JPS5848692A - Steel plate plated with alloyed zinc and its manufacture - Google Patents

Steel plate plated with alloyed zinc and its manufacture

Info

Publication number
JPS5848692A
JPS5848692A JP14462381A JP14462381A JPS5848692A JP S5848692 A JPS5848692 A JP S5848692A JP 14462381 A JP14462381 A JP 14462381A JP 14462381 A JP14462381 A JP 14462381A JP S5848692 A JPS5848692 A JP S5848692A
Authority
JP
Japan
Prior art keywords
zinc
steel plate
alloyed
galvanized steel
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14462381A
Other languages
Japanese (ja)
Inventor
Yoshihiro Oie
尾家 義弘
Yoshitaka Miura
三浦 喜隆
Tadao Azami
生明 忠雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14462381A priority Critical patent/JPS5848692A/en
Publication of JPS5848692A publication Critical patent/JPS5848692A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To manufacture the titled steel plate causing no cratering phenomenon by plating a steel plate with zinc in a zinc bath contg. Al and Mg at specified concns. and by alloying the plated layer by heating. CONSTITUTION:Al and Mg are added to a zinc bath in conventional continuous zinc plating equipment for steel so as to adjust the Al concn. to 0.05-0.25% and the Mg concn. to 0.2-1.5%. One side or both sides of a steel plate are plated with zinc in the zinc bath, and the plated layer is alloyed by heating to 500- 800 deg.C. By this method a steel plate plated with alloyed zinc can be manufactured easily. This steel plate causes no cratering even if subjected to cation electrodeposition coating, and it has high corrosion resistance.

Description

【発明の詳細な説明】 本発明は電着塗装下地用として好適な鉄−亜鉛合金メッ
キ層を有する合金化亜鉛メッキ鋼板とその製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an alloyed galvanized steel sheet having an iron-zinc alloy plating layer suitable for use as a base for electrodeposition coating, and a method for manufacturing the same.

従来、溶融亜鉛メッキ鋼板を加熱して得られる合金化亜
鉛メッキ鋼板はその合金メッキ層が鉄−亜鉛合金層から
成り、亜鉛メッキ鋼板の欠点である塗料の密着性、耐食
性、加工性、溶接性等を改良した材料として知られてい
る。又合金化亜鉛メッキ鋼板は亜鉛鉄板のようにスパン
グル模様がなく、微細な結晶質の合金により被覆されて
おり、緻密な表面形状を有しているため、塗料及び塗装
方法を選択することなく、容易に平滑で美しい塗装仕上
り外観が得られる点でも優れた特色を有していた。
Conventionally, alloyed galvanized steel sheets obtained by heating hot-dip galvanized steel sheets have an alloy plating layer consisting of an iron-zinc alloy layer, which has problems with paint adhesion, corrosion resistance, workability, and weldability, which are disadvantages of galvanized steel sheets. It is known as an improved material. In addition, alloyed galvanized steel sheets do not have spangle patterns like galvanized iron sheets, but are coated with a fine crystalline alloy and have a precise surface shape, so you can use them without having to choose the paint or coating method. It also had an excellent feature in that it could easily produce a smooth and beautiful painted finish.

しかしながら、近年塗装技術分野に於て開発され、すぐ
れた塗装法として自動車や電気機器分野に普及しはじめ
たカチオン電着塗装を合金化亜鉛メッキ鋼板に行なうと
、塗面に小さなピンホール状の塗膜欠陥(クレータリン
グと呼ぶ)を発生し、商品価値を損するのみならず、こ
れが多発すると耐食性を低下させるという重大な問題が
起きている。しかもこのクレータリング現象は合金化亜
鉛メッキ鋼板に限って発生し、冷延鋼板や亜鉛メッキ鋼
板など他の鉄鋼材料では発生しないため、電着設備、作
業面での対策もとりに<<、上記のような問題点のない
改良された合金化亜鉛メッキ鋼板が要望されていた。
However, when applying cationic electrodeposition coating, which has recently been developed in the field of coating technology and has begun to spread as an excellent coating method in the automobile and electrical equipment fields, to alloyed galvanized steel sheets, small pinhole-like coatings may appear on the coated surface. A serious problem arises in that film defects (called cratering) occur, which not only impairs commercial value, but also reduces corrosion resistance if this occurs frequently. Moreover, this cratering phenomenon occurs only with alloyed galvanized steel sheets and does not occur with other steel materials such as cold-rolled steel sheets and galvanized steel sheets. Therefore, countermeasures should be taken at the electrodeposition equipment and work surface. There is a need for an improved galvanized alloyed steel sheet that does not have these problems.

本発明者等はかかる問題を解決するために、先ず合金化
亜鉛メッキ鋼板でのクレータリング発生傾向と合金メッ
キ品質との相関関係をとり、メッキ層の詳しい性状調査
を行った。その結果、従来の合金化亜鉛メッキ鋼板は合
金メッキ層が主としてδ1相から成るものの、X#回折
スペクトルをとれば分るように、r相、ζ相、η相、α
−Feなどが混在して合金メッキ層が複雑な組成から成
り立っていること、又X線回折スペクトルに於て、δ1
相の主回折線のピーク高さが他にくらべて小さくて、逆
にF相や特にα−Feの存在が多くなるほど、クレータ
リングの発生が多くなることをつきとめた。従って、改
良された合金化亜鉛メッキ鋼板は何らかの工夫によって
、その合金メッキ層を結晶構造的に均質化したδl相と
し、r相やα−Feをなくすることが必須条件となる。
In order to solve this problem, the present inventors first determined the correlation between the tendency of cratering to occur in an alloyed galvanized steel sheet and the alloy plating quality, and conducted a detailed property investigation of the plating layer. As a result, although the alloy plating layer of conventional alloyed galvanized steel sheets mainly consists of the δ1 phase, as can be seen by taking the X# diffraction spectrum, it has been found that
-The alloy plating layer has a complex composition due to the presence of Fe, etc., and in the X-ray diffraction spectrum, δ1
It was found that the peak height of the main diffraction line of the phase is smaller than that of other phases, and conversely, the more F phase and especially α-Fe are present, the more cratering occurs. Therefore, an essential condition for an improved alloyed galvanized steel sheet is to make the alloy plating layer a δl phase with a homogenized crystal structure and to eliminate the r phase and α-Fe by some means.

かくして本発明者等はこの合金メッキ層の品質を満足す
るような合金化亜鉛゛メッキ鋼板の製造方法について、
種々研究を行った結果、klとMgを必須成分として所
足量含有する亜鉛浴にて亜鉛メッキ後、適切な加熱処理
を施すと極めて結晶方位の整ったδ1単相から成り、α
−FeやF相を含有しない合金メッキ層が得られること
を6知り、本発明を完成したものである。
Thus, the present inventors have developed a method for producing an alloyed zinc-plated steel sheet that satisfies the quality of the alloy plating layer.
As a result of various studies, it was found that after zinc plating in a zinc bath containing sufficient amounts of KL and Mg as essential components, when an appropriate heat treatment is performed, the α
The present invention was completed based on the knowledge that an alloy plating layer containing no -Fe or F phase can be obtained.

即ち、本発明は以上のような知見にもとすいてなされた
ものであって、その要旨とするところは、(1)次式で
示されるHが3.5以上のδ、相から成り、且つ α−
Feを実質的に混−在しない厚さ3〜20μの鉄−亜鉛
合金メッキ層を少くともその片面に有することを特徴と
する合金化亜鉛メッキ鋼板、但しII:面間隔’t =
2.20に於ける回折線のピーク高さ工、:   # 
  d、=2.15 I3:面間隔d、−2,13に於ける回折線のピーク高
さ及び (21kl : 0.05〜0.25%、Mg : 0
.2〜1.5%を含み、残部が不可避金属から成る亜鉛
浴中で少くともその片面に亜鉛メッキを施したのち、亜
鉛メッキ層を温度500〜800℃で加熱し、合金化処
理を施すことを特徴とする特許請求の範囲第1項記載の
合金化亜鉛メッキ鋼板の製造方法にある。
That is, the present invention was made based on the above findings, and the gist thereof is (1) consisting of a phase in which H is 3.5 or more, δ, represented by the following formula, And α−
An alloyed galvanized steel sheet, characterized in that it has an iron-zinc alloy plating layer with a thickness of 3 to 20 μm that does not contain substantially Fe on at least one side, provided that II: interplanar spacing 't =
2.The peak height of the diffraction line at 20: #
d, = 2.15 I3: Peak height of diffraction line at interplanar spacing d, -2, 13 and (21kl: 0.05-0.25%, Mg: 0
.. After galvanizing at least one side of the zinc bath in a zinc bath containing 2 to 1.5% and the remainder consisting of unavoidable metals, the galvanized layer is heated at a temperature of 500 to 800°C to perform alloying treatment. A method for manufacturing an alloyed galvanized steel sheet according to claim 1, characterized in that:

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

先ず、本発明の合金化亜鉛メッキ鋼板に於て、合金メッ
キ層を結晶方位の整ったδ1相とするのはクレータリン
グ発生を抑制するために、表面組成を結晶構造的に均一
なものとする意であり、具体的には合金メッキ層をX線
回折したときに、スペクトルはδ1相のds==2.1
3で突出したピークを示し、他に強い回折線が存在しな
いことを必要とする。
First, in the alloyed galvanized steel sheet of the present invention, the alloy plating layer is made into a δ1 phase with a uniform crystal orientation to make the surface composition uniform in terms of crystal structure in order to suppress the occurrence of cratering. Specifically, when the alloy plating layer is subjected to X-ray diffraction, the spectrum is ds==2.1 of the δ1 phase.
3 shows a prominent peak and requires the absence of other strong diffraction lines.

ここでδ1相のd3=2.13は面指数が101面(h
、に、/りに相当し、配向性の尺度は次の(81式を用
いて定義する便宜的なインデックスH値によって表わす
ことが出来る。
Here, d3=2.13 of the δ1 phase has a plane index of 101 planes (h
, , and /ri, and the orientation scale can be expressed by a convenient index H value defined using the following formula (81).

但し11:面間隔d I−220に於ける回折線のピー
ク高さI2:   ’   δ2−2.15 I、:   #   δ3−2.13 H値が3.0未満の合金化亜鉛メッキ鋼板ではクレータ
リングが発生し、Hが3.0以上、好ましくは3.5以
上では発生しないが、発生してもごく僅かである。ちな
みlこ従来の合金化亜鉛メッキ鋼板ではHが2.0〜2
.8であるのに対して、本発明の合金化亜鉛メッキ鋼板
ではHが3.5以上である。なお上限は特に定めないが
、実用上の上限は生産技術的に8.0程度である。クレ
ータリング発生き相関度の高いr相、及びα−Feの主
回折線は各々山=2.11 、 d2=2.02に現れ
るので、これらはδ1相のd。
However, 11: Interplanar spacing d Peak height of diffraction line at I-220 I2: ' δ2-2.15 I,: # δ3-2.13 Crater in alloyed galvanized steel sheet with H value less than 3.0 Rings do occur and do not occur when H is 3.0 or more, preferably 3.5 or more, but even if they do occur, they are very slight. By the way, in conventional alloyed galvanized steel sheets, H is 2.0 to 2.
.. 8, whereas in the alloyed galvanized steel sheet of the present invention, H is 3.5 or more. Although the upper limit is not particularly determined, the practical upper limit is about 8.0 in terms of production technology. The main diffraction lines of the r phase with a high correlation with cratering occurrence and α-Fe appear at peak = 2.11 and d2 = 2.02, respectively, so these are the d of the δ1 phase.

=2.13の回折線との強度比で示される。例えばα−
F、eについてみれば次の(bJ式lこて表される。
It is shown by the intensity ratio with the diffraction line of =2.13. For example α−
Regarding F and e, they are expressed by the following (bJ formula).

4 ・・・・・・・・・・・・・・(bノ ■3 但し I4:面間隔d、−2,02に戻ケる回折線のピ
ーク高さH値は勿論小さい程よく、R=0の合金メッキ
鋼板ではクレータリングを起さない。F相についてもα
−Feと同様の傾向を示す。
4 ・・・・・・・・・・・・・・・(bノ■3 However, I4: The peak height of the diffraction line that returns to the interplanar spacing d, -2,02) Of course, the smaller the H value, the better, R= 0 alloy plated steel sheet does not cause cratering.For F phase also α
-Shows the same tendency as Fe.

なお、回折線のdの値について、サンプルによっては指
定した値から若干ずれることがあるが、固溶体を形成し
ている際にはしばしばみられることなので注意して決定
しなければならない。
Note that the value of d of the diffraction line may deviate slightly from the specified value depending on the sample, but this must be determined with care as this often occurs when a solid solution is formed.

合金メッキ層の厚み指定について、その範囲を3〜20
μとしたのは溶融メッキ法で経済的に得られる限界のな
みであるからである。即ち、下限の厚みは溶融Znメッ
キ時に亜鉛メッキ量と、ガスクイピングによってコント
ロールするが、3μ未満のメッキ厚みは均一に管理でき
ないことによる。
Regarding the thickness specification of the alloy plating layer, the range is 3 to 20
The value μ is chosen because it is the limit that can be obtained economically with the hot-dip plating method. That is, the lower limit thickness is controlled by the amount of zinc plating during hot-dip Zn plating and gas swiping, but a plating thickness of less than 3 μm cannot be uniformly controlled.

上限の厚みもメッキ量が20μを超えると合金層の品質
管理ができなくなるととlこよる。
If the upper limit thickness exceeds 20 μm, quality control of the alloy layer becomes impossible.

次に、本発明による電着塗装性にすぐれた合金化亜鉛メ
ッキ鋼板の製造は、通常の鉄鋼の連続亜鉛メッキ設備に
於て、(例えばゼンジマ一方式。
Next, the production of the alloyed galvanized steel sheet with excellent electrodeposition coating properties according to the present invention can be carried out using ordinary continuous galvanizing equipment for steel (for example, the Zenzima one-type system).

無酸化炉方式、タック・ノーマン方式等)先ず。Non-oxidizing furnace method, Tuck-Norman method, etc.) First.

A#=o、os〜0.25%、Mg=0.2〜1.5%
を含み、残部が不可避金属から成る亜鉛浴中で亜鉛メッ
キを施す。
A#=o, os~0.25%, Mg=0.2~1.5%
Galvanizing is carried out in a zinc bath containing the following:

ここでA#は亜鉛メッキ層の密着性を向上させる目的で
亜鉛浴中に添加する。AIを上記範囲に限定するのはA
Iが0.05%未満では添加効果がなく、0.25%を
超える場合lこはメッキ層と地鉄の界面にFe−AZ化
合物が多く生成して、後工程で亜鉛メッキ層と合金化処
理する際に鉄の拡散が抑制されて合金層の生長が妨げら
れ作業性が著るしく低下するからである。Mgは亜鉛の
鋳造組織を微細化すると共に反応性が大きく合金化処理
によって結晶方位の整ったδ1相を生成させる目的で添
加する。
Here, A# is added to the zinc bath for the purpose of improving the adhesion of the galvanized layer. Limiting AI to the above range is A.
If I is less than 0.05%, there is no addition effect, and if it exceeds 0.25%, a large amount of Fe-AZ compound will be generated at the interface between the plating layer and the base metal, and it will become alloyed with the galvanized layer in the subsequent process. This is because during treatment, diffusion of iron is suppressed, the growth of the alloy layer is hindered, and workability is significantly reduced. Mg is added for the purpose of refining the cast structure of zinc and generating a δ1 phase with high reactivity and a well-oriented crystal orientation through alloying treatment.

Mgを上記範囲に限定するのは0.2%未満では添加効
果がなく1.5%を超えても効果がさほど向上するもの
ではなく、むしろ亜鉛メッキ層が粗雑になったり、外観
不良を起し易くなり、後工程での合金処理が難しくなる
。これはMgが亜鉛浴中で酸化しやすいことによる。
The reason why Mg is limited to the above range is that if it is less than 0.2%, there will be no effect, and if it exceeds 1.5%, the effect will not improve much, but rather it will cause the galvanized layer to become rough or have a poor appearance. This makes alloy processing in subsequent processes difficult. This is because Mg is easily oxidized in a zinc bath.

亜鉛浴の酸化防止のために、浴面を非酸化性の雰囲気で
覆う方法(Iron Age、April 6 、’8
1 、71 )が公知であるが、この様な設備で亜鉛メ
ッキを施すことも本発明の主旨を逸脱するものではない
To prevent oxidation in zinc baths, a method of covering the bath surface with a non-oxidizing atmosphere (Iron Age, April 6, '8
1, 71) is well known, but it does not depart from the gist of the present invention to perform galvanizing using such equipment.

AjとMg以外の金属としては、0.2%以下のpb、
0.1%以下のCdが不純物として亜鉛浴中に存在して
いても構わない。Zn浴を出た鋼板は直ちにガスクイピ
ングなどによって亜鉛目付量をコントロールしたのち、
冷却前に加熱処理を施して亜鉛メッキ層を合金化する。
Metals other than Aj and Mg include pb of 0.2% or less,
Cd of 0.1% or less may be present as an impurity in the zinc bath. After the steel plate leaves the Zn bath, the zinc weight is immediately controlled by gas squeezing, etc.
Before cooling, heat treatment is performed to alloy the galvanized layer.

加熱方法はガス直火加熱。The heating method is direct gas heating.

輻射加熱、電気加熱(抵抗加熱、誘導加熱など)などい
ずれであってもよいが、加熱条件は温度500〜800
°C(但し亜鉛メッキ層温度)加熱時間2〜60秒が適
当である。加熱温度が500’O未滴の場合には合金層
中にり相やζ相が残留し易すく、δ1相の発達が不十分
となる。又、合金化速度も遅くなり経済的に不利である
。一方、加熱温度が800℃を超える場合には、ζ相の
発達が顕著となり、α−Feが生成し易すくなる。これ
らの合金相の変化は亜鉛メッキ浴中のA#量、亜鉛メッ
キ厚み等によってFeの拡散量が変ってくるので加熱時
間にも注意して加熱条件をコントロールする必要がある
。他の加熱方法として、冷えた亜鉛メッキ鋼板を箱型焼
鈍炉により加熱し、合金化するのもかまわないが、処理
時間が長くかかり経済的には不利である。
Any method such as radiation heating or electric heating (resistance heating, induction heating, etc.) may be used, but the heating conditions are a temperature of 500 to 800 ℃.
°C (however, the temperature of the galvanized layer) and a heating time of 2 to 60 seconds is appropriate. If the heating temperature is less than 500'O, the phase and ζ phase tend to remain in the alloy layer, resulting in insufficient development of the δ1 phase. Moreover, the alloying speed becomes slow, which is economically disadvantageous. On the other hand, when the heating temperature exceeds 800° C., the development of the ζ phase becomes remarkable and α-Fe is likely to be generated. These changes in alloy phase change the amount of Fe diffusion depending on the amount of A# in the galvanizing bath, the thickness of galvanizing, etc., so it is necessary to control the heating conditions by paying attention to the heating time. As another heating method, a cold galvanized steel sheet may be heated in a box-type annealing furnace to form an alloy, but this requires a long processing time and is economically disadvantageous.

このようにして得られた合金化亜鉛メッキ鋼板のメッキ
層の品質はX線回折によって前述の如くH値及びH値で
容易に管理できる。
The quality of the plating layer of the thus obtained alloyed galvanized steel sheet can be easily controlled by the H value and the H value as described above by X-ray diffraction.

かくして、本発明により鉄鋼の連続亜鉛メッキ設備を用
いて生産性、作業性を損うことなく、カチオン電着塗装
を行ってもクレータリングを発生することなく、良好な
耐食性を有する合金化亜鉛メッキ鋼板を容易に製造する
ことが可能であり、従来の合金化亜鉛メッキ鋼板に比較
して格段に優れた特性を提供する。
Thus, according to the present invention, alloyed galvanized plating with good corrosion resistance can be achieved without impairing productivity or workability using continuous galvanizing equipment for steel, without causing cratering even when cationic electrodeposition is applied. The steel sheet can be easily manufactured and provides significantly superior properties compared to conventional alloyed galvanized steel sheets.

次に実施例により本発明の効果をさらに具体的に説明す
る。
Next, the effects of the present invention will be explained in more detail with reference to Examples.

実施例 無酸化炉方式による溶融亜鉛メッキ設備を用いて、亜鉛
メッキ浴組成並に加熱処理条件を変えて合金化亜鉛メッ
キ鋼板を製造した。即ち亜鉛メツキ浴へのA# 、 M
gの添加は亜鉛との母合金により行ない、亜鉛浴中の濃
度を変えた。Mg濃度が0.7%以上の場合にはN、シ
ールボックスを用いて亜鉛浴の酸化を防止した。
EXAMPLE Alloyed galvanized steel sheets were manufactured using hot-dip galvanizing equipment using a non-oxidizing furnace method by changing the composition of the galvanizing bath and the heat treatment conditions. i.e. A#, M to galvanized bath
The addition of g was carried out through the master alloy with zinc, and the concentration in the zinc bath was varied. When the Mg concentration was 0.7% or more, N and a seal box were used to prevent oxidation of the zinc bath.

亜鉛メッキ後の加熱処理は輻射加熱とガス直火加熱を併
用して行なった。得られた合金化亜鉛メッキ鋼板のメッ
キ性状はX線回折により解析した。
The heat treatment after galvanizing was carried out using a combination of radiant heating and direct gas heating. The plating properties of the obtained alloyed galvanized steel sheet were analyzed by X-ray diffraction.

カチオン電着塗装によるクレータリング発生量の評価試
験は次のように−行った。即ち、電着塗料は代表的な市
販塗料2種類を標準条件にて電着槽に調製した。次に前
記の合金化亜鉛メッキ鋼板を脱脂・洗浄の後、これを陰
極として所定条件にて電着塗装し、水洗後に電気熱風乾
燥炉で焼付け、冷却した。次に塗装表面を肉眼又は顕微
鏡にて観察し、単位面積当りのクレータリング発生量を
求めた。詳細なる電着条件は次の通り。
An evaluation test for the amount of cratering generated by cationic electrodeposition coating was conducted as follows. That is, two types of typical commercially available electrodeposition paints were prepared in an electrodeposition bath under standard conditions. Next, the alloyed galvanized steel sheet was degreased and washed, then electrodeposited using it as a cathode under predetermined conditions, washed with water, baked in an electric hot air drying oven, and cooled. Next, the painted surface was observed with the naked eye or with a microscope, and the amount of cratering generated per unit area was determined. The detailed electrodeposition conditions are as follows.

′第1表に試験結果を示す。'Table 1 shows the test results.

第1表から分るように、本発明に該当する合金化亜鉛メ
ッキ鋼板は、カチオン電着塗装に対して、クレータリン
グの発生がないが、又は発生しても極めて僅少であり、
従来の合金化亜鉛メッキ鋼板に比較して格段にすぐれて
いる。又本発明の合金化亜鉛メッキ鋼板はH値が大きく
δ、相がよく発達していて配向性がよく、逆にR値は小
さくてα−Feの混在はみられず、クレータリングの抑
制に大きな効果を有している。
As can be seen from Table 1, the alloyed galvanized steel sheet according to the present invention does not generate cratering, or even if cratering occurs, it is very minimal.
Much superior to conventional alloyed galvanized steel sheets. In addition, the alloyed galvanized steel sheet of the present invention has a large H value, δ, well-developed phase, and good orientation, and conversely, a small R value, with no α-Fe mixed in, and is effective in suppressing cratering. It has a great effect.

手続補正書 F@856年10月Z7 日 特許庁長官  島 1)春 樹 殿 l事件の表示 11fl和56年f許am144623号2発明の名称 合金化亜鉛メッキ鋼板及びその装造方法3補正をする者 事件との関係 特許出願人 住 所  東原都千代田区大手町2丁目6番3号名称 
(665)新日本製鐵株式会社 代表者  武 1) 豊 4代 理 人 〒105電(503)48776補正に
よシ増加する発明の数 。
Procedural amendment F@October 19856 Z7 Japan Patent Office Commissioner Shima 1) Indication of Haruki Tono l case 11 fl Japanese 56 year f Permit am 144623 No. 2 Name of invention Alloyed galvanized steel sheet and method of fabricating the same 3 Make amendments Relationship with the patent case Patent applicant address 2-6-3 Otemachi, Chiyoda-ku, Higashihara-to Name
(665) Nippon Steel Corporation Representative Takeshi 1) Yutaka 4th generation Masato The number of inventions will increase due to the 105 Den (503) 48776 amendment.

7、補正の対象  願書の前記以外の発明者の欄、明細
書の発明q説明の欄 8補正の内容 (1)願書の前記以外の発明者において「三浦喜隆」の
ふりがな「ヨシタカ」は「ノブタカ」の誤りであるので
別紙の通シ補正した願書を提出する。
7. Subject of amendment In the field of inventors other than the above in the application, in the description of invention q in the specification 8 Contents of amendment (1) In the inventors other than the above in the application, the furigana for "Yoshitaka Miura" is "Yoshitaka". ” is incorrect, so we will submit an amended application on a separate sheet.

(2)明細書第7頁11行において。(2) On page 7, line 11 of the specification.

「れる成果のなみである・・・」とあるを、「限界の厚
みである・・・」と補正する。
The phrase ``The results are as thick as possible...'' is corrected to ``The results are as thick as possible...''

(3)同第7頁12行目〜13行目において。(3) On page 7, lines 12-13.

「ガスクイピング」とあるを、 「ガスワイピング」と補正する。It says "Gas Quiping", Correct it with "gas wiping."

(4)同第9頁5〜6行目において、 「ガスクイピング」と゛あるを、 「ガスワイピング」と補正する。(4) On page 9, lines 5-6, It's called "gas quiping". Correct it with "gas wiping."

4

Claims (1)

【特許請求の範囲】[Claims] (1)次式で示されるHが3.5以上のδ1相から成り
、且つα−Feを実質的に混在しない厚さ3〜20μの
鉄−亜鉛合金メッキ層を少くともその片面に有すること
を特徴とする合金化亜鉛メッキ鋼板。 但し 工、:  面間隔d、 −2,20に於ける回折
線のピーク高さI2:    #   d、−2,15
Is  :    ’   d3−2.13(2)  
At: 0.05〜0.25%、Mg:0.2〜15%
を含み、残部が不可避金属から成る亜鉛浴中で少くとも
その片面に亜鉛メッキを施したのち亜鉛メッキ層を温度
500〜800℃で加熱し、合金化処理を施すことを特
徴とする合金化亜鉛メッキ鋼板の製造方法。
(1) It consists of a δ1 phase with H expressed by the following formula of 3.5 or more, and has an iron-zinc alloy plating layer on at least one side with a thickness of 3 to 20 μm that does not substantially contain α-Fe. Alloyed galvanized steel sheet featuring: However, the peak height I2 of the diffraction line at the interplanar spacing d, -2,20: # d, -2,15
Is:' d3-2.13(2)
At: 0.05-0.25%, Mg: 0.2-15%
Alloyed zinc is characterized in that at least one side of the zinc bath is galvanized in a zinc bath, the remainder of which is made of an unavoidable metal, and then the galvanized layer is heated at a temperature of 500 to 800°C to undergo an alloying treatment. Method of manufacturing plated steel sheets.
JP14462381A 1981-09-16 1981-09-16 Steel plate plated with alloyed zinc and its manufacture Pending JPS5848692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14462381A JPS5848692A (en) 1981-09-16 1981-09-16 Steel plate plated with alloyed zinc and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14462381A JPS5848692A (en) 1981-09-16 1981-09-16 Steel plate plated with alloyed zinc and its manufacture

Publications (1)

Publication Number Publication Date
JPS5848692A true JPS5848692A (en) 1983-03-22

Family

ID=15366336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14462381A Pending JPS5848692A (en) 1981-09-16 1981-09-16 Steel plate plated with alloyed zinc and its manufacture

Country Status (1)

Country Link
JP (1) JPS5848692A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084009A (en) * 1994-06-23 1996-01-09 Kita Nippon Kenzai Lease Kk Method of supporting earth retaining sheet pile, and device therefor
KR100498092B1 (en) * 2000-11-02 2005-07-01 주식회사 포스코 corrosion resistant Zinc plating bath and products
US9744743B2 (en) 2012-12-26 2017-08-29 Posco Zn—Mg alloy plated steel sheet, and method for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084009A (en) * 1994-06-23 1996-01-09 Kita Nippon Kenzai Lease Kk Method of supporting earth retaining sheet pile, and device therefor
KR100498092B1 (en) * 2000-11-02 2005-07-01 주식회사 포스코 corrosion resistant Zinc plating bath and products
US9744743B2 (en) 2012-12-26 2017-08-29 Posco Zn—Mg alloy plated steel sheet, and method for manufacturing same

Similar Documents

Publication Publication Date Title
KR890001829B1 (en) Hot dip zinc plated basin
JPH0688187A (en) Production of alloyed galvannealed steel sheet
JPS5848692A (en) Steel plate plated with alloyed zinc and its manufacture
US5409553A (en) Process for manufacturing galvannealed steel sheets having high press-formability and anti-powdering property
JPS5834167A (en) Treatment for fe-zn alloying of zinc hot dipped steel plate
JP2727598B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JPS61119663A (en) General-purpose bath for hot dip galvanizing
JPH07243012A (en) Production of galvannealed steel sheet excellent in external appearance of surface
JPH02118088A (en) Production of hot-dip galvanized alloyed steel sheet excellent in workability and coating property
JP3838277B2 (en) Alloyed hot-dip galvanized steel sheet with excellent powdering resistance
JPH04235266A (en) Manufacture of alloying galvannealed steel sheet excellent in workability and corrosion resistance
JPH04360A (en) Galvannealed steel sheet excellent in workability
JPH0413856A (en) Production of galvannealed steel sheet having superior corrosion resistance
JPS6358225B2 (en)
JPH0544006A (en) Production of alloyed hot dip galvanized steel sheet having excellent workability and corrosion resistance
JPH04193938A (en) Manufacture of alloyed hot-dip galvanized steel sheet excellent in press formability and powdering resistance
JPS5974290A (en) Surface treated steel sheet
JP3643559B2 (en) Surface-treated steel sheet excellent in workability and corrosion resistance of machined part and method for producing the same
JPH04224668A (en) Galvannealed steel sheet
JPH01246348A (en) Manufacture of alloying hot dip galvanized steel sheet
JPH04157145A (en) Galvannealed steel sheet
JPH03243755A (en) Organic composite alloying hot dip galvanized steel sheet excellent in press formability
JP2754596B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability, paintability, and corrosion resistance, and method for producing the same
JP2727595B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
KR100287921B1 (en) Method for manufacturing galvannealed steel sheet