JPS6354783B2 - - Google Patents

Info

Publication number
JPS6354783B2
JPS6354783B2 JP58180574A JP18057483A JPS6354783B2 JP S6354783 B2 JPS6354783 B2 JP S6354783B2 JP 58180574 A JP58180574 A JP 58180574A JP 18057483 A JP18057483 A JP 18057483A JP S6354783 B2 JPS6354783 B2 JP S6354783B2
Authority
JP
Japan
Prior art keywords
plating
plated
steel strip
temperature
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58180574A
Other languages
Japanese (ja)
Other versions
JPS6075569A (en
Inventor
Hiroyuki Hakamagi
Akihiko Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP58180574A priority Critical patent/JPS6075569A/en
Publication of JPS6075569A publication Critical patent/JPS6075569A/en
Publication of JPS6354783B2 publication Critical patent/JPS6354783B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0034Details related to elements immersed in bath
    • C23C2/00342Moving elements, e.g. pumps or mixers
    • C23C2/00344Means for moving substrates, e.g. immersed rollers or immersed bearings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0035Means for continuously moving substrate through, into or out of the bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/006Pattern or selective deposits
    • C23C2/0062Pattern or selective deposits without pre-treatment of the material to be coated, e.g. using masking elements such as casings, shields, fixtures or blocking elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、連続溶融亜鉛メツキラインにオー
ブン焼鈍工程を組合せて製造することにより、鋼
板表裏面のスパングルの発生及び亜鉛タレの発生
を防止する差厚片面合金化処理鋼板の製造方法に
関する。 近年、製品耐久性の向上の要求が高まり、特に
自動車メーカ、家電メーカ等において、表面処理
鋼板の性能向上が強く望まれている。これらの鋼
板は成型加工後塗装されるため、その表面は塗料
密着性に優れ、反面塗装が困難な裏面は耐食性に
優れていることが望まれる。そのうち特に亜鉛メ
ツキ鋼板はスパングルの発生をおさえて、両面を
平滑にしなければ、塗料密着性等が悪くなるばか
りか、塗装後もスパングルが浮上り製品出来上が
り外観を著しく損ねることになる。 そのため連続溶融亜鉛メツキラインにおいて差
厚メツキ後、片面を加熱合金化し、同時に他面を
冷却する方法(特開昭54−90024号)や、差厚メ
ツキ後両面を合金化炉にて熱処理して片面の薄メ
ツキ側を合金化し、他方厚メツキ側を表層まで合
金化させない範囲で加熱リフロー(被覆の再流)
する方法が提唱され、従来はこれらによりスパン
グルを除去していた。しかし、これらはいずれも
連続溶融亜鉛メツキ後引続き急速加熱する連続熱
処理を行なつているため、特に厚メツキ側に厚メ
ツキ特有の亜鉛のタレを生じ、表面に凹凸のある
波シワ状のメツキ厚の異なる不均一面を形成し、
調質圧延後、製品の表となる薄メツキ側にも転写
されてマークとして残り、均一平滑な外観を得る
ことが困難になる。 本発明は従来技術の以上のような問題を解決す
るためになされたもので、従来差厚メツキ直後の
高温亜鉛メツキ鋼帯をそのまま合金化熱処理炉に
導いて連続して加熱処理することが原因で厚メツ
キ側に亜鉛タレを生じているため、本発明では、
メツキ後急冷してスパングルの発生を抑えると共
に、一旦鋼帯をラインオフして鋼帯温度を下げ、
その後再びオーブン焼鈍にて合金化熱処理するよ
うにし、スパングル及び亜鉛タレの発生を防止し
たものである。 以下本発明法を添付図面に基づいて詳細に説明
する。 まず第1図に示すように、連続溶融亜鉛メツキ
ラインで鋼帯1に差厚メツキを行ない、続いて急
速冷却してスパングルの成長を抑制する。 この差厚メツキは、後述する合金化熱処理によ
つて厚メツキ側の表層部まで合金化されないよう
にするため、厚メツキ側の亜鉛メツキ付着量は薄
メツキ側の少なくとも2倍以上にする必要があ
る。本発明法によつて自動車用鋼板を製造する場
合、差厚メツキは薄メツキ側が25〜40g/m2、厚
メツキ側が110〜190g/m2程度のメツキ付着量を
必要とするが、コストや種々の性能特性から薄メ
ツキ側が30g/m2、厚メツキ側が150g/m2程度
の差厚メツキが適当である。尚、差厚メツキの仕
方としては、溶融亜鉛メツキ浴槽2から出てきた
鋼帯1両面に、ガスワイピングし、そのガス吹付
量を鋼帯1両側でコントロールすることにより、
メツキ付着量を調整して行なうことができる。即
ち、鋼帯1とその両側に設けたガスワイピングノ
ズル3,3′との間隔を変えたり、ワイピングの
ガス圧を鋼帯両面で変えることにより差厚メツキ
を行なうことができる。例えば、薄メツキ側30
g/m2、厚メツキ側150g/m2の差厚メツキを行
なうのに、両側のガス圧を0.5Kg/mmとしたなら
ば、鋼帯1と薄メツキ側のノズル3との間隔を5
mm程度とし、厚メツキ側のノズル3′との間隔を
50mm程度離すと良い。又、両ノズル3,3′と鋼
帯1との間隔を夫々10mmとすれば、薄メツキ側の
ガス圧は0.6Kg/mm、厚メツキ側のガス圧は0.1
Kg/mmとすると良い。 又、急速冷却は、前述のようにスパングルの成
長を抑えると同時に、差厚メツキ後の鋼帯1表面
温度を一度下げ、後述する合金化熱処理の際に、
厚メツキ側に亜鉛タレを生じさせないようにする
ために行なわれるものである。そのため第1図に
示すようなブライトミニスパ4又はミニスパ装置
等を使用し、水スプレーあるいは薬液エアーアト
マイズすることにより急速冷却を行なう。 次に前記第1図に示すように前記ライン出側で
鋼帯1を巻取つてラインオフし、これをオーブン
焼鈍にて加熱処理する。 このように鋼帯1のラインオフは、従来メツキ
直後の高温のメツキ鋼帯1を連続して加熱処理す
ることが厚メツキ側に亜鉛タレを生じる原因とな
つていたので、前記急速冷却の場合と同様、メツ
キ後高温のメツキ鋼帯1の温度を一度下げる目的
で行なわれるものである。 オーブン焼鈍における加熱処理は、薄メツキ側
でメツキと母材が共に溶融して表層部までが合金
化され、厚メツキ側では母材と接するメツキの一
部だけが合金化され、表層部で純亜鉛がリフロー
する状態に加熱処理されれば良い。第2図はその
ようなオーブン焼鈍における焼鈍サイクルを示し
ている。Tc−1は炉温の設定温度を示しており、
t1は制御設定温度であり700℃にセツトされてい
る。又、Tc−3はコイルの均熱設定温度を示し
ており、taは第一均熱設定温度であり350℃にセ
ツトされている。tbは第二均熱設定温度であり
380℃にセツトされている。更にTc−2は実際の
コイル温を示しており、tイは再昇熱開始温度で
あり、計測値は345℃であり、又tロは第二均熱開
始とみなす温度であつて、計測値は360℃である。
尚、Hは焼鈍時間であり、ta−tイの間H1は第一
均熱時間、tロから冷却開始までの間H2は第二均
熱時間(約3時間)である。又、Cは冷却時間を
示している。 このようにして薄メツキ側では、母材(鉄)と
メツキ(亜鉛)を合金化(ガルバニール化)し、
それによつてスパングルの成長を抑制して表面を
光沢のある均一平滑な面となし、しかもその面の
塗料密着性を向上せしめることができる。更に厚
メツキ側では表層部をリフローした純亜鉛がその
まま残るので耐食性を向上させると共にオーブン
焼鈍の冷却工程で急冷することによりスパングル
の再結晶化をおさえ、厚メツキ側表面をブライト
面にすることができる。尚、厚メツキ側の合金部
分は母材接触面からメツキ部の約1/2〜1/3の厚み
までが合金化される。そして薄メツキ側の厚みを
30g/m2、厚メツキ側の厚みを150g/m2とする
と、オーブン焼鈍により合金化された薄メツキ側
の鉄含有比が10%である場合に厚メツキ側の合金
部分の鉄含有比は2〜3%程度になる。 次に本発明法の具体的実施例を説明する。 〔実施例〕 本発明者らは、以下に示す処理条件で連続溶融
亜鉛メツキによりストリツプ表面に差厚メツキを
行なつた後、連続加熱処理する従来法と、差厚メ
ツキを行なつた後、急速冷却して出側で巻取り、
更にオーブン焼鈍にて合金化熱処理する本発明法
とを夫々実施して鋼板を製造し、これら各鋼板を
試験して下記表に示す結果を得た。 処理条件 ● 従来法 ストリツプサイズ 0.8×1219×C ラインスピード 70mpm ガスワイピング条件 ガス圧 0.60Kg/cm2 薄メツキ面のノズルと鋼帯間隔 5mm 厚メツキ面のノズルと鋼帯間隔 45mm ガルバニール炉 炉 温 950℃ (合金化熱処理炉) 冷 却 空 冷(徐冷) ● 本発明法 ストリツプサイズ 0.8×1219×C ラインスピード 70mpm ガスワイピング条件 ガス圧 0.60Kg/cm2 薄メツキ面のノズルと鋼帯間隔 5mm 厚メツキ面のノズルと鋼帯間隔 45mm ブライトミニスパ条件 薬 液 リン酸ソーダー 1% 薬液圧 3.0Kg/cm2 エアー圧 5.0Kg/cm2 オーブン焼鈍条件 炉 温 700℃ 第一均熱温度設定 300℃ 第一均熱時間 2.0Hr 第二均熱温度設定 360℃ 第二均熱時間 3.0Hr 冷却時間 5.0Hr 調質圧延条件 伸 張 率 0.8% ワークロール仕上げ面
ダル5〜6μRMS
The present invention relates to a method for manufacturing a differential thickness single-sided alloyed steel sheet that prevents the occurrence of spangles and zinc sag on the front and back surfaces of the steel sheet by manufacturing the steel sheet by combining an oven annealing process with a continuous hot-dip galvanizing line. In recent years, there has been an increasing demand for improved product durability, and there is a strong desire for improved performance of surface-treated steel sheets, especially in automobile manufacturers, home appliance manufacturers, etc. Since these steel plates are painted after forming, it is desirable that the surface has excellent paint adhesion, while the back surface, which is difficult to paint, has excellent corrosion resistance. Especially with galvanized steel sheets, if spangles are not generated and both surfaces are smoothed, not only will paint adhesion deteriorate, but even after painting, spangles will float up and significantly impair the appearance of the finished product. Therefore, after differential thickness plating in a continuous hot-dip galvanizing line, one side is heat-alloyed and the other side is cooled at the same time (Japanese Patent Application Laid-Open No. 54-90024), or after differential thickness plating, both sides are heat-treated in an alloying furnace. Heating reflow (reflow of the coating) to alloy the thinly plated side and not to alloy the thickly plated side to the surface layer.
Methods have been proposed to remove spangles, and conventionally these methods have been used to remove spangles. However, since all of these methods undergo continuous heat treatment in which rapid heating is performed after continuous hot-dip galvanizing, the zinc sag that is characteristic of thick plating occurs, especially on the thick plating side, and the plating thickness is uneven and wrinkled on the surface. form different uneven surfaces,
After temper rolling, the markings are transferred to the thin plating side of the product and remain as marks, making it difficult to obtain a uniform and smooth appearance. The present invention has been made to solve the above-mentioned problems of the prior art, which are caused by the fact that the high-temperature galvanized steel strip immediately after differential thickness plating is directly guided into an alloying heat treatment furnace and heat-treated continuously. Since zinc sag occurs on the thick plating side, in the present invention,
After plating, the steel strip is rapidly cooled to suppress the occurrence of spangles, and the steel strip is once taken off the line to lower the steel strip temperature.
Thereafter, the alloy was heat-treated again by oven annealing to prevent spangles and zinc sag. The method of the present invention will be explained in detail below based on the accompanying drawings. First, as shown in FIG. 1, a steel strip 1 is plated with a different thickness on a continuous hot-dip galvanizing line, and then rapidly cooled to suppress the growth of spangles. In order to prevent this differential thickness plating from being alloyed to the surface layer on the thick plating side during the alloying heat treatment described later, the amount of zinc plating on the thick plating side must be at least twice that on the thin plating side. be. When producing steel sheets for automobiles by the method of the present invention, differential thickness plating requires a plating coverage of about 25 to 40 g/m 2 on the thin plating side and 110 to 190 g/m 2 on the thick plating side, but it is costly and From various performance characteristics, it is appropriate to have a differential plating thickness of about 30 g/m 2 on the thin plating side and 150 g/m 2 on the thick plating side. In addition, as for the method of differential thickness plating, gas wiping is performed on both sides of the steel strip 1 coming out of the hot-dip galvanizing bath 2, and the amount of gas sprayed on both sides of the steel strip 1 is controlled.
This can be done by adjusting the plating amount. That is, differential thickness plating can be performed by changing the distance between the steel strip 1 and the gas wiping nozzles 3, 3' provided on both sides thereof, or by changing the wiping gas pressure on both sides of the steel strip. For example, the thin plating side is 30
g/m 2 , and 150 g/m 2 on the thick plating side, if the gas pressure on both sides is 0.5 Kg/mm, the distance between the steel strip 1 and the nozzle 3 on the thin plating side is 5 kg/m 2 .
mm, and the distance from the nozzle 3' on the thick plating side to
It is best to keep a distance of about 50mm. Also, if the distance between both nozzles 3, 3' and the steel strip 1 is 10 mm, the gas pressure on the thin plating side is 0.6 Kg/mm, and the gas pressure on the thick plating side is 0.1.
It is best to use Kg/mm. In addition, rapid cooling suppresses the growth of spangles as described above, and at the same time lowers the surface temperature of the steel strip 1 after differential thickness plating, and during the alloying heat treatment described later,
This is done to prevent zinc from sagging on the thickly plated side. Therefore, rapid cooling is performed by using a Bright Mini Spa 4 or a Mini Spa device as shown in FIG. 1, and by spraying water or air atomizing the chemical solution. Next, as shown in FIG. 1, the steel strip 1 is wound up on the exit side of the line and taken off the line, and then heat-treated by oven annealing. In this way, line-off of the steel strip 1 was conventionally performed by continuously heat-treating the high-temperature plated steel strip 1 immediately after plating, which caused zinc sagging on the thicker plated side. Similarly, this is done for the purpose of once lowering the temperature of the plated steel strip 1, which is at a high temperature after being plated. The heat treatment in oven annealing melts both the plating and the base metal on the thin plating side and alloys the surface layer, while on the thick plating side, only the part of the plating in contact with the base metal is alloyed, and the surface layer becomes pure. It is sufficient if the heat treatment is performed to a state where zinc reflows. FIG. 2 shows an annealing cycle in such oven annealing. T c −1 indicates the set temperature of the furnace,
t1 is the control set temperature and is set at 700°C. Further, T c -3 indicates the soaking set temperature of the coil, and t a is the first soaking set temperature, which is set at 350°C. t b is the second soaking temperature setting
It is set at 380℃. Furthermore, T c -2 indicates the actual coil temperature, t is the temperature at which reheating starts, and the measured value is 345°C, and t is the temperature considered to be the start of second soaking, The measured value is 360℃.
In addition, H is an annealing time, H 1 is the first soaking time between t a and t a, and H 2 is the second soaking time (approximately 3 hours) from t b to the start of cooling. Further, C indicates cooling time. In this way, on the thin plating side, the base material (iron) and the plating (zinc) are alloyed (galvanized),
Thereby, the growth of spangles can be suppressed, the surface can be made glossy, uniform and smooth, and the adhesion of paint to that surface can be improved. Furthermore, since the reflowed pure zinc remains on the surface layer on the thickly plated side, corrosion resistance is improved, and recrystallization of spangles is suppressed by rapid cooling in the cooling process of oven annealing, making the thickly plated side surface a bright surface. can. Note that the alloy portion on the thick plating side is alloyed from the base metal contact surface to about 1/2 to 1/3 of the thickness of the plating portion. And the thickness of the thin plating side
30g/m 2 and the thickness of the thick plated side is 150g/m 2 , when the iron content ratio of the thin plated side alloyed by oven annealing is 10%, the iron content ratio of the alloyed part of the thick plated side is It will be about 2-3%. Next, specific examples of the method of the present invention will be described. [Example] The present inventors performed differential thickness plating on the strip surface by continuous hot-dip galvanizing under the treatment conditions shown below, and then used a conventional method of continuous heat treatment, and after performing differential thickness plating, Rapid cooling and winding on the exit side.
Furthermore, steel plates were manufactured by carrying out the present invention method of alloying heat treatment by oven annealing, and these steel plates were tested and the results shown in the table below were obtained. Processing conditions ● Conventional method Strip size 0.8×1219×C Line speed 70mpm Gas wiping conditions Gas pressure 0.60Kg/cm 2 Distance between nozzle and steel strip for thin plating surface 5mm Distance between nozzle and steel strip for thick plating surface 45mm Galvanic furnace Furnace temperature 950℃ (Alloying heat treatment furnace) Cooling Air Cooling (slow cooling) ● Method of the present invention Strip size 0.8×1219×C Line speed 70mpm Gas wiping conditions Gas pressure 0.60Kg/cm 2 Spacing between nozzle and steel strip on thinly plated surface 5mm Thickly plated surface Distance between nozzle and steel strip 45mm Bright Mini Spa condition chemical Liquid Sodium phosphate 1% Chemical liquid pressure 3.0Kg/cm 2 Air pressure 5.0Kg/cm 2 Oven annealing condition Furnace temperature 700℃ First soaking temperature setting 300℃ First soaking temperature setting Heating time 2.0Hr Second soaking temperature setting 360℃ Second soaking time 3.0Hr Cooling time 5.0Hr Skin pass rolling conditions Elongation rate 0.8% Finished surface of work roll
Dull 5~6μRMS

【表】 以上の結果から、本発明法による場合は厚メツ
キ側に亜鉛タレの発生がなくなるため調質圧延
後、薄メツキ側にマークが発生せず、しかも厚メ
ツキ面の粗さが小さく、均一平滑なメツキ面が得
られた。更に厚メツキ側の耐食性を向上している
ことが明らかである。 以上詳述した本発明法によれば、メツキ後鋼帯
をすぐに急速冷却し、ラインオフして一旦その温
度が低下した後、オーブン焼鈍にて加熱処理する
こととしたため、スパングル発生をおさえること
ができるだけではなく厚メツキ側に亜鉛タレを生
ずることがなくなり、調質圧延しても両側が均一
平滑な平面となる鋼板を得ることができるという
優れた効果を有している。又、薄メツキ側はガル
バニール化して塗料密着性が向上すると共に、厚
メツキ側は亜鉛メツキが残るため、耐食性が良好
となり、自動車用鋼板及び家電製品用鋼板として
優れたものを得ることができる。
[Table] From the above results, in the case of the method of the present invention, there is no zinc sagging on the thickly plated side, so no marks are generated on the thinly plated side after temper rolling, and the roughness of the thickly plated side is small. A uniform and smooth plating surface was obtained. Furthermore, it is clear that the corrosion resistance on the thicker plating side is improved. According to the method of the present invention described in detail above, the steel strip is rapidly cooled immediately after plating, and after the temperature has dropped once off the line, it is heat-treated by oven annealing, thereby suppressing the occurrence of spangles. It has the excellent effect that not only can zinc sag be prevented from occurring on the thick plating side, but also that a steel plate can be obtained that has a uniform and flat surface on both sides even after temper rolling. In addition, the thinly plated side is galvanized to improve paint adhesion, and the thickly plated side remains zinc plated, resulting in good corrosion resistance, making it possible to obtain excellent steel sheets for automobiles and home appliances.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明法のメツキ及び急冷工程を説明
した工程概略図、第2図はオーブン焼鈍にて合金
化熱処理する場合の熱処理グラフ図である。 図中、1は鋼帯、2はメツキ浴槽、3,3′は
ガスワイピングノズル、4はブライトミニスパ装
置を各示す。
FIG. 1 is a process schematic diagram illustrating the plating and quenching steps of the present invention, and FIG. 2 is a heat treatment graph diagram for alloying heat treatment by oven annealing. In the figure, 1 is a steel strip, 2 is a plating bathtub, 3 and 3' are gas wiping nozzles, and 4 is a bright mini spa device.

Claims (1)

【特許請求の範囲】[Claims] 1 連続溶融亜鉛メツキラインにて鋼板表裏のメ
ツキ付着量を制御して厚メツキ側のメツキ付着量
が薄メツキ側の2倍以上となる差厚メツキを行な
い、次いでこれを急冷して出側で巻取り、更にオ
ーブン焼鈍にて薄メツキ側を合金化熱処理して合
金化すると共に、厚メツキ側表層部をリフローす
ることを特徴とする差厚片面合金化処理鋼板の製
造方法。
1 In a continuous hot-dip galvanizing line, the amount of plating on the front and back of the steel sheet is controlled, and differential thickness plating is performed so that the amount of plating on the thicker plating side is more than twice that on the thinner plating side, and then it is rapidly cooled and rolled on the output side. 1. A method for producing a differential thickness single-sided alloyed steel sheet, which comprises: removing the steel sheet, and then subjecting the thinly plated side to alloying heat treatment to alloy the thinly plated side using oven annealing, and reflowing the thickly plated side surface layer.
JP58180574A 1983-09-30 1983-09-30 Production of steel pipe alloyed on one side to different thickness Granted JPS6075569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58180574A JPS6075569A (en) 1983-09-30 1983-09-30 Production of steel pipe alloyed on one side to different thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58180574A JPS6075569A (en) 1983-09-30 1983-09-30 Production of steel pipe alloyed on one side to different thickness

Publications (2)

Publication Number Publication Date
JPS6075569A JPS6075569A (en) 1985-04-27
JPS6354783B2 true JPS6354783B2 (en) 1988-10-31

Family

ID=16085652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58180574A Granted JPS6075569A (en) 1983-09-30 1983-09-30 Production of steel pipe alloyed on one side to different thickness

Country Status (1)

Country Link
JP (1) JPS6075569A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558714U (en) * 1992-01-20 1993-08-03 大建工業株式会社 Storage shelf with partition device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558714U (en) * 1992-01-20 1993-08-03 大建工業株式会社 Storage shelf with partition device

Also Published As

Publication number Publication date
JPS6075569A (en) 1985-04-27

Similar Documents

Publication Publication Date Title
MX2012011761A (en) Process for producing hot-rolled steel sheet and process for producing hot-dip galvanized steel sheet.
KR20150051840A (en) HOT DIP Zn-Al-Mg ALLOY PLATED STEEL SHEET HAVING EXCELLENT FORMABILITY AND ADHESION PROPERTY AND METHOD FOR MANUFACTURING THE SAME
EP4353860A1 (en) Pre-coated steel plate for hot forming and preparation method therefor, and hot-formed steel member and application thereof
JP3444007B2 (en) Manufacturing method of high workability, high strength galvanized steel sheet
JPH04254532A (en) Manufacture of galvannealed steel sheet having excellent workability
US5409553A (en) Process for manufacturing galvannealed steel sheets having high press-formability and anti-powdering property
JPS5945757B2 (en) Manufacturing method for single-sided coated galvanized steel sheet
JP3382697B2 (en) Manufacturing method of galvannealed steel sheet
JPS6354783B2 (en)
JP2993404B2 (en) Alloyed hot-dip galvanized steel sheet excellent in film adhesion and method for producing the same
JP3339615B2 (en) Manufacturing method of galvannealed steel sheet
JPH06116653A (en) Production of low cost type hot rolled and hot dip plated steel strip excellent in plating surface property and plating adhesion and device therefor
JP2002194519A (en) METHOD FOR MANUFACTURING HOT-DIP Al-Zn ALLOY PLATED STEEL STRIP
JP4131577B2 (en) Manufacturing method of plated steel sheet
JPS6354782B2 (en)
JP3400289B2 (en) Manufacturing method of galvannealed steel sheet with excellent plating adhesion
JP3205292B2 (en) Manufacturing method of hot-dip galvanized steel sheet with excellent corrosion resistance and plating adhesion
JP3133189B2 (en) Method for producing hot-dip galvanized steel strip
JPH01242765A (en) Alloying hot dip galvanized steel sheet and its production
JPH02236263A (en) Hot dip coating method for zinc or zinc alloy of low-temperature heating and reduction omission type
JPS6354781B2 (en)
JPH042754A (en) Production of hot-dip zn alloy coated steel sheet excellent in workability
JPH0610332B2 (en) Method for manufacturing steel strip with fused zinc plating
JP2002194520A (en) METHOD FOR MANUFACTURING HOT-DIP Al-Zn ALLOY PLATED STEEL STRIP
JPH04301061A (en) Production of alloyed galvanized steel sheet excellent in workability