JPH04254532A - Manufacture of galvannealed steel sheet having excellent workability - Google Patents

Manufacture of galvannealed steel sheet having excellent workability

Info

Publication number
JPH04254532A
JPH04254532A JP3136091A JP3136091A JPH04254532A JP H04254532 A JPH04254532 A JP H04254532A JP 3136091 A JP3136091 A JP 3136091A JP 3136091 A JP3136091 A JP 3136091A JP H04254532 A JPH04254532 A JP H04254532A
Authority
JP
Japan
Prior art keywords
oxide film
zone
furnace
iron oxide
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3136091A
Other languages
Japanese (ja)
Inventor
Yoshitaka Kimura
義孝 木村
Nobukatsu Komatsu
延勝 小松
Masaji Aiba
雅次 相場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3136091A priority Critical patent/JPH04254532A/en
Publication of JPH04254532A publication Critical patent/JPH04254532A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To manufacture a galvannealed steel sheet having excellent workability in high efficiency by controlling annealing condition based on iron oxide film thickness in heating zone and the iron oxide film reducing capacity in reducing zone in an annealing furnace and making the specific thickness of the iron oxide film. CONSTITUTION:The cold-rolled steel strip 1 is passed in a heating furnace 3 through a preheating furnace 2 and heated with burners injecting flame vertically to the steel strip. At this time, the surface developed iron oxide film thickness on the steel strip 1 measured with an oxide film thickness meter 6 at outlet of the furnace, is desirable to control to <=about 1000Angstrom . Successively, this steel strip 1 is passed in a soaking furnace 4 and the annealing furnace 5 in the reducing zone. In there, based on the actually measured value with the above oxide film thickness meter 6, the iron oxide film reducing capacity is calculated by using heat cycle, line speed, hydrogen concn. in the reducing zone and combustion air ratio in an oxidizing zone, and the annealing condition is controlled so that the oxide film becomes <=200Angstrom . After that, the steel strip 1 is made to come to the prescribed temp. at slow cooling zone 7 and rapid cooling zone 8 and passed in a zinc bath 10 and successively, alloying heating furnace 12 to obtain the galvannealed steel sheet having high productivity and good workability.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、合金化溶融亜鉛メッキ
鋼板の製造方法に係り、特に合金化溶融亜鉛メッキ鋼板
として具備すべき加工性を効率的に得られるようにした
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an alloyed hot-dip galvanized steel sheet, and particularly to a method for efficiently obtaining the workability that an alloyed hot-dip galvanized steel sheet should have.

【0002】0002

【従来の技術】近年、自動車鋼板として用いられる冷延
鋼板には、車体の軽量化及び安全性の向上、並びに耐食
性の見地から、プレス加工性に優れることのほかに、高
強度であり、かつ耐食性が要求され、供給鋼材の表面処
理化が強く要求される状況にある。このなかで、最近で
は、特に、 防錆力向上を主目的とした表面処理方法と
しては、生産性の観点から容易に厚メッキ化が可能なゼ
ンジマ−式溶融亜鉛メッキ法がある。このゼンジマ−式
溶融亜鉛メッキ法の場合、弱酸化帯で生成されたFe酸
化膜が、それ以降の還元帯で還元された後、亜鉛浴に浸
漬され、その後、合金化炉に入り、再加熱され、Fe−
Zn相互拡散により合金化するが、加熱帯で生成される
Fe酸化膜が多ければ、多いほど、還元後の表面性状は
、多孔質(porous)状に成り、浴中での反応が促
進され、加工性を阻害する。それは、地鉄界面に生成す
る非常に脆いFe−Zn金属間化合物が過剰に成長する
ためである。
[Prior Art] In recent years, cold-rolled steel sheets used as automobile steel sheets have not only excellent press workability but also high strength and Corrosion resistance is required, and there is a strong demand for surface treatment of supplied steel materials. Among these, recently, a Sendzimer hot-dip galvanizing method, which allows for easy thick plating from the viewpoint of productivity, has been used as a surface treatment method with the main purpose of improving rust prevention ability. In the case of this Sendzimer hot-dip galvanizing method, the Fe oxide film generated in the weak oxidation zone is reduced in the subsequent reduction zone, then immersed in a zinc bath, then entered into an alloying furnace and reheated. and Fe-
Zn is alloyed by interdiffusion, and the more Fe oxide films are produced in the heating zone, the more porous the surface becomes after reduction, and the reaction in the bath is accelerated. Impairs processability. This is because a very brittle Fe-Zn intermetallic compound generated at the interface of the base metal grows excessively.

【0003】これを抑制するための従来の方法として、
焼鈍炉を完全に間接加熱方式が採用されている。この間
接加熱方式は、炉内が全領域にわたって、還元雰囲気で
あるので、酸化膜が全く生成されず、板厚の緻密な10
0Å程度の酸化膜が還元されるだけであるので、加工性
を阻害する地鉄界面に生成する非常に脆いFe−Zn金
属間化合物が過剰に成長せず、加工性の良好な合金化溶
融亜鉛メッキ鋼板を製造することができる。
[0003] As a conventional method for suppressing this,
The annealing furnace uses a completely indirect heating method. In this indirect heating method, the entire area inside the furnace is in a reducing atmosphere, so no oxide film is formed, and the dense
Since only an oxide film of about 0 Å is reduced, the extremely brittle Fe-Zn intermetallic compound that forms at the interface of the base metal, which inhibits workability, does not grow excessively, making alloyed molten zinc with good workability. It is possible to produce plated steel sheets.

【0004】0004

【発明が解決しようとする課題】しかしながら、この方
式では、高Si、P鋼板の高温焼鈍を行なう場合、これ
らの鋼中元素が焼鈍過程中に表面に濃化し、酸化皮膜を
形成し、この酸化膜が局所的な不メッキ、メッキ密着性
不良、もしくは合金ムラを発生させる。 このため、こ
の間接加熱方式は、汎用的な溶融亜鉛メッキ設備として
は、 適していない。そこで、本発明は、高生産性のラ
インにあって、 従来とは異なる方法により、良好な加
工性を有する合金化溶融亜鉛メッキ鋼板を得るためのも
のである。
[Problems to be Solved by the Invention] However, in this method, when high-Si, P steel sheets are annealed at high temperatures, these elements in the steel concentrate on the surface during the annealing process, forming an oxide film, and this oxidation The film causes local non-plating, poor plating adhesion, or uneven alloying. Therefore, this indirect heating method is not suitable for general-purpose hot-dip galvanizing equipment. Therefore, the present invention is intended to obtain an alloyed hot-dip galvanized steel sheet having good workability on a high-productivity line by a method different from the conventional method.

【0005】[0005]

【課題を解決するための手段】上述した問題点を解決し
、その目的を達成するために、本発明の要旨とするとこ
ろは、(1)合金化溶融亜鉛めっき鋼板の製造方法とし
て、焼鈍炉の加熱帯での生成鉄酸化膜、および、還元帯
での鉄酸化膜還元能力をヒ−トサイクル・ラインスピ−
ド・還元帯水素濃度・酸化帯燃焼空気比を用いて計算し
、酸化膜厚(Å)≦200Åとなるように、焼鈍条件を
制御することを特徴とする加工性の優れた合金化溶融亜
鉛めっき鋼板の製造方法。 (2)合金化溶融亜鉛めっき鋼板の製造方法として、焼
鈍炉の加熱帯での生成鉄酸化膜を実測し、酸化膜厚(Å
)≦200Åとなるように、焼鈍条件を制御することを
特徴とする加工性の優れた合金化溶融亜鉛めっき鋼板の
製造方法にある。
[Means for Solving the Problems] In order to solve the above-mentioned problems and achieve the objectives, the gist of the present invention is (1) to provide an annealing furnace as a method for manufacturing alloyed hot-dip galvanized steel sheets. The iron oxide film formed in the heating zone and the ability to reduce the iron oxide film in the reduction zone are evaluated by heat cycle line speed.
Alloyed molten zinc with excellent workability, characterized by controlling the annealing conditions so that the oxide film thickness (Å)≦200 Å, calculated using the hydrogen concentration in the reduction zone and the combustion air ratio in the oxidation zone. Method of manufacturing plated steel sheets. (2) As a manufacturing method for alloyed hot-dip galvanized steel sheets, the iron oxide film formed in the heating zone of the annealing furnace was actually measured, and the oxide film thickness (Å
)≦200 Å, the method of manufacturing an alloyed hot-dip galvanized steel sheet with excellent workability is characterized by controlling annealing conditions so that the relationship of the present invention is 200 Å.

【0006】[0006]

【作用】以下、本発明について詳細に説明する。本発明
において、焼鈍炉の加熱帯での生成鉄酸化膜量は、焼鈍
炉の空気比で制御し、ヒ−トサイクルを考慮し計算する
。すなわち酸化膜生成量=∫(酸化速度)dtで表すこ
とが出来る。 m<1の場合(mは空気比) 酸化速度=A1・exp(E1/RT)・m1m1=P
co2/Pcoを近似したもの、m≧1の場合 酸化速度=A2・exp(E2/RT)・m2m2=P
o2を近似したもの、 但し、A1、A2は反応定数〔Å/sec〕Eは活性化
エネルギ−〔cal/mol〕Rは1.987〔cal
/mol・K〕そして、例えば、m=0.90、酸化速
度=2800・exp〔−7.887/RT〕 このようにして、酸化速度から生成酸化膜厚を計算する
ことができる。また、還元能力とは、鉄酸化膜厚を還元
帯で還元する能力を言う。そして、この還元能力はヒ−
トサイクル(板温、ライン速度)により算出することが
出来る。すなわち、還元能力=∫(還元速度)dtで示
すことが出来る。そして、T≧570℃の場合、還元速
度=731・exp(−3200/RT)・H2分圧、
T<570℃の場合、還元速度=1.04×106・e
xp(−14700/RT)H2分圧の関係がある。こ
れらの関係から、還元速度を求め還元能力を算出するこ
とが出来るものである。これら計算に基づいて、酸化膜
厚(Å)≦200Åとなるように、焼鈍条件を制御する
か、或いは焼鈍炉の加熱帯での生成鉄酸化膜を実測して
、酸化膜厚(Å)≦200Åとする。
[Operation] The present invention will be explained in detail below. In the present invention, the amount of iron oxide film produced in the heating zone of the annealing furnace is controlled by the air ratio of the annealing furnace, and is calculated taking into account the heat cycle. That is, it can be expressed as oxide film production amount=∫(oxidation rate) dt. When m<1 (m is air ratio) Oxidation rate=A1・exp(E1/RT)・m1m1=P
An approximation of co2/Pco, when m≧1, oxidation rate=A2・exp(E2/RT)・m2m2=P
o2 is approximated, where A1 and A2 are reaction constants [Å/sec] E is activation energy [cal/mol] R is 1.987 [cal
/mol·K] and, for example, m=0.90, oxidation rate=2800·exp [−7.887/RT] In this way, the thickness of the formed oxide film can be calculated from the oxidation rate. Further, the reduction ability refers to the ability to reduce the iron oxide film thickness in a reduction zone. And this reduction ability is
It can be calculated by cycle (plate temperature, line speed). That is, it can be expressed as reduction ability=∫(reduction rate) dt. If T≧570℃, reduction rate = 731・exp(-3200/RT)・H2 partial pressure,
When T<570℃, reduction rate=1.04×106・e
There is a relationship between xp(-14700/RT)H2 partial pressure. From these relationships, the reduction rate can be determined and the reduction ability can be calculated. Based on these calculations, the annealing conditions are controlled so that the oxide film thickness (Å)≦200 Å, or the iron oxide film formed in the heating zone of the annealing furnace is actually measured, and the oxide film thickness (Å)≦ The thickness is set to 200 Å.

【0007】実測によって制御する場合については、そ
の構成を図1に示す。図1は本発明に係る設備概略図で
あって、冷間圧延後の鋼帯1を予熱炉2で予め加熱した
後、鋼板に対して垂直に火炎を噴射するバ−ナ−を用い
た加熱炉3で鋼帯1の表面生成酸化膜量を1000Åを
超えない範囲で制御しながら、加熱した後、次の還元帯
である均熱炉4及び焼鈍炉5に入る前に、加熱炉での、
表面生成酸化膜厚量を酸化膜厚計6を用いて実測し、こ
の実測値に基づいて、前記還元能力をヒ−トサイクル、
ラインスピ−ド、還元帯水素濃度を用いて計算し、最適
範囲になるように焼鈍炉5で還元をし、引続き徐冷帯7
および急冷帯8にて、800〜820℃の鋼帯温度を4
50〜500℃に急冷する。その後の鋼帯は、 ホット
ブライドル、スナウトを経て、還元雰囲気状態で亜鉛浴
10に浸漬され、ワイピング装置で付着量が調整され、
500〜520℃の温度に合金化加熱炉12で加熱され
合金化溶融亜鉛めっき鋼板が得られる。
[0007] In the case of control based on actual measurements, the configuration is shown in FIG. FIG. 1 is a schematic diagram of the equipment according to the present invention, in which a steel strip 1 after cold rolling is preheated in a preheating furnace 2, and then heated using a burner that injects flame perpendicularly to the steel strip. After heating the steel strip 1 in the furnace 3 while controlling the amount of oxide film formed on the surface within a range not exceeding 1000 Å, the steel strip 1 is heated in the heating furnace before entering the soaking furnace 4 and annealing furnace 5, which are the next reduction zones. ,
The thickness of the oxide film formed on the surface is actually measured using an oxide film thickness meter 6, and based on this measured value, the reduction ability is determined by the heat cycle,
Calculated using the line speed and hydrogen concentration in the reduction zone, reduction is performed in the annealing furnace 5 to the optimum range, and then in the slow cooling zone 7.
and quenching zone 8, the steel strip temperature is 800-820℃.
Rapidly cool to 50-500°C. After that, the steel strip passes through a hot bridle and a snout, and is immersed in a zinc bath 10 in a reducing atmosphere, and the amount of adhesion is adjusted using a wiping device.
It is heated in an alloying heating furnace 12 to a temperature of 500 to 520°C to obtain an alloyed hot-dip galvanized steel sheet.

【0008】図2は、本発明の制御システムを示す図で
あって、鋼帯1は、直火加熱炉3の燃焼廃ガスの廃熱を
利用した予熱炉2で予熱された後、直火加熱炉3で最高
約700℃まで鋼帯表面を加熱し、その場合に鋼板に対
して垂直に火炎を噴射するバ−ナ−11を千鳥状に配設
し、酸化膜量を最大1000Åを超えない範囲で急速加
熱する。その結果を酸化膜厚計6からの指令に基づき、
目標酸化膜比較演算機によって、酸化膜厚検出値と別に
設定した目標値とを比較し、その差信号によって、直火
加熱炉をフイ−ドバック制御する。一方、設定された酸
化膜厚目標値は、還元指令装置に指示され、還元帯であ
る焼鈍炉5に指令され、酸化膜厚を最大200Å以下に
保持するように制御する。この結果を還元帯出側酸化膜
厚計によって再確認し、もし仮に、目標酸化膜厚を超え
る場合には、還元指令装置を介して焼鈍炉における還元
能力をフイ−ドバック制御することによって、最適目標
の酸化膜厚の状態で徐冷、急冷して、亜鉛浴10に浸漬
され、合金化加熱炉12で加熱されて合金化する。
FIG. 2 is a diagram showing the control system of the present invention, in which the steel strip 1 is preheated in a preheating furnace 2 that utilizes the waste heat of combustion waste gas from a direct-fired heating furnace 3, and then heated in a direct-fired heating furnace 3. The surface of the steel strip is heated to a maximum of about 700°C in the heating furnace 3, and burners 11 are arranged in a staggered manner to inject flames perpendicularly to the steel plate, thereby increasing the amount of oxide film to a maximum of 1000 Å. Heat rapidly within the range. Based on the command from the oxide film thickness meter 6, the results are
A target oxide film comparison calculator compares the detected oxide film thickness with a separately set target value, and the direct fire heating furnace is feedback-controlled based on the difference signal. On the other hand, the set oxide film thickness target value is instructed to the reduction command device, and is directed to the annealing furnace 5, which is a reduction zone, to control the oxide film thickness to be maintained at a maximum of 200 Å or less. This result is reconfirmed using a reduction zone exit side oxide film thickness meter, and if the target oxide film thickness is exceeded, the reduction capacity in the annealing furnace is feedback-controlled via a reduction command device to reach the optimal target. It is slowly cooled and rapidly cooled in a state where the oxide film has a thickness of , immersed in a zinc bath 10, and heated in an alloying heating furnace 12 to be alloyed.

【0009】以上のように計算及び、実測に基づく生成
酸化膜制御を行うものであるが、その生成酸化膜厚を常
に200Å以下に制御する必要がある。この生成酸化膜
厚を200Å以下に抑える理由について、図3に示す。 図3はパウダリング性(加工性)と生成酸化膜厚との関
係を示した図である。また、パウダリング性については
、メッキ付着量35g/m2合金化溶融亜鉛メッキした
鋼板を60°V曲げしたときの剥離幅をmmで表したも
のである。このパウダリング性を2mm以下に抑えるた
めには、生成酸化膜厚を200Å以下に抑える必要があ
る。しかも、200Åを超えると急激にパウダリング性
が悪くなることがわかる。これからも、生成酸化膜厚を
200Å以下に抑える必要がある。
Although the generated oxide film is controlled based on calculations and actual measurements as described above, it is necessary to always control the thickness of the generated oxide film to 200 Å or less. The reason why the thickness of the generated oxide film is suppressed to 200 Å or less is shown in FIG. FIG. 3 is a diagram showing the relationship between powdering property (workability) and the thickness of the produced oxide film. Further, powdering property is expressed in mm as the peeling width when a steel plate coated with galvanized alloy with a coating weight of 35 g/m2 is bent by 60°V. In order to suppress this powdering property to 2 mm or less, it is necessary to suppress the thickness of the generated oxide film to 200 Å or less. Furthermore, it can be seen that powdering properties deteriorate rapidly when the thickness exceeds 200 Å. It is necessary to continue to suppress the thickness of the generated oxide film to 200 Å or less.

【0010】0010

【実施例】実施例1 C  0.0025、Si  0.02、Mn  0.
10、P  0.0010、N18ppm、S  0.
0008、AI  0.0026、Cr  0.001
2、Ca18ppm、残部Feから成る鋼成分を有する
高Si含有SULC系鋼を、予熱炉にて約350℃に加
熱し、その後、垂直に火炎を噴射する直火加熱炉にて約
730℃まで加熱する。この場合の空気比0.8、ライ
ンスピ−ド100mpmとし、還元帯水素濃度15%で
の焼鈍炉からの出側板温は850℃に加熱された。この
ときの加熱帯での生成酸化膜と還元帯での鉄酸化還元能
力から、生成酸化膜演算機にて計算した結果は150Å
であった。この酸化膜厚の状態で、500℃に急冷され
、460℃の溶融亜鉛めっき浴温に浸漬させ、エア−ワ
イピングでめっき量を35g/m2とした。その後51
0℃に合金化加熱をして合金化処理した。その結果、パ
ウダリング性(60°V曲げ剥離幅)は1.9であった
[Example] Example 1 C 0.0025, Si 0.02, Mn 0.
10, P 0.0010, N18ppm, S 0.
0008, AI 0.0026, Cr 0.001
2. A high-Si content SULC steel with a steel composition of 18 ppm Ca and the balance Fe is heated to approximately 350°C in a preheating furnace, and then heated to approximately 730°C in a direct-fired heating furnace that injects flame vertically. do. In this case, the air ratio was 0.8, the line speed was 100 mpm, the hydrogen concentration in the reduction zone was 15%, and the plate temperature at the outlet from the annealing furnace was heated to 850°C. At this time, from the oxide film produced in the heating zone and the iron oxidation-reduction ability in the reduction zone, the result calculated by the oxide film calculator was 150 Å.
Met. In this state of oxide film thickness, it was rapidly cooled to 500°C, immersed in a hot-dip galvanizing bath temperature of 460°C, and air-wiped to a plating amount of 35 g/m2. then 51
Alloying treatment was carried out by heating to 0°C. As a result, the powdering property (60° V bend peeling width) was 1.9.

【0011】実施例2 C  0.0025、Si  0.02、Mn  0.
10、P  0.0010、N18ppm、S  0.
0010、AI  0.0020、Ti  0.050
、Nb0.010、残部Feから成る鋼成分を有する、
 Ti−Nb−SULC系鋼を、予熱炉にて約350℃
に加熱し、その後、垂直に火炎を噴射する直火加熱炉に
て約740℃まで加熱する。この加熱された鋼帯を酸化
膜厚計にて生成酸化膜を実測し、この実測値が目標酸化
膜比較演算機に送られ、その検出値と別に設定した目標
値170Åを比較し、その差信号によって、もし仮に2
00Åを超す酸化膜厚の場合には、直火加熱炉にフイ−
ドバック制御する。目標酸化膜厚であれば還元指令装置
に送られ、 焼鈍炉にて860℃に加熱される。この加
熱された鋼帯は均熱、焼鈍され、徐冷の後500℃に急
冷され、460℃の溶融亜鉛めっき浴温に浸漬され、エ
ア−ワイピングでめっき量を35g/m2に調節した後
、510℃に合金化加熱をして合金化処理した。その結
果、パウダリング性(60°V曲げ剥離幅)は1.8で
あった。
Example 2 C 0.0025, Si 0.02, Mn 0.
10, P 0.0010, N18ppm, S 0.
0010, AI 0.0020, Ti 0.050
, having a steel composition consisting of Nb0.010 and the balance Fe,
Ti-Nb-SULC steel is heated to approximately 350℃ in a preheating furnace.
Then, it is heated to about 740°C in a direct flame heating furnace that injects flame vertically. The oxide film formed on this heated steel strip is actually measured using an oxide film thickness meter, and this measured value is sent to a target oxide film comparison computer, and the detected value is compared with a separately set target value of 170 Å, and the difference is determined. By the signal, if 2
If the oxide film thickness exceeds 0.00 Å, the direct-fired heating furnace should be heated.
back control. If the target oxide film thickness is met, it is sent to the reduction command device and heated to 860°C in an annealing furnace. This heated steel strip was soaked, annealed, slowly cooled, then rapidly cooled to 500°C, immersed in a hot-dip galvanizing bath temperature of 460°C, and the coating amount was adjusted to 35 g/m2 by air wiping. Alloying treatment was carried out by heating to 510°C. As a result, the powdering property (60° V bend peeling width) was 1.8.

【0012】0012

【発明の効果】以上述べたように、本発明は、従来と異
なり、高生産性のラインにあって、鉄酸化膜厚と還元能
力との関係から計算、ないし、酸化膜厚計を設けて実測
し、その結果を修正することによって、高Si,P含有
鋼であっても、合金化溶融亜鉛めっき条件をいたずらに
変更することなく、 普通鋼と同様の合金化特性が得ら
れ、加工性を阻害する地鉄界面に生成する非常に脆いF
e−Zn金属間化合物を過剰に成長させることなく、加
工性の極めて良好な溶融亜鉛めっき鋼板を実用上極めて
有利な高効率的、かつ高生産性を可能ならしめた製造方
法にある。
[Effects of the Invention] As described above, the present invention differs from the conventional art in that it is possible to calculate the relationship between iron oxide film thickness and reducing ability or to install an oxide film thickness meter in a high-productivity line. By actually measuring and correcting the results, even with high Si and P content steel, it is possible to obtain alloying properties similar to ordinary steel without unnecessarily changing the alloying hot-dip galvanizing conditions, and improve workability. Very brittle F generated at the base metal interface that inhibits
The present invention provides a method for manufacturing a hot-dip galvanized steel sheet with extremely good workability without excessively growing an e-Zn intermetallic compound, which is extremely advantageous in practice, with high efficiency and high productivity.

【0013】[0013]

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る設備概略図である。FIG. 1 is a schematic diagram of equipment according to the present invention.

【図2】本発明の制御システムを示す図である。FIG. 2 is a diagram showing a control system of the present invention.

【図3】パウダリング性と生成酸化膜厚との関係を示し
た図である。
FIG. 3 is a diagram showing the relationship between powdering property and the thickness of the produced oxide film.

【符号の説明】[Explanation of symbols]

1  鋼帯、2  予熱炉、3  直火加熱炉、4  
均熱炉、5  焼鈍炉、6  酸化膜厚計、7  徐冷
帯、8  急冷帯、9  還元帯出側酸化膜厚計、10
  亜鉛浴、11  バ−ナ−、12  合金化加熱炉
1 steel strip, 2 preheating furnace, 3 direct fire heating furnace, 4
Soaking furnace, 5 Annealing furnace, 6 Oxide film thickness gauge, 7 Annealing zone, 8 Rapid cooling zone, 9 Reduction zone exit side oxide film thickness gauge, 10
Zinc bath, 11 burners, 12 alloying furnace.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  合金化溶融亜鉛めっき鋼板の製造方法
として、焼鈍炉の加熱帯での生成鉄酸化膜、および、還
元帯での鉄酸化膜還元能力をヒ−トサイクル・ラインス
ピ−ド・還元帯水素濃度・酸化帯燃焼空気比を用いて計
算し、酸化膜厚(Å)≦200Åとなるように、焼鈍条
件を制御することを特徴とする加工性の優れた合金化溶
融亜鉛めっき鋼板の製造方法。
[Claim 1] As a method for manufacturing alloyed hot-dip galvanized steel sheets, the iron oxide film produced in the heating zone of an annealing furnace and the iron oxide film reduction ability in the reduction zone are reduced by heat cycle, line speed, and reduction. An alloyed hot-dip galvanized steel sheet with excellent workability characterized by controlling the annealing conditions so that the oxide film thickness (Å)≦200 Å, calculated using the hydrogen concentration and oxidation zone combustion air ratio. Production method.
【請求項2】  合金化溶融亜鉛めっき鋼板の製造方法
として、焼鈍炉の加熱帯での生成鉄酸化膜を実測し、酸
化膜厚(Å)≦200Åとなるように、焼鈍条件を制御
することを特徴とする加工性の優れた合金化溶融亜鉛め
っき鋼板の製造方法。
[Claim 2] As a method for manufacturing an alloyed hot-dip galvanized steel sheet, the iron oxide film formed in the heating zone of the annealing furnace is actually measured, and the annealing conditions are controlled so that the oxide film thickness (Å)≦200 Å. A method for manufacturing an alloyed hot-dip galvanized steel sheet with excellent workability.
【請求項3】  焼鈍炉の加熱帯の加熱を、鋼板に対し
て垂直に火炎を噴射するバ−ナ−を用いて行うことを特
徴とする請求項1、および2記載の加工性の優れた合金
化溶融亜鉛めっき鋼板の製造方法。
3. The method according to claim 1, wherein the heating zone of the annealing furnace is heated using a burner that injects flame perpendicularly to the steel plate. Method for manufacturing alloyed hot-dip galvanized steel sheet.
JP3136091A 1991-02-01 1991-02-01 Manufacture of galvannealed steel sheet having excellent workability Pending JPH04254532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3136091A JPH04254532A (en) 1991-02-01 1991-02-01 Manufacture of galvannealed steel sheet having excellent workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3136091A JPH04254532A (en) 1991-02-01 1991-02-01 Manufacture of galvannealed steel sheet having excellent workability

Publications (1)

Publication Number Publication Date
JPH04254532A true JPH04254532A (en) 1992-09-09

Family

ID=12329075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3136091A Pending JPH04254532A (en) 1991-02-01 1991-02-01 Manufacture of galvannealed steel sheet having excellent workability

Country Status (1)

Country Link
JP (1) JPH04254532A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8216695B2 (en) 2004-12-21 2012-07-10 Kobe Steel, Ltd. Method and facility for hot dip zinc plating
JP2012177142A (en) * 2011-02-25 2012-09-13 Jfe Steel Corp Method for producing hot-dip galvanized steel sheet
WO2012169653A1 (en) 2011-06-07 2012-12-13 Jfeスチール株式会社 High-strength hot-dipped galvanized steel sheet having excellent plating adhesion, and method for producing same
WO2013157146A1 (en) 2012-04-17 2013-10-24 Jfeスチール株式会社 Method for producing alloyed hot-dip galvanized steel sheet having excellent adhesion to plating and excellent sliding properties
WO2014136417A1 (en) 2013-03-05 2014-09-12 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and process for manufacturing same
WO2014188697A1 (en) 2013-05-21 2014-11-27 Jfeスチール株式会社 Method for manufacturing high-strength alloyed hot-dip galvanized steel plate
WO2015087549A1 (en) 2013-12-13 2015-06-18 Jfeスチール株式会社 Method for manufacturing high-strength hot-dip galvanized steel sheet
CN104870667A (en) * 2012-10-05 2015-08-26 琳德股份公司 Preheating and annealing of cold rolled metal strip
KR20170039733A (en) 2014-09-08 2017-04-11 제이에프이 스틸 가부시키가이샤 Method and apparatus for producing high-strength hot-dipped galvanized steel sheet
WO2018079124A1 (en) 2016-10-25 2018-05-03 Jfeスチール株式会社 Method for producing high strength hot-dip galvanized steel sheet
KR20180111931A (en) 2016-03-11 2018-10-11 제이에프이 스틸 가부시키가이샤 METHOD FOR MANUFACTURING STRENGTH OF HIGH-STRENGTH HOT WATER

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240320A (en) * 1985-08-13 1987-02-21 Sumitomo Metal Ind Ltd Method for measuring thickness of oxide film in continuous annealing furnace
JPH02194127A (en) * 1989-01-23 1990-07-31 Chugai Ro Co Ltd Method for controlling heating of direct-fired heating zone

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240320A (en) * 1985-08-13 1987-02-21 Sumitomo Metal Ind Ltd Method for measuring thickness of oxide film in continuous annealing furnace
JPH02194127A (en) * 1989-01-23 1990-07-31 Chugai Ro Co Ltd Method for controlling heating of direct-fired heating zone

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8216695B2 (en) 2004-12-21 2012-07-10 Kobe Steel, Ltd. Method and facility for hot dip zinc plating
JP2012177142A (en) * 2011-02-25 2012-09-13 Jfe Steel Corp Method for producing hot-dip galvanized steel sheet
US9677163B2 (en) 2011-06-07 2017-06-13 Jfe Steel Corporation High strength galvanized steel sheet excellent in terms of coating adhesiveness and method for manufacturing the same
WO2012169653A1 (en) 2011-06-07 2012-12-13 Jfeスチール株式会社 High-strength hot-dipped galvanized steel sheet having excellent plating adhesion, and method for producing same
WO2013157146A1 (en) 2012-04-17 2013-10-24 Jfeスチール株式会社 Method for producing alloyed hot-dip galvanized steel sheet having excellent adhesion to plating and excellent sliding properties
KR20140138245A (en) 2012-04-17 2014-12-03 제이에프이 스틸 가부시키가이샤 Method for producing alloyed hot-dip galvanized steel sheet having excellent adhesion to plating and excellent sliding properties
CN104870667A (en) * 2012-10-05 2015-08-26 琳德股份公司 Preheating and annealing of cold rolled metal strip
WO2014136417A1 (en) 2013-03-05 2014-09-12 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and process for manufacturing same
WO2014188697A1 (en) 2013-05-21 2014-11-27 Jfeスチール株式会社 Method for manufacturing high-strength alloyed hot-dip galvanized steel plate
US10087500B2 (en) 2013-05-21 2018-10-02 Jfe Steel Corporation Method for manufacturing high-strength galvannealed steel sheet
KR20150136113A (en) 2013-05-21 2015-12-04 제이에프이 스틸 가부시키가이샤 Method for manufacturing high-strength alloyed hot-dip galvanized steel plate
KR20160071423A (en) 2013-12-13 2016-06-21 제이에프이 스틸 가부시키가이샤 Method for manufacturing high-strength hot-dip galvanized steel sheet
WO2015087549A1 (en) 2013-12-13 2015-06-18 Jfeスチール株式会社 Method for manufacturing high-strength hot-dip galvanized steel sheet
US10138530B2 (en) 2013-12-13 2018-11-27 Jfe Steel Corporation Method for producing high-strength galvannealed steel sheets
KR20170039733A (en) 2014-09-08 2017-04-11 제이에프이 스틸 가부시키가이샤 Method and apparatus for producing high-strength hot-dipped galvanized steel sheet
KR20180111931A (en) 2016-03-11 2018-10-11 제이에프이 스틸 가부시키가이샤 METHOD FOR MANUFACTURING STRENGTH OF HIGH-STRENGTH HOT WATER
US10988836B2 (en) 2016-03-11 2021-04-27 Jfe Steel Corporation Method for producing high-strength galvanized steel sheet
WO2018079124A1 (en) 2016-10-25 2018-05-03 Jfeスチール株式会社 Method for producing high strength hot-dip galvanized steel sheet
KR20190057335A (en) 2016-10-25 2019-05-28 제이에프이 스틸 가부시키가이샤 METHOD FOR MANUFACTURING STRENGTH OF HIGH-STRENGTH HOT WATER
US11535922B2 (en) 2016-10-25 2022-12-27 Jfe Steel Corporation Method for manufacturing high-strength galvanized steel sheet

Similar Documents

Publication Publication Date Title
JP6797901B2 (en) Yield strength 600MPa class High elongation Aluminum Zinc Hot-dip galvanized steel sheet and color-plated steel sheet manufacturing method
JP5720856B2 (en) Galvanized steel sheet for hot forming
WO2021166350A1 (en) Method for producing high-strength hot dipped galvanized steel sheet
JP5799819B2 (en) Method for producing hot-dip galvanized steel sheet with excellent plating wettability and pick-up resistance
EP2659019B1 (en) Aluminum coated steel sheet having excellent oxidation resistance and heat resistance
JP4912684B2 (en) High-strength hot-dip galvanized steel sheet, production apparatus therefor, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JPH04254532A (en) Manufacture of galvannealed steel sheet having excellent workability
US6635313B2 (en) Method for coating a steel alloy
JP4264373B2 (en) Method for producing molten Al-based plated steel sheet with few plating defects
JP2970445B2 (en) Hot-dip galvanizing method for Si-added high tensile steel
JP2530939B2 (en) Method for manufacturing high-strength hot-dip galvanized steel sheet containing high Si
US6902829B2 (en) Coated steel alloy product
JP2513532B2 (en) Method for producing high-strength hot-dip galvanized steel sheet of high Si content steel
JPH04254531A (en) Method for annealing high si-containing high tensile strength steel before galvanizing
JP2964911B2 (en) Alloying hot-dip galvanizing method for P-added high-strength steel
JP2002030403A (en) Hot dip galvannealed steel sheet and its production method
JPH03111546A (en) Production of highly corrosion resistant aluminized cr-containing steel sheet excellent in adhesive strength of plating
JP2743228B2 (en) Method for producing hot-dip aluminized Cr-containing steel sheet with excellent workability and plating adhesion
JP2704819B2 (en) Method for producing high-Si hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
CN117960829B (en) Method for producing hot stamping member and hot stamping member
JP2001026852A (en) Production of galvanized steel sheet and galvannealed steel sheet
CN118256845A (en) Continuous galvanizing process of thin galvanized substrate for color coating
KR940000872B1 (en) Method for making a hot-dipped zinc coating steel sheet with an excellent workability and plating properties
JPH08100248A (en) Method and equipment for producing galvannealed steel sheet
CN115537652A (en) Large-size television backboard hot galvanizing plate