JP2019019344A - Manufacturing method of hot-dip galvanized steel plate - Google Patents

Manufacturing method of hot-dip galvanized steel plate Download PDF

Info

Publication number
JP2019019344A
JP2019019344A JP2017135921A JP2017135921A JP2019019344A JP 2019019344 A JP2019019344 A JP 2019019344A JP 2017135921 A JP2017135921 A JP 2017135921A JP 2017135921 A JP2017135921 A JP 2017135921A JP 2019019344 A JP2019019344 A JP 2019019344A
Authority
JP
Japan
Prior art keywords
steel sheet
heating zone
hot
superheated steam
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017135921A
Other languages
Japanese (ja)
Other versions
JP6740973B2 (en
Inventor
研二 山城
Kenji Yamashiro
研二 山城
玄太郎 武田
Gentaro Takeda
玄太郎 武田
高橋 秀行
Hideyuki Takahashi
秀行 高橋
広和 杉原
Hirokazu Sugihara
広和 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017135921A priority Critical patent/JP6740973B2/en
Publication of JP2019019344A publication Critical patent/JP2019019344A/en
Application granted granted Critical
Publication of JP6740973B2 publication Critical patent/JP6740973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

To provide a manufacturing method of a hot-dip galvanized steel plate having a beautiful surface appearance without a non-plating area.SOLUTION: A manufacturing method of a hot-dip galvanized steel plate for manufacturing the hot-dip galvanized steel plate uses an all radiant tube type continuous hot-dip galvanizing facility having an annealing furnace in which a heating zone, a soaking zone, and a cooling zone are arranged in this order, and a hot-dip galvanizing facility adjacent to the cooling zone. In the heating zone, superheated steam at 450 - 1200°C is introduced, and a steel plate temperature is raised to 700°C or less under an atmosphere consisting of 50 vol% or more of HO, a rest of N, and an inevitable impurity.SELECTED DRAWING: Figure 1

Description

本発明は、溶融亜鉛めっき鋼板の製造方法に関する。   The present invention relates to a method for producing a hot dip galvanized steel sheet.

近年、環境問題への意識の高まりから、自動車に対する二酸化炭素の排出規制が厳しくなっている。また、自動車の衝突安全性の規制も強化されるなど、従来以上に車体の安全性が求められている。そこで、軽量化と強度向上を両立させるため、自動車メーカ各社は、車体への溶融亜鉛めっき高張力鋼板の適用拡大を推進している。   In recent years, carbon dioxide emission regulations for automobiles have become stricter due to increasing awareness of environmental issues. In addition, the safety of the vehicle body is required more than before, for example, regulations on the collision safety of automobiles are strengthened. Therefore, in order to achieve both weight reduction and strength improvement, automobile manufacturers are promoting the expansion of application of hot-dip galvanized high-tensile steel sheets to the vehicle body.

溶融亜鉛めっき鋼板は、以下の手法によって製造される。冷延後のコイルを、連続式溶融亜鉛めっきライン(Continuous galvanizing line:CGL)に通板させ、最初に、予熱炉内で母材表面の油分の燃焼除去を行う。その後、酸化性雰囲気または還元性雰囲気で加熱を行い、鋼板を再結晶させる。さらに、酸化性雰囲気または還元性雰囲気で、鋼板をめっきに適した温度になるよう冷却を行い、溶融亜鉛へと浸漬させる。   The hot dip galvanized steel sheet is manufactured by the following method. The coil after cold rolling is passed through a continuous galvanizing line (Continuous galvanizing line: CGL), and first, combustion removal of oil on the surface of the base material is performed in a preheating furnace. Thereafter, heating is performed in an oxidizing atmosphere or a reducing atmosphere to recrystallize the steel sheet. Furthermore, in an oxidizing atmosphere or a reducing atmosphere, the steel sheet is cooled to a temperature suitable for plating and immersed in molten zinc.

鋼板の高張力化には、Si、Mn、P、Alなどの固溶強化元素の添加が行われることが多い。特に、Siは添加コストが他の元素と比較して低く、かつ鋼の延性を損なわずに高強度化できる利点がある。そのため、Si含有鋼は高張力鋼板として有望である。しかし、Siを鋼中に多量に添加すると、以下の問題が生じる。   Addition of solid solution strengthening elements such as Si, Mn, P, and Al is often performed to increase the tensile strength of the steel sheet. In particular, Si has the advantage that the addition cost is low compared to other elements and that the strength can be increased without impairing the ductility of the steel. Therefore, Si-containing steel is promising as a high-tensile steel plate. However, when Si is added in a large amount to steel, the following problems occur.

高張力鋼板は、還元雰囲気中で、600〜900℃の温度域で焼鈍される。SiはFeと比較して易酸化元素であるため、この時に、Siが鋼板表面へ濃化する。その結果、鋼板表面にSi酸化物が形成され、このSi酸化物が亜鉛との濡れ性を著しく悪化させ、不めっきを生じさせる。   The high-tensile steel plate is annealed in a temperature range of 600 to 900 ° C. in a reducing atmosphere. Since Si is an easily oxidizable element as compared with Fe, at this time, Si is concentrated on the surface of the steel sheet. As a result, Si oxide is formed on the steel sheet surface, and this Si oxide significantly deteriorates the wettability with zinc and causes non-plating.

さらに、Siが表面に濃化すると、亜鉛めっきが付着したとしても溶融亜鉛めっき後の合金化過程において、著しい合金化の遅延を生じる。その結果、生産性が悪化する。   Further, when Si is concentrated on the surface, even if zinc plating adheres, a significant delay in alloying occurs in the alloying process after hot dip galvanizing. As a result, productivity deteriorates.

このような問題に対して、直火バーナーによって加熱帯で鋼板を加熱し、鋼板表面に酸化膜を形成した後、還元焼鈍で鋼板表面に還元鉄を形成させることによって亜鉛との濡れ性を改善する手法が特許文献1に開示されている。特許文献2では、直火バーナーを使用して、加熱帯の雰囲気の酸化性ガス(O、CO、HO)の濃度を規定して、酸化膜厚を均一に保つ手法が開示されている。特許文献3では、直火バーナーを利用して高効率に均一な酸化膜を鋼板表面に形成させることを目的として、加熱帯を2つに分割し、前段の加熱帯で鋼板に付着している圧延油を除去した後に、鋼板温度が高い後段の加熱帯で酸化膜を鋼板表面に形成させる手法が開示されている。 For such problems, the steel sheet is heated in a heating zone with an open flame burner, an oxide film is formed on the steel sheet surface, and then reduced iron is formed on the steel sheet surface by reduction annealing to improve the wettability with zinc. A technique to do this is disclosed in Patent Document 1. Patent Document 2 discloses a technique for maintaining a uniform oxide film thickness by using an open flame burner to regulate the concentration of oxidizing gas (O 2 , CO 2 , H 2 O) in the atmosphere of the heating zone. ing. In patent document 3, a heating zone is divided into two for the purpose of forming a uniform oxide film on a steel plate surface with high efficiency using an open flame burner, and it adheres to a steel plate with the heating zone of the preceding paragraph. A technique is disclosed in which after removing the rolling oil, an oxide film is formed on the steel sheet surface in a subsequent heating zone where the steel sheet temperature is high.

また、近年操業のし易さやピックアップが発生しにくい等により低コストで高品質なめっき鋼板を製造できるなどの理由から、オールラジアントチューブ型の加熱炉を備えるCGLの建設が増加している。しかしながら、DFF(直火型)、NOF型(無酸化型)と異なり、オールラジアントチューブ型の加熱炉は焼鈍直前に酸化工程がないため、Si、Mn等の易酸化性元素を含む鋼板のめっき性確保の点で不利である。   In recent years, the construction of CGLs equipped with an all-radiant tube type heating furnace has been increasing for reasons such as the ability to manufacture high-quality plated steel sheets at low cost due to the ease of operation and the difficulty of pickup. However, unlike DFF (direct flame type) and NOF type (non-oxidation type), all radiant tube type heating furnaces do not have an oxidation step immediately before annealing, so plating of steel sheets containing oxidizable elements such as Si and Mn It is disadvantageous in terms of securing sex.

特許文献4には、オールラジアントチューブ型の連続式溶融亜鉛めっき装置を対象に、不めっきの発生防止を目的として、Siの内部酸化を促進させるために、加熱帯と均熱帯におけるHO分圧とH分圧の比を制御して、めっき性を改善する技術が開示されている。 Patent Document 4 describes an all radiant tube type continuous hot dip galvanizing apparatus for the purpose of preventing the occurrence of non-plating, in order to promote the internal oxidation of Si, in order to promote H 2 O content in the heating zone and the soaking zone. A technique for improving the plating property by controlling the ratio of the pressure and the H 2 partial pressure is disclosed.

また、過熱蒸気を利用して鋼板を焼鈍する技術が特許文献5に開示されている。   Further, Patent Document 5 discloses a technique for annealing a steel sheet using superheated steam.

さらに、Si添加鋼の内部酸化量確保を目的として、焼鈍炉の一部で過熱水蒸気を鋼板表面に噴射する技術が特許文献6に開示されている。   Furthermore, Patent Document 6 discloses a technique for injecting superheated steam onto a steel sheet surface in a part of an annealing furnace for the purpose of securing the internal oxidation amount of Si-added steel.

特開平4−202630号公報JP-A-4-202630 特開平6−306561号公報JP-A-6-306561 特開2006−283109号公報JP 2006-283109 A 特開2009−68041号公報JP 2009-68041 A 特開平9−241734号公報JP-A-9-241734 特開2014−122390号公報JP 2014-122390 A

特許文献1では加熱帯の雰囲気を空気比によって管理している。この手法では、制御上不可避的に生じる空気比の変動に対応して、加熱帯内の酸化性のガス(O、CO、HO)濃度が変化し、加熱帯内で濃度ムラが生じる。そのため、最終的な酸化膜がコイルで均一とならない。したがって、酸化膜が薄い部分では、SiやMnが表面に濃化して不めっきが生じ、酸化膜が厚い部分では、過剰な酸化膜が炉内のロールにピックアップするという問題がある。 In patent document 1, the atmosphere of a heating zone is managed by the air ratio. In this method, the concentration of oxidizing gas (O 2 , CO 2 , H 2 O) in the heating zone changes in response to fluctuations in the air ratio that inevitably occur in the control, and concentration unevenness occurs in the heating zone. Arise. Therefore, the final oxide film is not uniform in the coil. Therefore, there is a problem that Si or Mn is concentrated on the surface in a portion where the oxide film is thin and unplating occurs, and an excessive oxide film is picked up by a roll in the furnace in a portion where the oxide film is thick.

特許文献2では、炉内雰囲気を直接制御するために、直火バーナーの燃焼ガスとは別に、ガスを炉内に導入して、雰囲気の制御を試みている。この手法では、直火バーナーの配置に起因して、鋼板に温度ムラが生じる。そのため、特許文献1と同様に最終的な酸化膜がコイルで均一とならず、不めっきやピックアップが生じる。さらに、酸化性のガスは3種(O、CO、HO)存在するため、炉内の酸素ポテンシャルを制御するためには、3種のガス濃度を管理しなければならず、複雑な制御システムを構築する必要がある。これに加えて、加熱帯では、下流から上流へのガス流れが存在するため、直火バーナーの燃焼ガスと別途導入したガスの混合が十分に行われず、炉内雰囲気が均一とならないため、不めっきやピックアップが発生する。 In Patent Document 2, in order to directly control the atmosphere in the furnace, an attempt is made to control the atmosphere by introducing a gas into the furnace separately from the combustion gas of the direct fire burner. In this method, temperature unevenness occurs in the steel sheet due to the arrangement of the direct fire burner. Therefore, as in Patent Document 1, the final oxide film is not uniform in the coil, resulting in non-plating and pickup. Furthermore, since there are three kinds of oxidizing gases (O 2 , CO 2 , H 2 O), in order to control the oxygen potential in the furnace, the concentration of the three kinds of gases must be managed, which is complicated. Need to build a simple control system. In addition, since there is a gas flow from the downstream to the upstream in the heating zone, the combustion gas of the direct fire burner and the separately introduced gas are not sufficiently mixed, and the furnace atmosphere is not uniform. Plating and pick-up occur.

特許文献3では、鋼板表面に付着した圧延油を無酸化炉によって除去した後、酸化膜を後段の酸化炉で形成させる手法が提案されている。この手法では、無酸化炉と酸化炉で直火バーナーが使用される。そのため、空気と燃料ガスであるCガスの成分変動および流量変動により、炉内の酸化性ガス濃度が一定とならない。したがって、不めっきやピックアップが発生するという問題がある。   Patent Document 3 proposes a method in which the rolling oil adhering to the steel sheet surface is removed by a non-oxidizing furnace, and then an oxide film is formed by a subsequent oxidizing furnace. In this method, an open flame burner is used in a non-oxidation furnace and an oxidation furnace. For this reason, the oxidizing gas concentration in the furnace does not become constant due to the component variation and flow rate variation of air and fuel gas C gas. Therefore, there is a problem that non-plating and pickup occur.

特許文献4では、請求項1において、均熱帯の上部のHOとH分圧の比(HO/H)U、均熱帯下部のHOとH分圧の比(HO/H)Lが下記のように規定されている。
1≧(HO/H)U≧10−(0.5Si−3.25)・・・(1)
1≧(HO/H)L≧10−(0.5Si−3.25)・・・(2)
ここで、式(1)、(2)のSiは鋼中のSi添加量で、Si=0.3〜2.5mass%である。体積分率は分圧に比例するので、式(1)、(2)は均熱帯のHOとHの体積分率を定義した式と読み替えられる。式(1)、(2)において、HO体積分率が最も高くなる場合はHO=Hであることから、均熱帯の最高のHO濃度は50%である。そのため、炉内のHO濃度は50%を超えない。このようなHO濃度では、SiやMnの内部酸化物が十分に形成されず、SiやMnが表面に濃化して、不めっきが生じる。
In Patent Document 4, in claim 1, the ratio of H 2 O and H 2 partial pressure in the upper part of the soaking zone (H 2 O / H 2 ) U, and the ratio of H 2 O and H 2 partial pressure in the lower part of the soaking zone ( H 2 O / H 2 ) L is defined as follows.
1 ≧ (H 2 O / H 2 ) U ≧ 10 − (0.5Si−3.25) (1)
1 ≧ (H 2 O / H 2 ) L ≧ 10 − (0.5Si−3.25) (2)
Here, Si of Formula (1), (2) is Si addition amount in steel, and is Si = 0.3-2.5 mass%. Since the volume fraction is proportional to the partial pressure, the equations (1) and (2) can be read as equations defining the soaking zone H 2 O and H 2 volume fractions. In the formulas (1) and (2), when the H 2 O volume fraction is the highest, H 2 O = H 2 , so the highest H 2 O concentration in the soaking zone is 50%. Therefore, the H 2 O concentration in the furnace does not exceed 50%. At such H 2 O concentration, the internal oxides of Si and Mn are not sufficiently formed, and Si and Mn are concentrated on the surface, resulting in non-plating.

特許文献5では、過熱蒸気で鋼板を過熱する際の蒸気圧力(0.5〜5kg/cm)、蒸気温度(150〜500℃)および加熱時間(5〜60分)が規定されている。この手法で鋼板を加熱すると、SiやMnの表面濃化の抑制に必要な酸化膜に対して、鋼板表面に形成される酸化膜が過大となり、酸化膜の一部が鋼板から剥離して、ロールにピックアップするという問題がある。 In patent document 5, the steam pressure (0.5-5 kg / cm < 2 >), steam temperature (150-500 degreeC), and heating time (5-60 minutes) at the time of superheating a steel plate with superheated steam are prescribed | regulated. When the steel sheet is heated by this method, the oxide film formed on the steel sheet surface becomes excessive with respect to the oxide film necessary for suppressing the surface concentration of Si and Mn, and a part of the oxide film peels from the steel sheet, There is a problem of picking up on a roll.

特許文献6では、過熱蒸気を噴霧する予備加熱装置の雰囲気ガス組成が規定されていない。また、特許文献6の場合、例えばライン速度が変化した時に、鋼板の随伴流に伴って外気が予備加熱装置に侵入する量が変化し、予備加熱装置内のHO濃度が変化した結果、酸化膜が一定厚とならず、不めっきやピックアップが生じる。 In patent document 6, the atmospheric gas composition of the preheating apparatus which sprays superheated steam is not prescribed | regulated. Further, in the case of Patent Document 6, for example, when the line speed changes, the amount of outside air entering the preheating device changes with the accompanying flow of the steel plate, and as a result, the H 2 O concentration in the preheating device changes. The oxide film does not have a constant thickness, resulting in non-plating and pickup.

本発明は、かかる事情に鑑みてなされたものであって、不めっきの無い美麗な表面外観を有する溶融亜鉛めっき鋼板の製造方法を提供することを目的とする。   This invention is made | formed in view of this situation, Comprising: It aims at providing the manufacturing method of the hot dip galvanized steel plate which has the beautiful surface appearance without non-plating.

良好なめっき性を得るには、最適な酸化量を確保する必要がある。本発明者らは、オールラジアントチューブ型の連続式溶融亜鉛めっき設備において、直火バーナーを使用せずとも、炉内の雰囲気制御が容易で、かつ鋼板表面に均一な酸化膜が形成される手法について鋭意検討を行った。その結果、加熱帯に所定の温度の過熱水蒸気を投入し、加熱帯の主なガス成分をHOとして高Si添加鋼を酸化させることにより、鋼板表面に均一な酸化膜が形成されることを明らかにした。 In order to obtain good plating properties, it is necessary to secure an optimal oxidation amount. In the all-radiant tube type continuous hot dip galvanizing facility, the present inventors have a method in which the atmosphere inside the furnace can be easily controlled and a uniform oxide film is formed on the surface of the steel sheet without using a direct fire burner. We conducted an intensive study. As a result, superheated steam at a predetermined temperature is introduced into the heating zone, and the high gas added steel is oxidized with the main gas component of the heating zone as H 2 O, thereby forming a uniform oxide film on the steel plate surface. Was revealed.

本発明は上記知見に基づくものであり、その特徴は以下の通りである。
[1]加熱帯と、均熱帯と、冷却帯とがこの順に配置された焼鈍炉と、前記冷却帯に隣接した溶融亜鉛めっき装置とを有するオールラジアントチューブ方式の連続溶融亜鉛めっき設備を用いて、溶融亜鉛めっき鋼板を製造する溶融亜鉛めっき鋼板の製造方法において、前記加熱帯に450〜1200℃の過熱水蒸気を投入し、50vol%以上のHOおよび残部Nおよび不可避的不純物からなる雰囲気中で、鋼板温度を700℃以下に加熱することを特徴とする溶融亜鉛めっき鋼板の製造方法。
[2]前記鋼板温度および加熱帯のHO濃度が下記式(1)を満たすことを特徴とする[1]に記載の溶融亜鉛めっき鋼板の製造方法。
The present invention is based on the above findings, and the features thereof are as follows.
[1] Using an all radiant tube type continuous hot dip galvanizing facility having an annealing furnace in which a heating zone, a soaking zone, and a cooling zone are arranged in this order, and a hot dip galvanizing apparatus adjacent to the cooling zone. In the method of manufacturing a hot-dip galvanized steel sheet for producing a hot-dip galvanized steel sheet, 450 to 1200 ° C. superheated steam is introduced into the heating zone, and an atmosphere comprising 50 vol% or more of H 2 O, the balance N 2 and unavoidable impurities Among them, a method for producing a hot-dip galvanized steel sheet, wherein the steel sheet temperature is heated to 700 ° C. or lower.
[2] The method for producing a hot-dip galvanized steel sheet according to [1], wherein the steel sheet temperature and the H 2 O concentration in the heating zone satisfy the following formula (1).

Figure 2019019344
Figure 2019019344

ただし、式(1)において
f(x)=9.8×10−4x:調整係数(x:加熱帯のHO濃度[vol%])
R=8.314:ガス定数[J/mol・K]
Q:酸化反応の活性化エネルギー[J/mol]
T:鋼板温度[K]
τ:加熱帯での鋼板加熱時間[sec]
である。
[3]前記過熱水蒸気は、鋼板長手方向に千鳥配置されたノズルにより前記加熱帯に投入されることを特徴とする[1]または[2]に記載の溶融亜鉛めっき鋼板の製造方法。
However, in Formula (1), f (x) = 9.8 × 10 −4 x: adjustment coefficient (x: H 2 O concentration in heating zone [vol%])
R = 8.314: Gas constant [J / mol · K]
Q: Activation energy of oxidation reaction [J / mol]
T: Steel plate temperature [K]
τ: Steel sheet heating time in the heating zone [sec]
It is.
[3] The method for producing a hot-dip galvanized steel sheet according to [1] or [2], wherein the superheated steam is introduced into the heating zone by a nozzle arranged in a staggered manner in the longitudinal direction of the steel sheet.

本発明によれば、不めっきのない美麗な表面外観を有する優れた溶融亜鉛めっき鋼板が得られる。本発明は、溶融亜鉛めっき処理が困難である高Si添加鋼板を母材とする場合に特に有効であり、高Si添加溶融亜鉛めっき鋼板の製造におけるめっき品質を改善する方法として有用である。   According to the present invention, an excellent hot dip galvanized steel sheet having a beautiful surface appearance without unplating can be obtained. The present invention is particularly effective when a high Si-added steel sheet that is difficult to be hot-dip galvanized is used as a base material, and is useful as a method for improving the plating quality in the production of a high Si-added hot-dip galvanized steel sheet.

図1は、本発明の一実施形態に係る加熱帯および均熱帯の概略図である。FIG. 1 is a schematic diagram of a heating zone and a soaking zone according to an embodiment of the present invention. 図2は、過熱水蒸気噴霧ノズルの配置を示す模式図である。FIG. 2 is a schematic diagram showing the arrangement of superheated steam spray nozzles.

本発明の実施形態について、図1〜2に基づき具体的に説明する。   The embodiment of the present invention will be specifically described with reference to FIGS.

図1は、本発明の実施の形態に係る、オールラジアントチューブ式の連続式溶融亜鉛めっき設備100における加熱帯1および均熱帯2の概略図である。なお、均熱帯2の下流には、冷却帯、溶融亜鉛めっき装置、合金化処理装置などが配置される(図示しない)。均熱帯2、冷却帯、溶融亜鉛めっき装置、合金化処理装置などは特に限定されず、通常採用されているもので良い。   FIG. 1 is a schematic view of a heating zone 1 and a soaking zone 2 in an all radiant tube type continuous hot dip galvanizing facility 100 according to an embodiment of the present invention. In addition, a cooling zone, a hot dip galvanizing apparatus, an alloying processing apparatus, etc. are arrange | positioned downstream of the soaking zone 2 (not shown). The soaking zone 2, the cooling zone, the hot dip galvanizing apparatus, the alloying processing apparatus and the like are not particularly limited and may be those normally employed.

鋼板Sは連続式溶融亜鉛めっき設備100において、熱処理を施される。加熱帯1には過熱水蒸気発生装置3が接続されている。過熱水蒸気発生装置3の入側には配管4が接続されており、配管4を介して水が過熱水蒸気発生装置3に投入される。投入された水は所定の温度まで昇温されて過熱水蒸気となる。その後、過熱水蒸気は過熱水蒸気配管5により輸送されて加熱帯1に投入される。なお、輸送中に過熱水蒸気の温度が低下しないように、配管加熱装置6により過熱水蒸気配管5は加熱され、過熱水蒸気の温度が一定に保たれるようになっている。   The steel sheet S is subjected to heat treatment in the continuous hot dip galvanizing equipment 100. A superheated steam generator 3 is connected to the heating zone 1. A pipe 4 is connected to the inlet side of the superheated steam generator 3, and water is supplied to the superheated steam generator 3 through the pipe 4. The charged water is heated to a predetermined temperature and becomes superheated steam. Thereafter, the superheated steam is transported by the superheated steam pipe 5 and put into the heating zone 1. The superheated steam pipe 5 is heated by the pipe heating device 6 so that the temperature of the superheated steam is kept constant so that the temperature of the superheated steam does not decrease during transportation.

また、加熱帯1の下流側には過熱水蒸気を排気する排気用配管7が接続されており、排気用配管7から過熱水蒸気発生装置3へ過熱水蒸気が循環する仕組みになっている。また、加熱帯1内の雰囲気(HO濃度)が均一になっていることが確認できるように、加熱帯1の長手方向に沿って露点計8が均等に配置されている。また、加熱帯1と均熱帯2の間には、ロール9が配置されている。これは、通常使用される加熱帯であれば、均熱帯の炉圧は加熱帯の炉圧より高く設定され、均熱帯のガスが加熱帯に流れ込み、排気される。本発明では加熱帯と均熱帯の間にロール9を設置することにより、均熱帯のガスが加熱帯へ流入することを抑制している。また、HNxガスの排気系統を確保するために、加熱帯の下部にはHNxガスの排気配管10を設ける。 Further, an exhaust pipe 7 for exhausting the superheated steam is connected to the downstream side of the heating zone 1 so that the superheated steam circulates from the exhaust pipe 7 to the superheated steam generator 3. Further, the dew point meters 8 are arranged uniformly along the longitudinal direction of the heating zone 1 so that it can be confirmed that the atmosphere (H 2 O concentration) in the heating zone 1 is uniform. Further, a roll 9 is arranged between the heating zone 1 and the soaking zone 2. If this is a normally used heating zone, the soaking zone furnace pressure is set higher than the heating zone furnace pressure, and soaking zone gas flows into the heating zone and is exhausted. In this invention, by installing the roll 9 between the heating zone and the soaking zone, the soaking zone gas is prevented from flowing into the heating zone. Further, in order to secure an HNx gas exhaust system, an HNx gas exhaust pipe 10 is provided below the heating zone.

良好なめっき性を得るには、最適な酸化量を確保する必要があり、本発明においては、加熱帯のHO濃度を調整する必要がある。加熱帯1に投入する過熱水蒸気の温度は450〜1200℃とし、50%以上のHOおよび残部Nおよび不可避的不純物からなる雰囲気中で、鋼板を加熱する。酸化量は加熱帯のHO濃度、鋼板の温度、鋼板が加熱帯に滞在する時間から決定される。過熱水蒸気温度が450℃より低くなると、鋼板を長時間加熱帯に滞在させる必要があり、設備の規模が大きくなるため、建設のコスト的な観点から望ましくない。また、過熱水蒸気温度が1200℃を超えると、過熱水蒸気を発生させるために必要な熱量が多大に必要となり、設備コストが莫大な金額となる。したがって、過熱水蒸気の温度は450〜1200℃とする。 In order to obtain good plating properties, it is necessary to secure an optimal oxidation amount, and in the present invention, it is necessary to adjust the H 2 O concentration in the heating zone. The temperature of the superheated steam thrown into the heating zone 1 is 450 to 1200 ° C., and the steel sheet is heated in an atmosphere composed of 50% or more of H 2 O, the balance N 2 and unavoidable impurities. The amount of oxidation is determined from the H 2 O concentration in the heating zone, the temperature of the steel plate, and the time that the steel plate stays in the heating zone. If the superheated steam temperature is lower than 450 ° C., it is necessary to make the steel plate stay in the heating zone for a long time, which increases the scale of the equipment, which is not desirable from the viewpoint of construction cost. On the other hand, if the superheated steam temperature exceeds 1200 ° C., a great amount of heat is required to generate superheated steam, resulting in a huge amount of equipment costs. Therefore, the temperature of superheated steam shall be 450-1200 degreeC.

加熱帯1の雰囲気は、50vol%以上のHOおよび残部Nおよび不可避的不純物からなる。加熱帯1に所定の温度の過熱水蒸気を投入し、加熱帯1の主なガス成分をHOとして高Si添加鋼を酸化させることにより、鋼板表面に均一な酸化膜が形成される。その結果、不めっきの無い美麗な表面外観を有する溶融亜鉛めっき鋼板を得ることができる。HO濃度が50vol%未満では、SiやMnの内部酸化物が十分に形成されず、SiやMnが表面に濃化して、不めっきが生じる。なお、残部はNおよび不可避的不純物からなり、HO濃度が50vol%以上になるようにNを供給する。なお、加熱帯が所定のHO濃度となるようにするには、例えば、過熱蒸気発生装置から加熱帯へ過熱蒸気を輸送する配管の途中にN配管(図示しない)を取り付けることで、過熱蒸気とNの混合ガスを加熱帯に導入すればよい。 The atmosphere of the heating zone 1 consists of 50 vol% or more of H 2 O, the balance N 2 and unavoidable impurities. By introducing superheated steam at a predetermined temperature into the heating zone 1 and oxidizing the high Si-added steel with the main gas component of the heating zone 1 being H 2 O, a uniform oxide film is formed on the steel plate surface. As a result, a hot dip galvanized steel sheet having a beautiful surface appearance free of unplating can be obtained. When the H 2 O concentration is less than 50 vol%, the internal oxides of Si and Mn are not sufficiently formed, and Si and Mn are concentrated on the surface, resulting in non-plating. The balance consists of N 2 and inevitable impurities, and N 2 is supplied so that the H 2 O concentration is 50 vol% or more. In order to make the heating zone have a predetermined H 2 O concentration, for example, by attaching an N 2 pipe (not shown) in the middle of the pipe that transports the superheated steam from the superheated steam generator to the heating zone, A mixed gas of superheated steam and N 2 may be introduced into the heating zone.

加熱帯1のHO濃度の制御方法については特に制限されない。例えば、長手方向に3分割し、露点計8にてそれぞれ排ガスの露点を測定し、各露点計8で測定された値から、HO濃度をそれぞれ求め、HO濃度が50vol%以上となるように、加熱帯1に投入する過熱水蒸気の流量を適宜調整すればよい。直火バーナーの場合、燃料ガスであるCガスの流量変動と、空気比の変動による投入空気量の変化によって、燃焼ガスのガス濃度が変動する。これに対し、本発明では投入するガスが過熱水蒸気、すなわちHOが主体であるため、直火バーナーと比較して、炉内の濃度管理が容易である。 The method for controlling the H 2 O concentration in the heating zone 1 is not particularly limited. For example, it is divided into three in the longitudinal direction, the dew point of the exhaust gas is measured with the dew point meter 8, and the H 2 O concentration is determined from the value measured with each dew point meter 8, and the H 2 O concentration is 50 vol% or more. Thus, the flow rate of superheated steam introduced into the heating zone 1 may be appropriately adjusted. In the case of a direct fire burner, the gas concentration of the combustion gas varies due to the change in the flow rate of the C gas that is the fuel gas and the change in the input air amount due to the variation in the air ratio. On the other hand, in the present invention, since the introduced gas is mainly superheated steam, that is, H 2 O, the concentration control in the furnace is easier compared to the direct fire burner.

なお、露点計8の露点測定方式は特に限定しない。   The dew point measurement method of the dew point meter 8 is not particularly limited.

鋼板Sは加熱帯1に続く、還元雰囲気中で600〜900℃の温度域で焼鈍される。加熱帯1で鋼板Sを700℃超えで加熱すると鋼板の酸化量が過剰になり、酸化物の一部がロールにピックアップする。そのため、加熱帯1では鋼板温度が700℃以下に加熱する。   The steel sheet S is annealed in a temperature range of 600 to 900 ° C. in a reducing atmosphere following the heating zone 1. When the steel sheet S is heated above 700 ° C. in the heating zone 1, the amount of oxidation of the steel sheet becomes excessive, and part of the oxide is picked up by the roll. Therefore, in the heating zone 1, the steel plate temperature is heated to 700 ° C. or lower.

良好なめっき性を得るには、最適な酸化量を確保する必要があり、実操業においては、鋼成分、鋼板サイズ、ライン速度に応じて加熱帯出側鋼板温度と、加熱帯のHO濃度を調整する必要がある。本発明者らが鋭意検討した結果、本発明のような高Si鋼のめっきに必要な酸化量は0.1〜0.6g/mであることがわかったため、当該範囲に酸化量が収まるように加熱帯の操業を行うことが好ましい。そこでさらに検討した結果、下記式(1)を満たすように鋼板温度および加熱帯のHO濃度を制御することにより、最適なFe酸化量を予測できることを見出した。 In order to obtain good plating properties, it is necessary to secure an optimum amount of oxidation. In actual operation, the temperature of the heated steel strip and the H 2 O concentration in the heated zone depending on the steel composition, steel plate size, and line speed. Need to be adjusted. As a result of intensive studies by the present inventors, it has been found that the amount of oxidation necessary for plating high-Si steel as in the present invention is 0.1 to 0.6 g / m 2 , so that the amount of oxidation falls within this range. Thus, it is preferable to operate the heating zone. As a result of further investigation, it was found that the optimum amount of Fe oxidation can be predicted by controlling the steel sheet temperature and the H 2 O concentration in the heating zone so as to satisfy the following formula (1).

Figure 2019019344
Figure 2019019344

ただし、式(1)において
f(x)=9.8×10−4x:調整係数(x:加熱帯のHO濃度[vol%])
R=8.314:ガス定数[J/mol・K]
Q:酸化反応の活性化エネルギー[J/mol]
T:鋼板温度[K]
τ:加熱帯での鋼板加熱時間[sec]
である。
However, in Formula (1), f (x) = 9.8 × 10 −4 x: adjustment coefficient (x: H 2 O concentration in heating zone [vol%])
R = 8.314: Gas constant [J / mol · K]
Q: Activation energy of oxidation reaction [J / mol]
T: Steel plate temperature [K]
τ: Steel sheet heating time in the heating zone [sec]
It is.

式(1)を0.1以上0.6以下に収めることにより、高Si鋼のめっきに必要な酸化量である0.1〜0.6g/mを確保することができる。 By keeping the expression (1) in the range of 0.1 to 0.6, it is possible to secure 0.1 to 0.6 g / m 2 which is an oxidation amount necessary for plating of high Si steel.

なお、活性化エネルギーQについては、鋼種ごとに定まるものであり、適宜酸化実験により求めることができる。   Note that the activation energy Q is determined for each steel type, and can be appropriately determined by an oxidation experiment.

過熱水蒸気は、例えばノズル(過熱水蒸気噴霧ノズル)を用いて鋼板Sに対して噴霧すれば良い。効率的に鋼板Sを加熱するために、鋼板Sに対して過熱水蒸気噴霧ノズルの噴射孔を垂直に配置し、噴霧することが望ましい。また、過熱水蒸気噴霧ノズルは、鋼板Sの進行方向に対して、多段に配置することが好ましい。また、過熱水蒸気噴霧ノズルは、鋼板Sの進行方向、すなわち鋼板長手方向に対して、千鳥配置となっていることが好ましく、例えば、図2に示すように、過熱水蒸気噴霧ノズルが取り付けられた過熱水蒸気配管5を鋼板表裏で幅方向に千鳥配置することが好ましい。いずれも、鋼板Sを温度ムラなく、高効率に加熱するためである。   What is necessary is just to spray superheated steam with respect to the steel plate S, for example using a nozzle (superheated steam spray nozzle). In order to efficiently heat the steel sheet S, it is desirable to spray the superheated steam spray nozzle with the injection holes arranged vertically with respect to the steel sheet S. The superheated steam spray nozzles are preferably arranged in multiple stages with respect to the traveling direction of the steel sheet S. Further, the superheated steam spray nozzle is preferably arranged in a staggered manner with respect to the traveling direction of the steel sheet S, that is, the longitudinal direction of the steel sheet. For example, as shown in FIG. It is preferable that the steam pipes 5 are staggered in the width direction on the front and back of the steel plate. In either case, the steel sheet S is heated with high efficiency without temperature unevenness.

加熱帯1と均熱帯2の間に設置されるロール9としては、セラミックロールを使用することが好ましい。これは、鋼板表面からロールへの酸化物のピックアップを防止するためである。セラミックロールの溶射材の材質としては、Al、Cr、ZrOまたはこれらから選ばれる2種以上を焼結させたものが好ましい。さらに、還元炉から加熱帯へのガス流入を抑制するために、加熱帯と均熱帯の間にシールロールを配置することが好ましい。 As the roll 9 installed between the heating zone 1 and the soaking zone 2, a ceramic roll is preferably used. This is to prevent oxide pick-up from the steel sheet surface to the roll. As a material for the thermal spray material of the ceramic roll, Al 2 O 3 , Cr 2 O 3 , ZrO 2 or a material obtained by sintering two or more selected from these is preferable. Furthermore, in order to suppress gas inflow from the reducing furnace to the heating zone, it is preferable to arrange a seal roll between the heating zone and the soaking zone.

過熱水蒸気発生装置3には、高い効率で水蒸気を発生させることが可能な誘導加熱方式を利用することが好ましい。誘導加熱方式であれば、過熱水蒸気を効率的に生成することが可能である。また、過熱蒸気発生装置3に投入する水は、液体、気体(水蒸気)のどちらでもよい。また、過熱水蒸気を輸送する過熱水蒸気配管5については、耐腐食性があり、かつ耐熱性も兼ね備えたSUS鋼が好ましい。   The superheated steam generator 3 preferably uses an induction heating method capable of generating steam with high efficiency. If it is an induction heating system, it is possible to produce | generate superheated steam efficiently. Moreover, the water thrown into the superheated steam generator 3 may be either liquid or gas (water vapor). Moreover, about the superheated steam piping 5 which transports superheated steam, SUS steel which has corrosion resistance and also has heat resistance is preferable.

本発明が対象とする鋼板は、高Si鋼であることが好ましく、具体的には、Siの含有量が0.3質量%以上であることが好ましい。   The steel plate targeted by the present invention is preferably high-Si steel, and specifically, the Si content is preferably 0.3% by mass or more.

Siは、脱酸剤として、あるいは高強度化を図るための固溶強化元素として、または、磁気特性を改善するための元素として含有される。特に、Siは、高強度化する効果が大きい割りに、加工性等の機械的特性劣化が比較的小さい元素であるため、好ましく用いることができる。しかし、0.3質量%未満の含有量では、焼鈍時における鋼板表層への濃化は少なく、本発明を適用する必要がない。よって、Si含有量は0.3質量%以上が好ましい。なお、Siの含有量が3.0質量%を超えると、本手法で形成される酸化膜のみでは、Siの表層への拡散を抑えきれず、表層濃化してしまう鋼板の割合が多くなってしまうため、上限は3.0質量以下とするのが好ましい。より好ましいSiの範囲は0.8〜1.5質量%である。   Si is contained as a deoxidizer, as a solid solution strengthening element for increasing the strength, or as an element for improving magnetic properties. In particular, Si is an element that has a relatively small deterioration in mechanical properties such as workability, although the effect of increasing the strength is large, and thus can be preferably used. However, when the content is less than 0.3% by mass, the concentration on the steel sheet surface layer during annealing is small, and it is not necessary to apply the present invention. Therefore, the Si content is preferably 0.3% by mass or more. When the Si content exceeds 3.0% by mass, the oxide film formed by this method alone cannot suppress the diffusion of Si to the surface layer, and the ratio of the steel sheet that becomes thickened is increased. Therefore, the upper limit is preferably set to 3.0 mass or less. A more preferable range of Si is 0.8 to 1.5% by mass.

なお、Si以外の元素は、通常の冷延鋼板に含まれる範囲で含有することができる。例えば、C、Mn、Al、PおよびSは、本発明が解決しようとしている炉内ロールへの酸化物付着にほとんど影響しないため、機械的強度特性や製造性等から要求される成分範囲であるC:0.05〜0.25質量%、Mn:0.5〜3.0質量%、Al:0.01〜3.00質量%、P:0.001〜0.10質量%、S:0.200質量%以下の範囲で含有することができる。   In addition, elements other than Si can be contained in a range included in a normal cold-rolled steel sheet. For example, C, Mn, Al, P and S are component ranges required from mechanical strength characteristics and manufacturability because they hardly affect the oxide adhesion to the in-furnace roll that the present invention is to solve. C: 0.05 to 0.25% by mass, Mn: 0.5 to 3.0% by mass, Al: 0.01 to 3.00% by mass, P: 0.001 to 0.10% by mass, S: It can contain in 0.200 mass% or less.

オールラジアントチューブ型のCGLにおいて、図1に示すように、CGLの入側に過熱水蒸気による加熱帯1を設置し、鋼板温度、HO濃度を変化させてめっき性を評価する試験を行った。なお、加熱帯1の鋼板温度は、加熱帯1の出側での鋼板温度を測定することで、加熱帯1の鋼板温度とした。 In the all radiant tube type CGL, as shown in FIG. 1, the heating zone 1 by superheated steam was installed on the inlet side of the CGL, and the test was performed to evaluate the plating property by changing the steel plate temperature and the H 2 O concentration. . In addition, the steel plate temperature of the heating zone 1 was made into the steel plate temperature of the heating zone 1 by measuring the steel plate temperature in the exit side of the heating zone 1.

試験に用いた鋼板の化学成分を表1に示す。鋼板の幅は1m、板厚は1mmとした。また、加熱帯1の炉長は35mであり、ライン速度は100mpmとした。   Table 1 shows the chemical composition of the steel sheet used in the test. The width of the steel plate was 1 m and the plate thickness was 1 mm. Moreover, the furnace length of the heating zone 1 was 35 m, and the line speed was 100 mpm.

Figure 2019019344
Figure 2019019344

加熱帯1には、所定のHO濃度となるように、過熱水蒸気とNを混合した気体を噴霧した。加熱帯1には総合で、質量流量740kg/hの過熱水蒸気を投入した。また、加熱帯が所定のHO濃度となるように、過熱蒸気発生装置から加熱帯へ過熱蒸気を輸送する配管の途中に、N配管を取り付け、過熱蒸気とNの混合ガスを加熱帯に導入した。 The heating zone 1 was sprayed with a gas in which superheated water vapor and N 2 were mixed so as to have a predetermined H 2 O concentration. In total, heating zone 1 was charged with superheated steam having a mass flow rate of 740 kg / h. In addition, an N 2 pipe is attached in the middle of the pipe that transports the superheated steam from the superheated steam generator to the heating zone so that the heating zone has a predetermined H 2 O concentration, and a mixed gas of superheated steam and N 2 is added. Introduced into the tropics.

露点計8には静電容量式露点計を用いた。加熱帯1の上部、中部および下部にそれぞれ露点計8を設置し、それぞれの位置における露点を測定し、HO濃度を求めた。 As the dew point meter 8, a capacitance type dew point meter was used. A dew point meter 8 was installed at each of the upper, middle and lower portions of the heating zone 1, and the dew point at each position was measured to obtain the H 2 O concentration.

過熱水蒸気は、過熱水蒸気噴霧ノズルが取り付けられた過熱水蒸気配管5を鋼板表裏の幅方向に配置して噴霧した。過熱水蒸気配管5は、鋼板長手方向に0.3mピッチで加熱帯1上部から下部まで配置した(格子配置)。さらに、一部の鋼板については、図2に示すような、鋼板の表裏で千鳥配置となった過熱水蒸気噴霧ノズルを使用して、噴霧した。   The superheated steam was sprayed by arranging the superheated steam pipe 5 to which the superheated steam spray nozzle was attached in the width direction of the steel sheet. The superheated steam pipe 5 was arranged from the upper part to the lower part of the heating zone 1 at a pitch of 0.3 m in the longitudinal direction of the steel sheet (lattice arrangement). Further, some steel plates were sprayed using superheated steam spray nozzles arranged in a staggered manner on the front and back of the steel plates as shown in FIG.

過熱水蒸気発生装置3には、誘導加熱方式を利用した加熱装置を用いた。配管4を介して、過熱水蒸気発生装置3に水を供給した。また、過熱水蒸気を輸送する過熱水蒸気配管5にはSUS316L鋼を用いた。また、配管加熱装置6は誘導加熱方式を利用した加熱装置を用いた。   As the superheated steam generator 3, a heating device using an induction heating method was used. Water was supplied to the superheated steam generator 3 through the pipe 4. Moreover, SUS316L steel was used for the superheated steam piping 5 which transports superheated steam. Moreover, the piping heating apparatus 6 used the heating apparatus using the induction heating system.

加熱帯1と均熱帯2の間のロール9には、セラミックロールを配置した。セラミックロールの材質はZrOとした。均熱帯の露点は−40〜−10℃の範囲に制御した。 A ceramic roll was disposed on the roll 9 between the heating zone 1 and the soaking zone 2. The material of the ceramic roll was ZrO 2. The soaking zone dew point was controlled in the range of -40 to -10 ° C.

製造条件を表2に示す。なお、焼鈍温度は830℃、めっき浴温は460℃、めっき浴中のAl濃度0.130%、付着量はガスワイピングにより、片面あたり45g/mに調整した。また、溶融亜鉛めっきを施した後に合金化温度530℃で合金化処理を行った。 The manufacturing conditions are shown in Table 2. The annealing temperature was 830 ° C., the plating bath temperature was 460 ° C., the Al concentration in the plating bath was 0.130%, and the adhesion amount was adjusted to 45 g / m 2 per side by gas wiping. Further, after hot dip galvanization, alloying was performed at an alloying temperature of 530 ° C.

得られためっき鋼板について、めっき外観、めっき密着性を下記のようにして評価した。
(1)めっき外観
めっき外観の評価は、不めっき、合金ムラの有無に基づき下記のように評価した。1、2が合格である。
1 不めっき、過酸化および合金化ムラがないもの
2 不めっき、過酸化がなく合金化ムラがわずかにあるもの
3 不めっきまたは/及び合金化ムラがあるもの
4 過酸化または/及び合金化ムラがあるもの
(2)めっき密着性
合金化処理した溶融亜鉛めっき鋼板(GA)にテープ幅24mm、単位長さ1mのセロテープ(登録商標)を貼りテープ面を90°曲げ曲げ戻しをした時の単位長さあたりの剥離量を蛍光X線によりZnカウント数を測定し、下記基準でランク分けした。ランク1、2が合格である。
1 0−500未満(良)
2 500以上−1000未満
3 1000以上−2000未満
4 2000以上−3000未満
製造条件および結果を表2に示す。
About the obtained plated steel plate, the plating appearance and plating adhesion were evaluated as follows.
(1) Plating appearance The plating appearance was evaluated based on the presence or absence of non-plating and unevenness of the alloy as follows. 1 and 2 are acceptable.
1 No plating, no over-oxidation and uneven alloying 2 No plating, no over-oxidation and slight alloying unevenness 3 No plating or / and alloying unevenness 4 Peroxidation or / and uneven alloying (2) Plating adhesion Unit when cellotape (registered trademark) with a tape width of 24 mm and a unit length of 1 m is applied to an alloyed hot-dip galvanized steel sheet (GA) and the tape surface is bent and bent back by 90 ° The amount of peel per length was measured by fluorescent X-rays and the Zn count was measured and ranked according to the following criteria. Ranks 1 and 2 are acceptable.
Less than 10-500 (good)
2 500 or more but less than −1000 3 1000 or more but less than −2000 4 2000 or more but less than −3000 Table 2 shows production conditions and results.

Figure 2019019344
Figure 2019019344

本発明例である条件1〜3では、加熱帯のHO濃度、鋼板温度を適正範囲に制御することにより、めっき外観とめっき密着性に優れた鋼板の製造を可能にしている。 In conditions 1 to 3, which are examples of the present invention, by controlling the H 2 O concentration in the heating zone and the steel plate temperature within appropriate ranges, it is possible to produce a steel plate excellent in plating appearance and plating adhesion.

1 加熱帯
2 均熱帯
3 過熱水蒸気発生装置
4 配管
5 過熱水蒸気配管
6 配管加熱装置
7 排気用配管
8 露点計
9 ロール
10 HNx排気配管
100 連続式溶融亜鉛めっき設備
S 鋼板
DESCRIPTION OF SYMBOLS 1 Heating zone 2 Soaking zone 3 Superheated steam generator 4 Piping 5 Superheated steam piping 6 Piping heating device 7 Exhaust piping 8 Dew point meter 9 Roll 10 HNx exhaust piping 100 Continuous hot dip galvanizing equipment S Steel plate

Claims (3)

加熱帯と、均熱帯と、冷却帯とがこの順に配置された焼鈍炉と、前記冷却帯に隣接した溶融亜鉛めっき装置とを有するオールラジアントチューブ方式の連続溶融亜鉛めっき設備を用いて、溶融亜鉛めっき鋼板を製造する溶融亜鉛めっき鋼板の製造方法において、前記加熱帯に450〜1200℃の過熱水蒸気を投入し、50vol%以上のHOおよび残部Nおよび不可避的不純物からなる雰囲気中で、鋼板温度を700℃以下に加熱することを特徴とする溶融亜鉛めっき鋼板の製造方法。 Using an all-radiant tube type continuous hot dip galvanizing facility having an annealing furnace in which a heating zone, a soaking zone, and a cooling zone are arranged in this order, and a hot dip galvanizing apparatus adjacent to the cooling zone, In the method for producing a hot-dip galvanized steel sheet for producing a plated steel sheet, 450 to 1200 ° C. superheated steam is introduced into the heating zone, and in an atmosphere composed of 50 vol% or more of H 2 O and the balance N 2 and unavoidable impurities, A method for producing a hot dip galvanized steel sheet, wherein the steel sheet temperature is heated to 700 ° C or lower. 前記鋼板温度および加熱帯のHO濃度が下記式(1)を満たすことを特徴とする請求項1に記載の溶融亜鉛めっき鋼板の製造方法。
Figure 2019019344

ただし、式(1)において
f(x)=9.8×10−4x:調整係数(x:加熱帯のHO濃度[vol%])
R=8.314:ガス定数[J/mol・K]
Q:酸化反応の活性化エネルギー[J/mol]
T:鋼板温度[K]
τ:加熱帯での鋼板加熱時間[sec]
である。
The method for producing a hot-dip galvanized steel sheet according to claim 1, wherein the steel sheet temperature and the H 2 O concentration in the heating zone satisfy the following formula (1).
Figure 2019019344

However, in Formula (1), f (x) = 9.8 × 10 −4 x: adjustment coefficient (x: H 2 O concentration in heating zone [vol%])
R = 8.314: Gas constant [J / mol · K]
Q: Activation energy of oxidation reaction [J / mol]
T: Steel plate temperature [K]
τ: Steel sheet heating time in the heating zone [sec]
It is.
前記過熱水蒸気は、鋼板長手方向に千鳥配置されたノズルにより前記加熱帯に投入されることを特徴とする請求項1または2に記載の溶融亜鉛めっき鋼板の製造方法。   The method for producing a hot-dip galvanized steel sheet according to claim 1 or 2, wherein the superheated steam is introduced into the heating zone by a nozzle arranged in a staggered manner in the longitudinal direction of the steel sheet.
JP2017135921A 2017-07-12 2017-07-12 Method for manufacturing hot-dip galvanized steel sheet Active JP6740973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017135921A JP6740973B2 (en) 2017-07-12 2017-07-12 Method for manufacturing hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017135921A JP6740973B2 (en) 2017-07-12 2017-07-12 Method for manufacturing hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2019019344A true JP2019019344A (en) 2019-02-07
JP6740973B2 JP6740973B2 (en) 2020-08-19

Family

ID=65355111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017135921A Active JP6740973B2 (en) 2017-07-12 2017-07-12 Method for manufacturing hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP6740973B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110904400A (en) * 2019-12-17 2020-03-24 株洲广锐电气科技有限公司 Galvanizing device for electronic product production

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262464A (en) * 2006-03-28 2007-10-11 Jfe Steel Kk Method for producing hot dip galvanized steel sheet
JP2011508824A (en) * 2007-12-20 2011-03-17 フェストアルピネ シュタール ゲーエムベーハー Method of manufacturing a coated and hardened component of steel and a coated and hardened steel strip for this method
JP2014019935A (en) * 2012-07-23 2014-02-03 Jfe Steel Corp Method for producing high strength hot-dip galvanized steel sheet excellent in surface stability
JP2015038245A (en) * 2011-09-30 2015-02-26 新日鐵住金株式会社 Steel plate including alloyed galvanized plating layer with excellent plating wettability and plating adhesion and manufacturing method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262464A (en) * 2006-03-28 2007-10-11 Jfe Steel Kk Method for producing hot dip galvanized steel sheet
JP2011508824A (en) * 2007-12-20 2011-03-17 フェストアルピネ シュタール ゲーエムベーハー Method of manufacturing a coated and hardened component of steel and a coated and hardened steel strip for this method
JP2015038245A (en) * 2011-09-30 2015-02-26 新日鐵住金株式会社 Steel plate including alloyed galvanized plating layer with excellent plating wettability and plating adhesion and manufacturing method of the same
JP2014019935A (en) * 2012-07-23 2014-02-03 Jfe Steel Corp Method for producing high strength hot-dip galvanized steel sheet excellent in surface stability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110904400A (en) * 2019-12-17 2020-03-24 株洲广锐电气科技有限公司 Galvanizing device for electronic product production
CN110904400B (en) * 2019-12-17 2022-04-29 江西宏鼎盛光电有限公司 Galvanizing device for electronic product production

Also Published As

Publication number Publication date
JP6740973B2 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
US20230082367A1 (en) Method of producing high-strength hot-dip galvanized steel sheet
JP5206705B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
US10138530B2 (en) Method for producing high-strength galvannealed steel sheets
JP5982905B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
WO2016038801A1 (en) Method and apparatus for producing high-strength hot-dipped galvanized steel sheet
JP5799819B2 (en) Method for producing hot-dip galvanized steel sheet with excellent plating wettability and pick-up resistance
JP5888267B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet
JP5552863B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5811841B2 (en) Method for producing Si-containing high-strength galvannealed steel sheet
JP5884196B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5552859B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5593771B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5552864B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP7111059B2 (en) Dew point control method for reducing atmosphere furnace, reducing atmosphere furnace, cold-rolled steel sheet manufacturing method, and hot-dip galvanized steel sheet manufacturing method
JP6094507B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP6094508B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP7243668B2 (en) Method for manufacturing cold-rolled steel sheet and hot-dip galvanized steel sheet
JP6740973B2 (en) Method for manufacturing hot-dip galvanized steel sheet
KR20180111931A (en) METHOD FOR MANUFACTURING STRENGTH OF HIGH-STRENGTH HOT WATER
JP5593770B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP6696495B2 (en) Method for manufacturing hot dip galvanized steel sheet
JP5729008B2 (en) Method for producing hot-dip galvanized steel sheet
JP2020122195A (en) Method of manufacturing hot-dip galvanized steel sheets
JP2010255108A (en) High-strength hot-dip galvanized steel plate and method for producing the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190221

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200706

R150 Certificate of patent or registration of utility model

Ref document number: 6740973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250