイズや速度変化など熱
容量速度の変化に追随して制御よく容易に加熱処理でき
る方法が望ましい。すなわち、加熱制御性、応答性、温
度均一性、急速加熱能力など総合的に判定すると、例え
ばガス加熱法よりは誘導加熱法などがより有利に適用で
き好ましい。
In applying the present invention, external heating methods such as gas burners and electric heaters, and internal heating methods such as induction heating and resistance heating can be used as heating methods. It is desirable to have a method that allows for easy rapid heating and for easily controlling heat treatment by following changes in the heat capacity rate such as changes in the size and speed of the steel plate. That is, when comprehensively evaluating heating controllability, responsiveness, temperature uniformity, rapid heating ability, etc., an induction heating method is more advantageously applicable than, for example, a gas heating method.

【0018】ところで、本発明を適用する場合は、目付
け量範囲に特に規制はないが、45g/m2 以上で9
0g/m2 以下に適用することがより有利である。す
なわち、目付け量が45g/m2 より小さい場合は、
本発明を適用しなくても、良好な品質を有するめっき鋼
板を製造できる。また90g/m2 より厚いめっき鋼
板に本発明を適用してもζ相厚0.5μm以下かつГ1
 相厚を0.7μm以下に確保できにくいことがあり効
果的でない。
By the way, when applying the present invention, there is no particular restriction on the basis weight range, but 45 g/m2 or more and 9
It is more advantageous to apply it below 0 g/m2. In other words, if the basis weight is less than 45g/m2,
Even without applying the present invention, plated steel sheets with good quality can be manufactured. Moreover, even if the present invention is applied to a plated steel sheet thicker than 90 g/m2, the ζ phase thickness is 0.5 μm or less and Γ1
It is difficult to ensure a phase thickness of 0.7 μm or less, which is not effective.

【0019】ところで上記方法で製造した合金化溶融亜
鉛めっき鋼板の上層に、鉄を主体とし、残部亜鉛からな
る電気めっき層を施すことで、より良好な品質を確保で
きる。すなわち、鉄を主体とする亜鉛系合金めっきは、
硬度が高いため成形時の潤滑性を確保し易い。このため
、過酷な成形を必要とする部品では、このような硬度の
高い上層めっきを施すことが一般的である。このため。 下層となる合金化溶融亜鉛めっき鋼板のめっき層の耐剥
離性は極めて良好なものが望まれることになる。特に、
上層めっきにより潤滑性が改善されているため、縮み変
形が容易となりめっき層にクラックが発生し易くなり、
耐剥離性の低下やそれによるめっき層の浮き上がりによ
り塗装仕上がり性が劣化する問題が生じ易い。
By the way, better quality can be ensured by applying an electroplating layer consisting mainly of iron and the remainder zinc on the upper layer of the alloyed hot-dip galvanized steel sheet produced by the above method. In other words, zinc-based alloy plating mainly composed of iron is
Due to its high hardness, it is easy to ensure lubricity during molding. For this reason, for parts that require severe molding, it is common to apply such a hard upper layer plating. For this reason. It is desired that the plating layer of the alloyed hot-dip galvanized steel sheet serving as the lower layer has extremely good peeling resistance. especially,
Since the lubricity is improved by the upper layer plating, it becomes easier to shrink and deform, making it easier for cracks to occur in the plating layer.
This tends to cause a problem in which the finish quality of the coating deteriorates due to a decrease in peeling resistance and the resulting lifting of the plating layer.

【0020】前述した方法で、ζ相厚0.5μm以下、
Г相厚を0.7μm以下とする合金化溶融亜鉛めっき鋼
板のめっき層表面に、電気めっき法で鉄を主体とする亜
鉛系合金めっきを施すことで、めっき層の耐剥離性は格
段に向上し、成形時のめっき剥離や塗装仕上がり外観は
極めて良好となる。なお、上層めっきとしては、潤滑性
を改善するためものであればよく、めっき層の種類を特
に限定する必要はない。例えば鉄以外に、Ni,Co,
P,Bなどを単独または2種以上を含有する亜鉛系合金
めっきまたは亜鉛系複合めっきを施す場合にも有効であ
る。なお、上層めっきの目付け量としては一般的には1
〜10g/m2 の範囲で行なうことが有効である。1
g/m2 より少ないと潤滑効果が得られないこと、ま
た10g/m2 より多くしても潤滑効果が飽和するの
で、経済的に不利となるので好ましくない。
[0020] By the method described above, the ζ phase thickness is 0.5 μm or less,
The peeling resistance of the plating layer is significantly improved by applying a zinc-based alloy plating mainly made of iron by electroplating to the surface of the plating layer of an alloyed hot-dip galvanized steel sheet with a phase thickness of 0.7 μm or less. However, the peeling of the plating during molding and the appearance of the painted finish are extremely good. Note that the upper layer plating may be of any type for improving lubricity, and there is no need to particularly limit the type of the plating layer. For example, in addition to iron, Ni, Co,
It is also effective when applying zinc-based alloy plating or zinc-based composite plating containing P, B, etc. alone or in combination of two or more. In addition, the basis weight of the upper layer plating is generally 1.
It is effective to carry out the treatment within the range of ~10 g/m2. 1
If it is less than 10 g/m2, the lubricating effect cannot be obtained, and if it is more than 10 g/m2, the lubricating effect is saturated, which is not preferable because it is economically disadvantageous.

【0021】[0021]

【実施例】本発明の実施例を比較例とともにまとめて表
1に示す。本結果から示されるように、本発明を適用す
ることで、ζ相とГ相が抑制され、耐剥離性と塗装外観
の良好な合金化溶融亜鉛めっき鋼板が製造できることが
判る。
[Examples] Examples of the present invention are summarized in Table 1 together with comparative examples. As shown by the results, it is clear that by applying the present invention, the ζ phase and the Г phase can be suppressed, and an alloyed hot-dip galvanized steel sheet with good peeling resistance and painted appearance can be produced.

【0022】[0022]

【表1】 注1:めっき浴温度460℃(Pb0.08wt%、F
e0.03wt%) 注2:鋼板:板厚0.7mm、板幅1050mm注3:
通板速度:100mpm 注4:昇温加熱には周波数10kHz の誘導加熱を使
用。 保熱合金化はガスバーナー加熱法を採用した。 注5:合金化完了後の冷却は気水冷却法により30〜8
0℃/秒の範囲の冷却速度で380℃まで冷却し、その
後は空冷および水中冷却により60℃付近まで冷却した
。 注6:上層めっきは、合金化処理してから冷却後、引き
続き同一ライン内において、電気めっき法でめっきした
。めっき組成はFe組成85wt%、残部Znの合金め
っき(4g/m2 )である。 注7:めっき層の耐剥離性は、1T曲げ試験の内側曲げ
部をテープテストし、めっき層が剥離してテープに付着
しためっき層の剥離幅および黒度を5段階で相対評価し
た。 耐剥離性評点:(良)1−2−3−4−5(劣)注8:
塗装外観は円筒絞り成形後、カチオン電着塗装を行い、
塗膜表面の凹凸状態を倍率10倍の実体顕微鏡により観
察し、5段階評価した。 円筒絞り条件:鋼板サイズ(100×70)  ポンチ
径50φ  ダイス肩半径50mm  絞り高さ40m
m電着塗装:自動車分野で通常行われている脱脂処理、
化成処理を行い、カチオン電着塗装を280V×2分間
行った。 注9:Г相厚は傾斜角30度の断面研磨を行い、倍率2
000倍の光学顕微鏡で観察して測定を行った。 注10:ζ相厚は通常行われている電解剥離法で行い、
ζ相電位の電気量から厚みに換算した。 注11:η相残存有無は炉内の高温加熱帯と低温加熱帯
との中間に設置した反射率計とX線回折装置で計測した
。すなわち、η相が残存する場合は金属光沢を有するが
、合金層がめっき表面まで成長すると黒化度が増大し反
射率が低下することを利用した。なお、参考として、X
線回折装置によりη相に相当する回折X線のピーク強度
も合わせて計測して判定した。
[Table 1] Note 1: Plating bath temperature 460°C (Pb0.08wt%, F
e0.03wt%) Note 2: Steel plate: plate thickness 0.7 mm, plate width 1050 mm Note 3:
Threading speed: 100 mpm Note 4: Induction heating with a frequency of 10 kHz is used for heating. A gas burner heating method was used for heat-retaining alloying. Note 5: Cooling after completion of alloying is done by air-water cooling method to 30 to 8
It was cooled to 380°C at a cooling rate in the range of 0°C/sec, and then cooled to around 60°C by air cooling and water cooling. Note 6: The upper layer was plated by electroplating in the same line after alloying and cooling. The plating composition is an alloy plating (4 g/m2) of 85 wt% Fe and the balance Zn. Note 7: Peeling resistance of the plating layer was evaluated by performing a tape test on the inner bent part of the 1T bending test, and evaluating the peeling width and blackness of the plating layer that was peeled off and attached to the tape on a five-point scale. Peeling resistance rating: (Good) 1-2-3-4-5 (Poor) Note 8:
The painted appearance is achieved by cationic electrodeposition coating after cylindrical drawing.
The uneven state of the surface of the coating film was observed using a stereoscopic microscope with a magnification of 10 times, and evaluated on a five-point scale. Cylindrical drawing conditions: Steel plate size (100 x 70) Punch diameter 50φ Die shoulder radius 50mm Drawing height 40m
Electrodeposition coating: Degreasing treatment commonly performed in the automotive field,
A chemical conversion treatment was performed and cationic electrodeposition coating was performed at 280V for 2 minutes. Note 9: The phase thickness is determined by cross-sectional polishing with an inclination angle of 30 degrees and a magnification of 2.
The measurement was performed by observing with an optical microscope at a magnification of 1,000 times. Note 10: The ζ phase thickness is determined by the commonly used electrolytic stripping method.
The electrical quantity of the ζ-phase potential was converted into thickness. Note 11: The presence or absence of the η phase was measured using a reflectance meter and an X-ray diffraction device installed between the high-temperature heating zone and the low-temperature heating zone in the furnace. That is, when the η phase remains, it has a metallic luster, but when the alloy layer grows to the plating surface, the degree of blackening increases and the reflectance decreases. For reference, X
The determination was made by also measuring the peak intensity of diffracted X-rays corresponding to the η phase using a line diffractometer.

【0023】[0023]

【発明の効果】本発明を適用することにより、合金化溶
融亜鉛めっき鋼板のГ相およびζ相の生成が抑制され、
δ1 相主体のめっき層構造とすることか可能となり、
成形時のめっき層の耐剥離性の向上や成形後に電着塗装
・粉体塗装・ハイソリッド塗装などを行う場合に塗装外
観仕上がり性を確実に改善することが可能となる。本発
明は合金化溶融亜鉛めっき鋼板の従来の品質的弱点を解
消し、高品質製品を安価かつ高効率で安定製造すること
が可能であり、工業的に極めて有用なものである。
[Effects of the Invention] By applying the present invention, the formation of Г phase and ζ phase in alloyed hot-dip galvanized steel sheets is suppressed,
It becomes possible to have a plating layer structure consisting mainly of the δ1 phase,
It is possible to improve the peeling resistance of the plating layer during molding, and to reliably improve the appearance and finish of the coating when performing electrodeposition coating, powder coating, high solid coating, etc. after molding. The present invention eliminates the conventional quality weaknesses of alloyed hot-dip galvanized steel sheets, enables stable production of high-quality products at low cost and with high efficiency, and is extremely useful industrially.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  Al:0.04〜0.12wt%、残
Znおよび不可避的不純物からなる亜鉛めっき浴でめっ
きを施し、ついで目付け制御を行った後、合金化炉で加
熱合金化処理を行うに際して、目付け制御完了後、合金
化炉での第一段階の加熱合金化過程において、500℃
以上で600℃以下の板温度に加熱し、その後、未合金
化状態のまま第2段階の加熱合金化処理で、510℃以
下で470℃以上の板温度範囲で加熱して合金化を完了
させ、次いで30℃/s以上の冷却速度で急冷すること
を特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
[Claim 1] Plating is performed in a galvanizing bath consisting of Al: 0.04 to 0.12 wt%, residual Zn and unavoidable impurities, and after controlling the basis weight, heating alloying treatment is performed in an alloying furnace. After completing the basis weight control, in the first stage heating alloying process in the alloying furnace,
The plate is heated to a temperature of 600°C or less in the above manner, and then, in the second stage of heat alloying treatment, the alloying is completed by heating the plate in a temperature range of 510°C or lower and 470°C or higher while remaining in an unalloyed state. , followed by rapid cooling at a cooling rate of 30° C./s or more.
【請求項2】  合金化処理炉の昇温過程で浴内浸漬後
、7秒以内に上記最高温度に加熱処理する請求項1記載
の合金化溶融亜鉛めっき鋼板の製造方法。
2. The method for producing an alloyed hot-dip galvanized steel sheet according to claim 1, wherein the steel sheet is heated to the maximum temperature within 7 seconds after being immersed in the bath during the heating process of the alloying furnace.
【請求項3】  合金化処理炉の第2段階の合金化過程
において、510℃以下で470℃以上の加熱時間を3
秒以内とする請求項1又は2記載の合金化溶融亜鉛めっ
き鋼板の製造方法。
3. In the second stage alloying process of the alloying treatment furnace, the heating time is 3 times at 510°C or lower and 470°C or higher.
The method for manufacturing an alloyed hot-dip galvanized steel sheet according to claim 1 or 2, wherein the manufacturing time is within seconds.
【請求項4】  目付量を45〜90g/m2 、めっ
き層表面のζ相厚を0.5μm以下、鉄素地界面のΓ相
厚を0.7μm以下とする請求項1〜3のいずれかの項
記載の合金化溶融亜鉛めっき鋼板の製造方法。
4. According to any one of claims 1 to 3, the basis weight is 45 to 90 g/m2, the ζ phase thickness on the surface of the plating layer is 0.5 μm or less, and the Γ phase thickness at the interface with the iron substrate is 0.7 μm or less. A method for producing an alloyed hot-dip galvanized steel sheet as described in .
【請求項5】  合金化亜鉛めっき鋼板の上層に鉄を主
体とし、残部亜鉛からなる電気めっきを施す請求項1〜
4のいずれかの項記載の合金化溶融亜鉛めっき鋼板の製
造方法。
[Claim 5] The upper layer of the alloyed galvanized steel sheet is electroplated mainly with iron and with the balance being zinc.
4. The method for producing an alloyed hot-dip galvanized steel sheet according to any one of 4.
JP40214190A 1990-12-14 1990-12-14 Production of galvannealed steel sheet Pending JPH04341550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40214190A JPH04341550A (en) 1990-12-14 1990-12-14 Production of galvannealed steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40214190A JPH04341550A (en) 1990-12-14 1990-12-14 Production of galvannealed steel sheet

Publications (1)

Publication Number Publication Date
JPH04341550A true JPH04341550A (en) 1992-11-27

Family

ID=18511963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40214190A Pending JPH04341550A (en) 1990-12-14 1990-12-14 Production of galvannealed steel sheet

Country Status (1)

Country Link
JP (1) JPH04341550A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223174A (en) * 1985-03-28 1986-10-03 Sumitomo Metal Ind Ltd Production of zinc alloyed and hot dipped steel sheet
JPH02118088A (en) * 1988-10-26 1990-05-02 Nkk Corp Production of hot-dip galvanized alloyed steel sheet excellent in workability and coating property

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223174A (en) * 1985-03-28 1986-10-03 Sumitomo Metal Ind Ltd Production of zinc alloyed and hot dipped steel sheet
JPH02118088A (en) * 1988-10-26 1990-05-02 Nkk Corp Production of hot-dip galvanized alloyed steel sheet excellent in workability and coating property

Similar Documents

Publication Publication Date Title
JP4786769B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2008214681A (en) Galvannealed steel sheet superior in image clarity of coating and press formability, and manufacturing method therefor
JPH01279738A (en) Production of alloying hot dip galvanized steel sheet
US5409553A (en) Process for manufacturing galvannealed steel sheets having high press-formability and anti-powdering property
US5518769A (en) Process for manufacturing galvannealed steel sheet having excellent anti-powdering property
JPH04341550A (en) Production of galvannealed steel sheet
JP2727598B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JP3016122B2 (en) Galvannealed steel sheet with excellent paintability and its manufacturing method
JP3838277B2 (en) Alloyed hot-dip galvanized steel sheet with excellent powdering resistance
JP2754596B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability, paintability, and corrosion resistance, and method for producing the same
JPH04360A (en) Galvannealed steel sheet excellent in workability
JPS63171871A (en) Production of high strength steel plated with zinc by vapor deposition
JPH02118088A (en) Production of hot-dip galvanized alloyed steel sheet excellent in workability and coating property
JPH03274251A (en) Galvannealed steel sheet excellent in press formability
JP2772697B2 (en) Anti-corrosion steel sheet for automobiles with excellent low-temperature chipping resistance and perforation corrosion resistance
JPH0816261B2 (en) Method for producing galvannealed steel sheet having excellent press formability and powdering resistance
JP2754590B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JPH0544006A (en) Production of alloyed hot dip galvanized steel sheet having excellent workability and corrosion resistance
JPS5848692A (en) Steel plate plated with alloyed zinc and its manufacture
JP2727595B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JP2574011B2 (en) Manufacturing method of galvannealed steel sheet
JP2727597B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JP2727596B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JP2512147B2 (en) Method for producing galvannealed steel sheet with excellent powdering resistance
JPH02166261A (en) Manufacture of alloyed hot dip galvanized steel sheet excellent in workability and coating suitability

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960625