JP6696495B2 - Method for manufacturing hot dip galvanized steel sheet - Google Patents

Method for manufacturing hot dip galvanized steel sheet Download PDF

Info

Publication number
JP6696495B2
JP6696495B2 JP2017223454A JP2017223454A JP6696495B2 JP 6696495 B2 JP6696495 B2 JP 6696495B2 JP 2017223454 A JP2017223454 A JP 2017223454A JP 2017223454 A JP2017223454 A JP 2017223454A JP 6696495 B2 JP6696495 B2 JP 6696495B2
Authority
JP
Japan
Prior art keywords
zone
steel sheet
heating zone
superheated steam
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017223454A
Other languages
Japanese (ja)
Other versions
JP2019094527A (en
Inventor
研二 山城
研二 山城
玄太郎 武田
玄太郎 武田
高橋 秀行
秀行 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017223454A priority Critical patent/JP6696495B2/en
Publication of JP2019094527A publication Critical patent/JP2019094527A/en
Application granted granted Critical
Publication of JP6696495B2 publication Critical patent/JP6696495B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、溶融亜鉛めっき鋼板の製造方法に関する。   The present invention relates to a method for manufacturing a galvanized steel sheet.

近年、環境問題への意識の高まりから、自動車に対する二酸化炭素の排出規制が厳しくなっている。また、自動車の衝突安全性の規制も強化されるなど、従来以上に車体の安全性が求められている。そこで、軽量化と強度向上を両立させるため、自動車メーカ各社は、車体への溶融亜鉛めっき高張力鋼板の適用拡大を推進している。   In recent years, with increasing awareness of environmental issues, regulations on carbon dioxide emissions from automobiles have become strict. In addition, the safety of the vehicle body is required to be higher than ever before, such as the regulations on collision safety of automobiles being tightened. Therefore, in order to achieve both weight reduction and strength improvement, automobile manufacturers are promoting the expansion of application of hot-dip galvanized high-strength steel sheets to vehicle bodies.

溶融亜鉛めっき鋼板は、以下の手法によって製造される。冷延後のコイルを、連続式溶融亜鉛めっきライン(Continuous galvanizing line:CGL)に通板させ、最初に、予熱炉内で母材表面の油分の燃焼除去を行う。その後、酸化性雰囲気または還元性雰囲気で加熱を行い、鋼板を再結晶させる。さらに、酸化性雰囲気または還元性雰囲気で、鋼板をめっきに適した温度になるよう冷却を行い、溶融亜鉛へと浸漬させる。   The hot-dip galvanized steel sheet is manufactured by the following method. The coil after cold rolling is passed through a continuous galvanizing line (CGL), and first, the oil content on the surface of the base material is burned and removed in a preheating furnace. After that, heating is performed in an oxidizing atmosphere or a reducing atmosphere to recrystallize the steel sheet. Further, in an oxidizing atmosphere or a reducing atmosphere, the steel sheet is cooled to a temperature suitable for plating and immersed in molten zinc.

鋼板の高張力化には、Si、Mn、P、Alなどの固溶強化元素の添加が行われることが多い。特に、Siは添加コストが他の元素と比較して低く、かつ鋼の延性を損なわずに高強度化できる利点がある。そのため、Si含有鋼は高張力鋼板として有望である。しかし、Siを鋼中に多量に添加すると、以下の問題が生じる。   In order to increase the tensile strength of steel sheets, addition of solid solution strengthening elements such as Si, Mn, P and Al is often performed. In particular, Si has the advantages that the addition cost is lower than that of other elements and that the strength can be increased without impairing the ductility of steel. Therefore, Si-containing steel is promising as a high-tensile steel plate. However, adding a large amount of Si to steel causes the following problems.

高張力鋼板は、還元雰囲気中で、600〜900℃の温度域で焼鈍される。SiはFeと比較して易酸化元素であるため、この時に、Siが鋼板表面へ濃化する。その結果、鋼板表面にSi酸化物が形成され、このSi酸化物が亜鉛との濡れ性を著しく悪化させ、不めっきを生じさせる。   The high-strength steel sheet is annealed in a reducing atmosphere in a temperature range of 600 to 900 ° C. Since Si is an easily oxidizable element as compared with Fe, Si concentrates on the surface of the steel sheet at this time. As a result, Si oxide is formed on the surface of the steel sheet, and this Si oxide significantly deteriorates the wettability with zinc and causes non-plating.

さらに、Siが表面に濃化すると、亜鉛めっきが付着したとしても溶融亜鉛めっき後の合金化過程において、著しい合金化の遅延を生じる。その結果、生産性が悪化する。   Furthermore, if Si is concentrated on the surface, even if zinc plating adheres, a significant delay in alloying occurs in the alloying process after hot dip galvanizing. As a result, productivity deteriorates.

このような問題に対して、直火バーナーによって加熱帯で鋼板を加熱し、鋼板表面に酸化膜を形成した後、還元焼鈍で鋼板表面に還元鉄を形成させることによって亜鉛との濡れ性を改善する手法が特許文献1に開示されている。特許文献2では、直火バーナーを使用して、加熱帯の雰囲気の酸化性ガス(O、CO、HO)の濃度を規定して、酸化膜厚を均一に保つ手法が開示されている。 For such problems, the steel sheet is heated in a heating zone with an open flame burner to form an oxide film on the steel sheet surface, and then reduced iron is formed on the steel sheet surface by reduction annealing to improve wettability with zinc. A method of doing so is disclosed in Patent Document 1. Patent Document 2 discloses a method of maintaining a uniform oxide film thickness by using an open flame burner to regulate the concentration of oxidizing gas (O 2 , CO 2 , H 2 O) in the atmosphere of the heating zone. ing.

また、過熱蒸気を利用して鋼板を焼鈍する技術が特許文献3に開示されている。   Further, Patent Document 3 discloses a technique for annealing a steel sheet using superheated steam.

さらに、Si添加鋼の内部酸化量確保を目的として、焼鈍炉の一部で過熱水蒸気を鋼板表面に噴射する技術が特許文献4に開示されている。   Further, Patent Document 4 discloses a technique of injecting superheated steam onto the surface of a steel sheet in a part of an annealing furnace in order to secure the internal oxidation amount of Si-added steel.

特開平4−202630号公報JP-A-4-202630 特開平6−306561号公報JP-A-6-306561 特開平9−241734号公報JP, 9-241734, A 特開2014−122390号公報JP, 2014-122390, A

特許文献1では、加熱帯で直火バーナーを利用し、鋼板表面に酸化膜を形成させている。火炎温度は空気比に影響を受けることが知られており、制御上不可避的な空気比変動によって火炎温度が変化するため、その影響を受けて、鋼板温度が変化する。その結果、コイルの長手方向で鋼板温度が変化し、酸化量が一定とならないため、不めっきや過剰な酸化膜が炉内のロールにピックアップするといった問題が生じる。   In Patent Document 1, an oxide film is formed on the surface of the steel sheet by using an open flame burner in the heating zone. It is known that the flame temperature is affected by the air ratio, and the flame temperature changes due to air ratio fluctuations that are unavoidable in control, and the steel plate temperature changes due to the influence. As a result, the temperature of the steel sheet changes in the longitudinal direction of the coil, and the amount of oxidation is not constant, which causes problems such as non-plating and excessive oxide film picked up by the roll in the furnace.

特許文献2では、炉内雰囲気を直接制御するために、直火バーナーの燃焼ガスとは別に、ガスを炉内に導入して、雰囲気の制御を試みている。この手法では、直火バーナーの配置に起因して、鋼板に温度ムラが生じる。そのため、特許文献1と同様に最終的な酸化膜がコイルで均一とならず、不めっきやピックアップが生じる。さらに、酸化性のガスは3種(O、CO、HO)存在するため、炉内の酸素ポテンシャルを制御するためには、3種のガス濃度を管理しなければならず、複雑な制御システムを構築する必要がある。これに加えて、加熱帯では、下流から上流へのガス流れが存在するため、直火バーナーの燃焼ガスと別途導入したガスの混合が十分に行われず、炉内雰囲気が均一とならないため、不めっきやピックアップが発生する。 In Patent Document 2, in order to directly control the atmosphere in the furnace, a gas is introduced into the furnace separately from the combustion gas of the direct-burning burner to try to control the atmosphere. In this method, the temperature unevenness occurs in the steel sheet due to the arrangement of the open flame burners. Therefore, as in Patent Document 1, the final oxide film is not uniform in the coil, resulting in non-plating and pickup. Further, since there are three kinds of oxidizing gases (O 2 , CO 2 , H 2 O), in order to control the oxygen potential in the furnace, it is necessary to manage the gas concentrations of the three kinds, which is complicated. It is necessary to build a sophisticated control system. In addition to this, since there is a gas flow from the downstream side to the upstream side in the heating zone, the combustion gas of the direct-burning burner and the gas introduced separately are not sufficiently mixed, and the atmosphere in the furnace is not uniform. Plating and pickup will occur.

特許文献3では、過熱蒸気で鋼板を過熱する際の蒸気圧力(0.5〜5kg/cm)、蒸気温度(150〜500℃)および加熱時間(5〜60分)が規定されている。この手法で鋼板を加熱すると、鋼板の熱容量が変化した時に加熱炉出側の鋼板温度が大きく変わるため、鋼板表面に形成される酸化膜が過小または過大となり、酸化膜の一部が鋼板から剥離して、ロールにピックアップするという問題がある。 In Patent Document 3, the steam pressure (0.5 to 5 kg / cm 2 ), the steam temperature (150 to 500 ° C.), and the heating time (5 to 60 minutes) when the steel sheet is overheated with superheated steam are specified. When a steel sheet is heated by this method, when the heat capacity of the steel sheet changes, the temperature of the steel sheet on the exit side of the heating furnace changes greatly, so the oxide film formed on the steel plate surface becomes too small or too large, and part of the oxide film peels from the steel plate. Then there is the problem of picking up on the roll.

特許文献4では、過熱蒸気を利用した加熱帯において、鋼板温度の制御性に乏しく、鋼板表面に形成された酸化膜が均熱帯のロール表面にピックアップする可能性があるという問題がある。   In Patent Document 4, there is a problem that the controllability of the steel sheet temperature is poor in the heating zone using superheated steam, and the oxide film formed on the steel sheet surface may be picked up on the soaking zone roll surface.

本発明は、かかる事情に鑑みてなされたものであって、直火バーナーを使用せずとも、めっき品質に優れた溶融亜鉛めっき鋼板の製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for manufacturing a hot-dip galvanized steel sheet having excellent plating quality without using an open flame burner.

本発明者らは、直火バーナーを使用せずに、加熱帯出側の鋼板温度を制御しやすく、また、ライン速度や鋼板の板厚が変化した場合であっても、加熱帯出側の鋼板温度を一定範囲内に制御することが可能な鋼板の加熱方法について鋭意検討を行った。その結果、オールラジアントチューブ型の連続式溶融亜鉛めっき設備の加熱帯において、過熱水蒸気により鋼板を加熱するとともに、加熱帯のゾーンを分割し、各ゾーンの過熱水蒸気温度を制御することで、加熱帯出側の鋼板温度を制御し、めっき品質の良い鋼板が製造できることを見出した。   The present inventors can easily control the steel strip temperature on the heating strip side without using an open flame burner, and even when the line speed or the strip thickness of the steel sheet changes, the steel strip temperature on the heating strip side. The present inventors have earnestly studied a heating method of a steel sheet capable of controlling the temperature within a certain range. As a result, in the heating zone of the all-radiant tube type continuous hot dip galvanizing equipment, the steel sheet is heated by superheated steam, the zones of the heating zone are divided, and the superheated steam temperature of each zone is controlled, It was found that a steel plate with good plating quality can be manufactured by controlling the steel plate temperature on the side.

本発明は上記知見に基づくものであり、その特徴は以下の通りである。
[1]加熱帯と、均熱帯と、冷却帯とがこの順に配置された焼鈍炉と、前記冷却帯に隣接した溶融亜鉛めっき装置とを有するオールラジアントチューブ方式の連続溶融亜鉛めっき製造設備を用いて、溶融亜鉛めっき鋼板を製造する溶融亜鉛めっき鋼板の製造方法において、前記加熱帯は鋼板長手方向に複数のゾーンに分割されており、前記加熱帯に熱伝達係数が100〜400W/(m・K)となる過熱水蒸気を投入し、かつ前記加熱帯の複数のゾーンにおいて、前半のゾーンより後半のゾーンの過熱水蒸気温度が低くなるように前記加熱帯の各ゾーンの過熱水蒸気温度を制御し、前記加熱帯出側の鋼板温度Tを400〜700℃にすることを特徴とする溶融亜鉛めっき鋼板の製造方法。
[2]前記加熱帯のゾーン数がn(nは整数)の場合、下記式(1)および(2)を満たすことを特徴とする[1]に記載の溶融亜鉛めっき鋼板の製造方法。
The present invention is based on the above findings, and its features are as follows.
[1] Using an all-radiant tube type continuous hot-dip galvanizing facility having an annealing furnace in which a heating zone, a soaking zone, and a cooling zone are arranged in this order, and a hot-dip galvanizing apparatus adjacent to the cooling zone In the method of manufacturing a hot-dip galvanized steel sheet, the heating zone is divided into a plurality of zones in the longitudinal direction of the steel sheet, and the heat transfer coefficient of the heating zone is 100 to 400 W / (m 2). -Introducing superheated steam to be K), and controlling the superheated steam temperature in each zone of the heating zone so that the temperature of the latter half of the zones in the latter half of the zones of the heating zone becomes lower than that in the first half of the zones. A method for producing a hot-dip galvanized steel sheet, wherein the steel sheet temperature T f on the heating zone exit side is set to 400 to 700 ° C.
[2] The method for producing a hot-dip galvanized steel sheet according to [1], wherein when the number of zones in the heating zone is n (n is an integer), the following formulas (1) and (2) are satisfied.

Figure 0006696495
Figure 0006696495

Figure 0006696495
Figure 0006696495

ただし、
n:加熱帯のゾーン数。ただし、加熱帯上流側から下流側に向けて、第1、第2、第3・・・第nゾーンとする。
:加熱帯出側の鋼板温度(℃)
:第i加熱帯(i=1、2、3・・・n)の過熱水蒸気温度(℃)
α:過熱水蒸気の熱伝達係数(W/(m・K))
とする。
[3]100℃を超える温度に加熱した鋼板を前記加熱帯に搬送することを特徴とする[1]または[2]に記載の溶融亜鉛めっき鋼板の製造方法。
[4]前記加熱帯の下流側で、かつ均熱帯へ搬送される前に、還元雰囲気中で鋼板を加熱することを特徴とする[1]〜[3]のいずれかに記載の溶融亜鉛めっき鋼板の製造方法。
However,
n: the number of zones in the heating zone. However, from the upstream side to the downstream side of the heating zone, the first, second, third, ... Nth zones are set.
T f : Steel plate temperature (° C.) on the heating zone exit side
G i : Superheated steam temperature (° C.) in the i-th heating zone (i = 1, 2, 3, ... N)
α: heat transfer coefficient of superheated steam (W / (m 2 · K))
And
[3] The method for producing a hot-dip galvanized steel sheet according to [1] or [2], wherein the steel sheet heated to a temperature exceeding 100 ° C. is conveyed to the heating zone.
[4] The hot dip galvanizing according to any one of [1] to [3], characterized in that the steel sheet is heated in a reducing atmosphere on the downstream side of the heating zone and before being transported to the soaking zone. Steel plate manufacturing method.

本発明によれば、不めっきやピックアップ疵のない美麗な表面外観を有する優れた溶融亜鉛めっき鋼板が得られる。本発明は、溶融亜鉛めっき処理が困難である高Si添加鋼板を母材とする場合に特に有効であり、高Si添加溶融亜鉛めっき鋼板の製造におけるめっき品質を改善する方法として有用である。   According to the present invention, an excellent hot-dip galvanized steel sheet having a beautiful surface appearance without unplating or pick-up flaws can be obtained. INDUSTRIAL APPLICABILITY The present invention is particularly effective when a high Si-added steel sheet that is difficult to hot dip galvanize is used as a base material and is useful as a method for improving the plating quality in the production of a high Si-added hot-dip galvanized steel sheet.

図1は、本発明の一実施形態に係る加熱帯および均熱帯の概略図である。FIG. 1 is a schematic view of a heating zone and a soaking zone according to an embodiment of the present invention. 図2は、過熱水蒸気噴霧ノズルの配置を示す模式図である。FIG. 2 is a schematic diagram showing the arrangement of superheated steam spray nozzles.

以下に、本発明の実施形態について、図1に基づき具体的に説明する。   An embodiment of the present invention will be specifically described below with reference to FIG.

図1は、本発明の実施の形態に係る、オールラジアントチューブ式の連続式溶融亜鉛めっき設備100における加熱帯1および均熱帯2の概略図である。なお、均熱帯2の下流には、冷却帯、溶融亜鉛めっき装置、合金化処理装置などが配置される(図示しない)。均熱帯2、冷却帯、溶融亜鉛めっき装置、合金化処理装置などは特に限定されず、通常採用されているもので良い。   FIG. 1 is a schematic diagram of a heating zone 1 and a soaking zone 2 in an all-radiant tube type continuous hot dip galvanizing facility 100 according to an embodiment of the present invention. A cooling zone, a hot dip galvanizing device, an alloying treatment device, etc. are arranged downstream of the soaking zone 2 (not shown). The soaking zone 2, the cooling zone, the hot dip galvanizing device, the alloying treatment device and the like are not particularly limited and may be those usually employed.

鋼板Sは連続式溶融亜鉛めっき設備100において、熱処理を施される。加熱帯1は複数のゾーンに分割されている。なお、図1においては、第1ゾーン1Z、第2ゾーン2Zに分割されているが、この実施形態に限られるわけではない。   The steel sheet S is heat-treated in the continuous hot-dip galvanizing facility 100. The heating zone 1 is divided into a plurality of zones. In addition, in FIG. 1, although it is divided into the first zone 1Z and the second zone 2Z, it is not limited to this embodiment.

加熱帯1の第1ゾーン1Z、第2ゾーン2Zには、過熱水蒸気発生装置3が接続されている。過熱水蒸気発生装置3の入側には配管4が接続されており、配管4を介して水が過熱水蒸気発生装置3に投入される。投入された水は所定の温度まで昇温されて過熱水蒸気となる。その後、過熱水蒸気は過熱水蒸気配管5により輸送されて加熱帯1の第1ゾーン1Z、第2ゾーン2Zに投入される。なお、輸送中に過熱水蒸気の温度が低下しないように、配管加熱装置6により過熱水蒸気配管5は加熱され、過熱水蒸気の温度が一定に保たれるようになっている。これにより、加熱帯1に投入される過熱水蒸気の温度が一定となり、温度ムラが生じることなく鋼板Sを加熱することができる。   The superheated steam generator 3 is connected to the first zone 1Z and the second zone 2Z of the heating zone 1. A pipe 4 is connected to an inlet side of the superheated steam generator 3, and water is introduced into the superheated steam generator 3 through the pipe 4. The introduced water is heated to a predetermined temperature and becomes superheated steam. After that, the superheated steam is transported by the superheated steam pipe 5 and introduced into the first zone 1Z and the second zone 2Z of the heating zone 1. The pipe heating device 6 heats the superheated steam pipe 5 so that the temperature of the superheated steam does not decrease during transportation, and the temperature of the superheated steam is kept constant. As a result, the temperature of the superheated steam introduced into the heating zone 1 becomes constant, and the steel sheet S can be heated without causing temperature unevenness.

また、加熱帯1の第1ゾーン1Z、第2ゾーン2Zにおける下流側には、過熱水蒸気を回収する回収用配管7が接続されており、回収用配管7から過熱水蒸気発生装置3へ過熱水蒸気が循環する仕組みになっている。   A recovery pipe 7 for recovering the superheated steam is connected to the downstream side of the first zone 1Z and the second zone 2Z of the heating zone 1, and the recovery pipe 7 transfers the superheated steam to the superheated steam generator 3. It is a mechanism to circulate.

加熱帯1の下流側には、還元帯8が設置されていてもよい。還元帯8には、還元性ガスであるHNxガス配管9が接続されており、還元帯8にHNxガスが投入される。また、HNxガスの排気系統を確保するために、還元帯8の下流側にはHNxガスの排気配管10を設ける。なお、還元性ガスであればHNxガス以外のガスを用いても良く、例えばCOガスを用いてもよい。   A reduction zone 8 may be installed on the downstream side of the heating zone 1. A HNx gas pipe 9 that is a reducing gas is connected to the reduction zone 8, and the HNx gas is introduced into the reduction zone 8. Further, in order to secure an exhaust system for HNx gas, an exhaust pipe 10 for HNx gas is provided on the downstream side of the reduction zone 8. Note that a gas other than HNx gas may be used as long as it is a reducing gas, for example, CO gas may be used.

また、加熱帯1の入側手前には、予備加熱帯11が設置されていてもよい。予備加熱帯11にはN供給配管12が接続されており、予備加熱帯11にはNが投入される。 A preheating zone 11 may be installed in front of the heating zone 1 on the entry side. A N 2 supply pipe 12 is connected to the preheating zone 11, and N 2 is introduced into the preheating zone 11.

また、図1に示すように、第2ゾーン2Zの下流側および還元帯8の下流側にそれぞれ多重反射式温度計13を設置する。これにより加熱帯1の出側の鋼板温度を監視する。また、予備加熱帯11の出側(加熱帯1の入側)に多重反射式温度計13を設けてもよい。これは、予備加熱帯11で鋼板を加熱した際に、加熱帯1に搬送される加熱後の鋼板温度を把握するためである。   Further, as shown in FIG. 1, multiple reflection type thermometers 13 are installed on the downstream side of the second zone 2Z and the downstream side of the reduction zone 8, respectively. Thereby, the temperature of the steel plate on the outlet side of the heating zone 1 is monitored. A multiple reflection type thermometer 13 may be provided on the exit side of the preheating zone 11 (the entrance side of the heating zone 1). This is for grasping the temperature of the steel sheet after being heated and conveyed to the heating zone 1 when the steel sheet is heated by the preheating zone 11.

また、加熱帯1と予備加熱帯11との間には、ロール14が配置されている。本発明では加熱帯1と予備加熱帯11の間にロール14を設置することにより、加熱帯1への大気の流入を抑制している。さらに、均熱帯2から加熱帯1へのガス流入を抑制するために、加熱帯1と均熱帯2の間にセラミックロール15を配置してもよい。   A roll 14 is arranged between the heating zone 1 and the preheating zone 11. In the present invention, the roll 14 is installed between the heating zone 1 and the preheating zone 11 to suppress the inflow of air into the heating zone 1. Further, a ceramic roll 15 may be arranged between the heating zone 1 and the soaking zone 2 in order to suppress the gas flow from the soaking zone 2 to the heating zone 1.

直火バーナー炉(DFF)や無酸化炉(NOF)でプレ酸化を行う場合、酸化量はO、CO、HOの3種のガス濃度の影響を受ける。同じ操業条件で製造を行っていても、燃料ガス成分の変動や、季節ごとの大気の露点変動によって、炉内の雰囲気は変化する。 When performing pre-oxidation in a direct fire burner furnace (DFF) or a non-oxidizing furnace (NOF), the amount of oxidation is affected by the gas concentrations of three kinds of O 2 , CO 2 , and H 2 O. Even if manufacturing is performed under the same operating conditions, the atmosphere inside the furnace changes due to fluctuations in fuel gas components and seasonal dew point fluctuations in the atmosphere.

そこで本発明者らが鋭意検討した結果、オールラジアントチューブ方式の溶融亜鉛めっき製造設備において、過熱水蒸気単独で加熱を行えば、加熱帯1の雰囲気は常に一定となるため、加熱帯出側の鋼板温度で酸化量を管理することができると考えた。さらに、直火バーナーを使用する方法では、制御上不可避的に生じる空気比の変動によって火炎温度が変化し、それによって最終的に加熱帯出側の鋼板温度が変動する。過熱水蒸気で加熱を行う場合は、過熱水蒸気配管5の手前に多重反射式温度計13を設置して過熱水蒸気温度を管理し、必要に応じて、配管加熱装置6で加熱を行い、過熱水蒸気温度を制御する。これによって、加熱帯1に投入する過熱水蒸気温度を一定にすることができ、直火バーナーを利用する場合と比較して加熱帯出側の鋼板温度の制御性が高い。   Therefore, as a result of intensive studies by the present inventors, in the hot dip galvanizing equipment of the all radiant tube method, if heating is performed by only superheated steam, the atmosphere of the heating zone 1 is always constant, so that the temperature of the steel sheet on the outlet side of the heating zone We thought that the amount of oxidation could be controlled by. Further, in the method using the direct flame burner, the flame temperature changes due to the fluctuation of the air ratio that is unavoidably caused by the control, and finally the steel plate temperature on the heating zone side fluctuates. When heating with superheated steam, a multiple reflection thermometer 13 is installed in front of the superheated steam pipe 5 to control the superheated steam temperature, and if necessary, the pipe heating device 6 is used to heat the steam. To control. As a result, the temperature of the superheated steam introduced into the heating zone 1 can be made constant, and the controllability of the steel sheet temperature on the heating zone exit side is higher than in the case of using an open flame burner.

本発明では、加熱帯1を鋼板長手方向に複数のゾーン(第1ゾーン1Z、第2ゾーン2Z、第3ゾーン3Z・・・第nゾーン。なお、図1においては第1〜第2ゾーンとしている。)に分割する。加熱帯1を複数のゾーンに分割すると、ライン速度や板厚が変化した時にゾーンごとに燃焼負荷を制御できるため、精密に加熱帯出側の鋼板温度を制御することができる。   In the present invention, the heating zone 1 is composed of a plurality of zones (first zone 1Z, second zone 2Z, third zone 3Z ... Nth zone in the longitudinal direction of the steel sheet. It is divided into. When the heating zone 1 is divided into a plurality of zones, the combustion load can be controlled for each zone when the line speed or the sheet thickness changes, so that the steel sheet temperature on the heating zone exit side can be precisely controlled.

良好なめっき性を得るには、最適な酸化量を確保する必要がある。単一の過熱水蒸気温度で鋼板を加熱する場合、板厚やライン速度が変化して過熱水蒸気の熱容量が変わった時に加熱帯1出側の鋼板温度が大きく変化し、酸化量が一定とならないため、不めっきやピックアップが発生する。本発明者らが鋭意検討を行った結果、過熱水蒸気の熱伝達係数が100〜400W/(m・K)にすれば、ライン速度や板厚に変更が生じた場合でも、加熱帯1出側の鋼板温度Tが400〜700℃の範囲に収まって、めっき性確保のために必要な酸化量を得ることができることを見出した。熱伝達係数が100W/(m・K)未満では、加熱帯1の炉長を非常に長く設定しなければならず、建設コストに莫大な費用を要するためである。一方、400W/(m・K)超えでは、過熱水蒸気の流速が大きくなって鋼板がその影響を受けて振動し、形状が悪化するためである。また、本発明では、加熱帯1出側の鋼板温度Tを400〜700℃に制御することにより、めっき性確保のために必要な酸化量を達成できる。加熱帯1出側の鋼板温度が400℃未満では、めっき性確保のために必要な酸化量を得ることができない。一方で、700℃を超えるとピックアップが生じる。 In order to obtain good plating properties, it is necessary to secure an optimum amount of oxidation. When heating a steel sheet with a single superheated steam temperature, when the plate thickness or line speed changes and the heat capacity of the superheated steam changes, the steel plate temperature on the outlet side of the heating zone 1 changes greatly, and the amount of oxidation is not constant. , Non-plating and pickup occurs. As a result of earnest studies by the present inventors, if the heat transfer coefficient of superheated steam is set to 100 to 400 W / (m 2 · K), even if the line speed or the plate thickness is changed, the heating zone 1 is output. It was found that the steel plate temperature T f on the side is within the range of 400 to 700 ° C., and the amount of oxidation required for ensuring the plating property can be obtained. This is because if the heat transfer coefficient is less than 100 W / (m 2 · K), the furnace length of the heating zone 1 must be set to be extremely long, which requires a huge construction cost. On the other hand, if it exceeds 400 W / (m 2 · K), the flow rate of superheated steam increases, the steel sheet is affected by the vibration, and the shape deteriorates. Further, in the present invention, by controlling the steel plate temperature Tf on the outlet side of the heating zone 1 to 400 to 700 ° C, it is possible to achieve the amount of oxidation necessary for ensuring the plating property. When the temperature of the steel sheet on the outlet side of the heating zone 1 is less than 400 ° C, it is impossible to obtain the amount of oxidation necessary for ensuring the plating property. On the other hand, when the temperature exceeds 700 ° C, pickup occurs.

なお、熱伝達係数が100〜400W/(m・K)となる過熱水蒸気については、過熱水蒸気の圧力、ノズル径から吐出流速を推定して、熱伝達係数を算出することにより調整すればよい。 For superheated steam having a heat transfer coefficient of 100 to 400 W / (m 2 · K), it may be adjusted by estimating the discharge flow velocity from the pressure of the superheated steam and the nozzle diameter and calculating the heat transfer coefficient. ..

ゾーン分割にあたっては、加熱帯における前半のゾーンよりも後半のゾーンの過熱水蒸気温度が低くなるように過熱水蒸気を投入する。すなわち、i加熱帯の過熱水蒸気温度が第(i−1)加熱帯の過熱水蒸気温度よりも低い(i=1、2、3・・・n)。これは、初期のゾーンで鋼板を急速に加熱し、より後段のゾーンの加熱速度を小さくしていくことで、加熱帯出側の鋼板温度が目標温度から外れることを抑制するためである。   In zone division, superheated steam is introduced so that the superheated steam temperature in the latter half of the heating zone is lower than that in the first half. That is, the superheated steam temperature of the i heating zone is lower than the superheated steam temperature of the (i-1) th heating zone (i = 1, 2, 3, ... N). This is to prevent the steel sheet temperature on the heating zone exit side from deviating from the target temperature by rapidly heating the steel sheet in the initial zone and decreasing the heating rate in the subsequent zone.

さらに、加熱帯1のゾーン数がn(nは整数)の場合、下記式(1)、(2)を満たすように加熱帯1の各ゾーンの過熱水蒸気温度を設定することが好ましい。   Further, when the number of zones of the heating zone 1 is n (n is an integer), it is preferable to set the superheated steam temperature of each zone of the heating zone 1 so as to satisfy the following formulas (1) and (2).

Figure 0006696495
Figure 0006696495

Figure 0006696495
Figure 0006696495

ただし、
n:加熱帯のゾーン数。ただし、加熱帯上流側から下流側に向けて、第1、第2、第3・・・第nゾーンとする。
:加熱帯出側の鋼板温度(℃)
:第i加熱帯(i=1、2、3・・・n)の過熱水蒸気温度(℃)
α:過熱水蒸気の熱伝達係数(W/(m・K))
とする。
However,
n: the number of zones in the heating zone. However, from the upstream side to the downstream side of the heating zone, the first, second, third, ... Nth zones are set.
T f : Steel plate temperature (° C.) on the heating zone exit side
G i : Superheated steam temperature (° C.) in the i-th heating zone (i = 1, 2, 3, ... N)
α: heat transfer coefficient of superheated steam (W / (m 2 · K))
And

上記式(1)、(2)を満たすことにより、より精密に加熱帯1出側の鋼板温度を制御することができ、めっき性確保のために必要な酸化量を得ることができる。   By satisfying the above formulas (1) and (2), the steel plate temperature on the exit side of the heating zone 1 can be controlled more precisely, and the amount of oxidation necessary for ensuring the plating property can be obtained.

加熱帯1において、過熱水蒸気で鋼板Sを加熱すると100℃まで急激に鋼板温度が上昇し、鋼板表面に凝縮した水分がすべて蒸発した後、再び鋼板の温度が上昇する。そのため、常温の鋼板Sを過熱水蒸気雰囲気中に入れると、水分の蒸発ムラで斑点状の外観不良が発生する可能性がある。これを避けるため、予備加熱帯11で鋼板Sについて、100℃を超える温度に加熱し、100℃を超える温度に加熱した鋼板Sを加熱帯1に搬送することが好ましい。鋼板の加熱形態は限定しないが、鋼板を均一かつ急速に加熱することができる誘導加熱が好ましい。   When the steel sheet S is heated with superheated steam in the heating zone 1, the steel sheet temperature rises rapidly to 100 ° C., all the moisture condensed on the steel sheet surface evaporates, and then the steel sheet temperature rises again. Therefore, when the steel plate S at room temperature is put in the superheated steam atmosphere, uneven spots of appearance may occur due to uneven evaporation of water. In order to avoid this, it is preferable to heat the steel sheet S in the preheating zone 11 to a temperature higher than 100 ° C. and convey the steel sheet S heated to a temperature higher than 100 ° C. to the heating zone 1. The heating mode of the steel sheet is not limited, but induction heating that can uniformly and rapidly heat the steel sheet is preferable.

また、鋼板表面の酸化膜が均熱帯2のロールへピックアップすることを抑制するために、加熱帯1での加熱後、均熱帯2へ搬送される前に鋼板を還元雰囲気中で加熱することが好ましく、図1に示す還元雰囲気である還元帯8において鋼板を加熱することが好ましい。すなわち、加熱帯1の下流側で、かつ均熱帯2へ搬送される前に、還元雰囲気中で鋼板Sを加熱することが好ましい。還元雰囲気としては水素雰囲気が好ましい。また、還元雰囲気とする炉長は、1m以上5m以下が好ましい。1m未満では還元が不十分となり、一方で、5m以上では効果に差が見られないためである。なお、還元をした場合でも、鋼板温度(還元帯8出側の鋼板温度)が800℃を超えるとピックアップが生じるため、鋼板温度は上限を800℃とした。   Further, in order to prevent the oxide film on the surface of the steel sheet from being picked up by the roll in the soaking zone 2, the steel sheet may be heated in a reducing atmosphere after being heated in the heating zone 1 and before being transported to the soaking zone 2. It is preferable to heat the steel sheet in the reduction zone 8 which is the reducing atmosphere shown in FIG. That is, it is preferable to heat the steel sheet S in the reducing atmosphere on the downstream side of the heating zone 1 and before being conveyed to the soaking zone 2. A hydrogen atmosphere is preferable as the reducing atmosphere. Further, the furnace length in the reducing atmosphere is preferably 1 m or more and 5 m or less. This is because if it is less than 1 m, the reduction becomes insufficient, while if it is 5 m or more, there is no difference in the effect. Even when the steel sheet is reduced, pickup occurs when the steel sheet temperature (steel sheet temperature on the exit side of the reduction zone 8) exceeds 800 ° C. Therefore, the upper limit of the steel sheet temperature was set to 800 ° C.

過熱水蒸気は、例えばノズル(過熱水蒸気噴霧ノズル)を用いて鋼板Sに対して噴霧すれば良い。効率的に鋼板Sを加熱するために、鋼板Sに対して過熱水蒸気噴霧ノズルの噴射孔を垂直に配置し、噴霧することが好ましい。また、過熱水蒸気噴霧ノズルは、鋼板Sの進行方向に対して、多段に配置することが好ましい。また、過熱水蒸気噴霧ノズルは、鋼板Sの進行方向、すなわち鋼板長手方向に対して、千鳥配置となっていることが好ましく、例えば、図2に示すように、過熱水蒸気噴霧ノズルが取り付けられた過熱水蒸気配管5を鋼板表裏で幅方向に千鳥配置することが好ましい。いずれも、鋼板Sを温度ムラなく、高効率に加熱するためである。   The superheated steam may be sprayed onto the steel plate S using, for example, a nozzle (superheated steam spray nozzle). In order to efficiently heat the steel plate S, it is preferable to arrange the spray holes of the superheated steam spraying nozzles perpendicular to the steel plate S and spray them. Further, the superheated steam spray nozzles are preferably arranged in multiple stages in the traveling direction of the steel plate S. Further, the superheated steam spray nozzles are preferably arranged in a zigzag manner in the traveling direction of the steel plate S, that is, in the steel plate longitudinal direction. For example, as shown in FIG. It is preferable to arrange the steam pipes 5 in a zigzag pattern on the front and back of the steel plate in the width direction. Both are for heating the steel sheet S with high efficiency without temperature unevenness.

ロール14としては、セラミックロールを使用することが好ましい。これは、鋼板表面からロールへの酸化物のピックアップを防止するためである。セラミックロールの溶射材の材質としては、Al、Cr、ZrOまたはこれらから選ばれる2種以上を焼結させたものが好ましい。さらに、還元炉から加熱帯へのガス流入を抑制するために、加熱帯と均熱帯の間にセラミックロール15を配置することが好ましい。 It is preferable to use a ceramic roll as the roll 14. This is to prevent the pickup of oxides from the surface of the steel sheet to the roll. The material of the thermal spray material of the ceramic roll is preferably Al 2 O 3 , Cr 2 O 3 , ZrO 2 or a material obtained by sintering two or more selected from these. Further, in order to suppress gas inflow from the reduction furnace into the heating zone, it is preferable to dispose the ceramic roll 15 between the heating zone and the soaking zone.

過熱水蒸気発生装置3には、高い効率で水蒸気を発生させることが可能な誘導加熱方式を利用することが好ましい。誘導加熱方式であれば、過熱水蒸気を効率的に生成することが可能である。また、配管4から過熱蒸気発生装置3に投入する水は、液体、気体(水蒸気)のどちらでもよい。また、過熱水蒸気を輸送する過熱水蒸気配管5については、耐腐食性があり、かつ耐熱性も兼ね備えたSUS鋼が好ましい。   For the superheated steam generator 3, it is preferable to use an induction heating method capable of generating steam with high efficiency. With the induction heating method, it is possible to efficiently generate superheated steam. The water introduced into the superheated steam generator 3 from the pipe 4 may be liquid or gas (steam). Further, for the superheated steam pipe 5 that transports the superheated steam, SUS steel having corrosion resistance and heat resistance is preferable.

本発明が対象とする鋼板は、高Si鋼であることが好ましく、具体的には、Siの含有量が0.3質量%以上であることが好ましい。   The steel sheet targeted by the present invention is preferably a high Si steel, and specifically, the Si content is preferably 0.3 mass% or more.

Siは、脱酸剤として、あるいは高強度化を図るための固溶強化元素として、または、磁気特性を改善するための元素として含有される。特に、Siは、高強度化する効果が大きい割りに、加工性等の機械的特性劣化が比較的小さい元素であるため、好ましく用いることができる。しかし、0.3質量%未満の含有量では、焼鈍時における鋼板表層への濃化は少なく、本発明を適用する必要がない。よって、Si含有量は0.3質量%以上が好ましい。なお、Siの含有量が3.0質量%を超えると、本手法で形成される酸化膜のみでは、Siの表層への拡散を抑えきれず、表層濃化してしまう鋼板の割合が多くなってしまうため、上限は3.0質量以下とするのが好ましい。より好ましいSiの範囲は0.8〜1.5質量%である。   Si is contained as a deoxidizer, as a solid solution strengthening element for achieving high strength, or as an element for improving magnetic properties. In particular, Si is an element that has a relatively small effect of increasing the strength but has a relatively small deterioration of mechanical properties such as workability, and thus can be preferably used. However, when the content is less than 0.3% by mass, the thickening to the surface layer of the steel sheet during annealing is small and it is not necessary to apply the present invention. Therefore, the Si content is preferably 0.3% by mass or more. When the Si content exceeds 3.0% by mass, the diffusion rate of Si into the surface layer cannot be suppressed only by the oxide film formed by this method, and the ratio of the steel sheet in which the surface layer is concentrated increases. Therefore, the upper limit is preferably 3.0 mass or less. The more preferable range of Si is 0.8 to 1.5 mass%.

なお、Si以外の元素は、通常の冷延鋼板に含まれる範囲で含有することができる。例えば、C、Mn、Al、PおよびSは、本発明が解決しようとしている炉内ロールへの酸化物付着にほとんど影響しないため、機械的強度特性や製造性等から要求される成分範囲であるC:0.05〜0.25質量%、Mn:0.5〜3.0質量%、Al:0.01〜3.00質量%、P:0.001〜0.10質量%、S:0.200質量%以下の範囲で含有することができる。   In addition, elements other than Si can be contained in the range contained in a normal cold rolled steel sheet. For example, C, Mn, Al, P, and S have almost no effect on the oxide adhesion to the furnace roll that is to be solved by the present invention, so they are component ranges required in terms of mechanical strength characteristics, manufacturability, and the like. C: 0.05 to 0.25 mass%, Mn: 0.5 to 3.0 mass%, Al: 0.01 to 3.00 mass%, P: 0.001 to 0.10 mass%, S: It can be contained in the range of 0.200 mass% or less.

オールラジアントチューブ型のCGLにおいて、図1に示すように、CGLの入側に過熱水蒸気による加熱帯1を設置し、ライン速度、板厚を変化させてめっき性を評価する試験を行った。比較として、加熱帯にDFFを備えたCGLにおいて、同様の試験を行った。なお、図1では加熱帯のゾーンが2つであるが、本実施例においては、加熱帯のゾーンが4つに分割された装置を用い、各ゾーンで燃焼率および空気比が個別に設定可能であり、最終ゾーンを還元雰囲気、それ以外を酸化雰囲気とした。   In the all radiant tube type CGL, as shown in FIG. 1, a heating zone 1 with superheated steam was installed on the inlet side of the CGL, and a test was performed to evaluate the plating property by changing the line speed and the plate thickness. As a comparison, the same test was performed on CGL having DFF in the heating zone. It should be noted that although there are two zones of the heating zone in FIG. 1, in the present embodiment, a device in which the zones of the heating zone are divided into four is used, and the burning rate and the air ratio can be individually set in each zone. The reducing zone was used in the final zone, and the oxidizing atmosphere was used in the other zones.

試験には2種類の鋼板(鋼種A、B)を用意した。鋼種AのSi含有量は0.5%、鋼種BのSi含有量は1.5%である。また、鋼板Sの幅は1mとした。加熱帯1の炉長は35mとした。   Two types of steel plates (steel types A and B) were prepared for the test. The Si content of steel type A is 0.5%, and the Si content of steel type B is 1.5%. The width of the steel plate S was 1 m. The furnace length of the heating zone 1 was 35 m.

その他の製造条件は表1に示す。なお、焼鈍温度は830℃、めっき浴温は460℃、めっき浴中のAl濃度0.130%、付着量はガスワイピングにより、片面あたり45g/m2に調整した。また、溶融亜鉛めっきを施した後に合金化温度530℃で合金化処理を行った。また、表1において、No.1、2の鋼板、No.3、4の鋼板、No.5、6の鋼板、No.7、8の鋼板、No.12、13の鋼板は、それぞれ連続して加熱帯に流すことを想定しているため、2つの鋼板をまとめて一つの例として評価した(たとえば、No.1、2は一つの発明例)。また、表1中のNo.7では、加熱帯1の下流側に、水素雰囲気で鋼板を加熱する5mの還元帯8を設け、セクション出側で鋼板温度が600℃となるように水素濃度10%のHNxガスを投入し、還元雰囲気下で加熱を行った。また、表1中の#1〜#4は、各ゾーン(第1ゾーン〜第4ゾーン)における加熱蒸気温度(℃)である。なお、表1のNo.12、13における#1〜#4の表記は、各ゾーンの炉温(℃)である。   Other manufacturing conditions are shown in Table 1. The annealing temperature was 830 ° C., the plating bath temperature was 460 ° C., the Al concentration in the plating bath was 0.130%, and the adhesion amount was adjusted to 45 g / m 2 per side by gas wiping. After hot-dip galvanizing, alloying treatment was performed at an alloying temperature of 530 ° C. In Table 1, No. No. 1 and 2 steel plates, No. Steel plates Nos. 3 and 4, No. Steel sheets Nos. 5 and 6, No. No. 7 and No. 8 steel plates. Since it is assumed that the steel sheets 12 and 13 are each continuously flown into the heating zone, the two steel sheets were collectively evaluated as one example (for example, No. 1 and 2 are one invention example). In addition, No. 1 in Table 1 In No. 7, a 5 m reduction zone 8 for heating the steel sheet in a hydrogen atmosphere is provided on the downstream side of the heating zone 1, and HNx gas with a hydrogen concentration of 10% is introduced so that the steel sheet temperature becomes 600 ° C. at the section exit side. Heating was performed under a reducing atmosphere. In addition, # 1 to # 4 in Table 1 are heating steam temperatures (° C.) in each zone (first zone to fourth zone). In addition, No. 1 in Table 1. The notation of # 1 to # 4 in 12 and 13 is the furnace temperature (° C.) of each zone.

加熱帯1の手前に設けられた予備加熱帯11は炉長を2mとし、必要に応じて予備加熱帯11において鋼板Sを加熱した。予備加熱帯11にはN供給配管12により窒素ガスを導入した。予備加熱帯11の酸素濃度が0.5%以下となるように窒素ガスを導入した。予備加熱帯11では、誘導加熱装置を用いて鋼板Sを110℃まで加熱した。なお、予備加熱帯11の出側に設置した多重反射式温度計13により鋼板温度を測定することで、予備加熱帯11の鋼板温度とした。 The preheating zone 11 provided in front of the heating zone 1 had a furnace length of 2 m, and the steel plate S was heated in the preheating zone 11 as needed. Nitrogen gas was introduced into the preheating zone 11 through the N 2 supply pipe 12. Nitrogen gas was introduced so that the oxygen concentration in the preheating zone 11 would be 0.5% or less. In the preheating zone 11, the steel plate S was heated to 110 ° C. using an induction heating device. The steel plate temperature of the preheating zone 11 was determined by measuring the steel sheet temperature with the multiple reflection type thermometer 13 installed on the outlet side of the preheating zone 11.

加熱帯1には合計で、質量流量740kg/hの過熱水蒸気を投入した。過熱水蒸気は、過熱水蒸気噴霧ノズルが取り付けられた過熱水蒸気配管5を鋼板表裏の幅方向に配置して噴霧した。過熱水蒸気配管5は、鋼板長手方向に0.3mピッチで加熱帯1上部から下部まで配置し、さらに、鋼板の表裏で千鳥配置となった過熱水蒸気噴霧ノズルを使用して、噴霧した。   A total of superheated steam having a mass flow rate of 740 kg / h was introduced into the heating zone 1. The superheated steam was sprayed by arranging the superheated steam pipe 5 equipped with a superheated steam spray nozzle in the width direction of the front and back of the steel sheet. The superheated steam piping 5 was arranged from the upper part to the lower part of the heating zone 1 at a pitch of 0.3 m in the longitudinal direction of the steel plate, and further sprayed using the superheated steam spray nozzles arranged in a staggered manner on the front and back of the steel plate.

過熱水蒸気発生装置3には、誘導加熱方式を利用した加熱装置を用いた。配管4を介して、過熱水蒸気発生装置3に水を供給した。また、過熱水蒸気を輸送する過熱水蒸気配管5にはSUS316L鋼を用いた。また、配管加熱装置6は誘導加熱方式を利用した加熱装置を用いた。   As the superheated steam generator 3, a heating device using an induction heating system was used. Water was supplied to the superheated steam generator 3 through the pipe 4. Further, SUS316L steel was used for the superheated steam pipe 5 for transporting the superheated steam. As the pipe heating device 6, a heating device using an induction heating method was used.

加熱帯1の出側の多重反射式温度計13により、加熱帯1出側の鋼板温度を測定した。5秒ごとに板幅方向の温度プロファイルを取得し、得られたすべての温度を測定点数で除することにより、鋼板温度を求めた。   The steel plate temperature on the outlet side of the heating zone 1 was measured by the multiple reflection type thermometer 13 on the outlet side of the heating zone 1. The temperature profile in the plate width direction was acquired every 5 seconds, and the steel plate temperature was obtained by dividing all the obtained temperatures by the number of measurement points.

均熱帯2の露点は−40〜−10℃の範囲に制御した。   The dew point of soaking zone 2 was controlled in the range of -40 to -10 ° C.

得られためっき鋼板について、めっき外観、めっき密着性を下記のようにして評価した。
(1)めっき外観
めっき外観の評価は、不めっき、合金ムラの有無に基づき下記のように評価した。1、2が合格である。
1 不めっき、過酸化および合金化ムラがないもの
2 不めっき、過酸化がなく合金化ムラがわずかにあるもの
3 不めっきまたは/及び合金化ムラがあるもの
4 過酸化または/及び合金化ムラがあるもの
(2)めっき密着性
合金化処理した溶融亜鉛めっき鋼板(GA)にテープ幅24mm、単位長さ1mのセロテープ(登録商標)を貼りテープ面を90°曲げ曲げ戻しをした時の単位長さあたりの剥離量を蛍光X線によりZnカウント数を測定し、下記基準でランク分けした。ランク1、2が合格である。
1 0−500未満(良)
2 500以上−1000未満
3 1000以上−2000未満
4 2000以上−3000未満
製造条件および結果を表1に示す。
The plating appearance and plating adhesion of the obtained plated steel sheet were evaluated as follows.
(1) Plating Appearance The plating appearance was evaluated as follows based on the presence or absence of non-plating and alloy unevenness. 1 and 2 are passed.
1 Non-plating, non-oxidation and uneven alloying 2 Non-plating, non-oxidizing and slight alloying unevenness 3 Non-plating and / or uneven alloying 4 Peroxidation and / or uneven alloying (2) Adhesion of plating A unit when a Sellotape (registered trademark) with a tape width of 24 mm and a unit length of 1 m is attached to an alloyed hot-dip galvanized steel sheet (GA) and the tape surface is bent back by 90 ° and then bent back. For the amount of peeling per length, the Zn count number was measured by fluorescent X-rays and ranked according to the following criteria. Ranks 1 and 2 are passed.
Less than 10-500 (good)
2,500 or more and less than -1000 3 1000 or more and less than 2,000 4 2000 or more and less than 3,000 Manufacturing conditions and results are shown in Table 1.

Figure 0006696495
Figure 0006696495

本発明例であるNo.1、2、5、6はライン速度または板厚が変化しても、目標範囲内に板温が入っており、良好な外観とめっき密着性を得た。目標温度が異なっているのは、鋼種が異なっているためである。一方で、単一の過熱蒸気温度で鋼板を加熱したNo.3、4、7、8は目標温度範囲からはずれ、不めっきやピックアップが発生し、外観や密着性が悪化した。また、過熱水蒸気の温度が請求項1で示した範囲を外れた条件であるNo.7、8は、温度が目標温度範囲を外れ、不めっきが発生して外観が悪化した。加熱帯1に鋼板を導入する前に予備加熱帯11で鋼板を100℃以上に加熱したNo.9では、No.1、2、5、6と比較して外観が良くなった。これは、加熱帯1内での凝縮を回避し、水滴状の欠陥が消滅したためと推測される。加熱帯1の下流側で鋼板を水素雰囲気により還元したNo.10は、No.1、2、5、6、9と比較してめっき密着性が良くなった。これは、酸化膜の還元が十分に行われたためと考えられる。なお、表1の発明例における#1〜#4の過熱水蒸気温度は、いずれも式(1)および式(2)を満たした。また、表1のNo.12、13はDFFを加熱帯として備えるCGLにおいて試験を行った結果である。板厚の変化によって、加熱帯出側温度が目標温度を外れ、過酸化に伴うピックアップが発生した。   No. 1, which is an example of the present invention. For Nos. 1, 2, 5, and 6, the plate temperature was within the target range even if the line speed or the plate thickness was changed, and good appearance and plating adhesion were obtained. The target temperatures are different because the steel types are different. On the other hand, No. 1 in which the steel sheet was heated with a single superheated steam temperature. Nos. 3, 4, 7, and 8 were out of the target temperature range, non-plating and pickup occurred, and the appearance and adhesion were deteriorated. In addition, the temperature of the superheated steam is outside the range shown in claim 1, No. In Nos. 7 and 8, the temperature was out of the target temperature range, non-plating occurred, and the appearance deteriorated. Before the steel sheet was introduced into the heating zone 1, the steel sheet was heated to 100 ° C. or higher in the preheating zone 11 No. In No. 9, No. 9 The appearance was improved as compared with 1, 2, 5, and 6. It is presumed that this is because the condensation in the heating zone 1 was avoided and the waterdrop-shaped defects disappeared. No. 1 in which the steel sheet was reduced in a hydrogen atmosphere on the downstream side of the heating zone 1. No. 10 is No. Plating adhesion was improved as compared with 1, 2, 5, 6, and 9. It is considered that this is because the oxide film was sufficiently reduced. The superheated steam temperatures of # 1 to # 4 in the invention examples of Table 1 all satisfied the expressions (1) and (2). In addition, No. 1 in Table 1 12 and 13 are the results of the test conducted in CGL including DFF as a heating zone. Due to the change of the plate thickness, the temperature on the heating zone exit side deviated from the target temperature, and the pickup due to the peroxidation occurred.

1 加熱帯
2 均熱帯
3 過熱水蒸気発生装置
4 配管
5 過熱水蒸気配管
6 配管加熱装置
7 回収用配管
8 還元帯
9 HNxガス配管
10 HNxガス排気配管
11 予備加熱帯
12 N供給配管
13 多重反射式温度計
14 ロール
15 セラミックロール
100 連続式溶融亜鉛めっき設備
S 鋼板
1Z〜2Z 加熱帯1のゾーン
1 heating zone 2 soaking zone 3 superheated steam generator 4 piping 5 superheated steam piping 6 piping heating device 7 recovery piping 8 reduction zone 9 HNx gas piping 10 HNx gas exhaust piping 11 preheating zone 12 N 2 supply piping 13 multiple reflection type Thermometer 14 rolls 15 Ceramic rolls 100 Continuous hot dip galvanizing equipment S Steel plate 1Z to 2Z Heating zone 1 zone

Claims (4)

加熱帯と、均熱帯と、冷却帯とがこの順に配置された焼鈍炉と、前記冷却帯に隣接した溶融亜鉛めっき装置とを有するオールラジアントチューブ方式の連続溶融亜鉛めっき製造設備を用いて、溶融亜鉛めっき鋼板を製造する溶融亜鉛めっき鋼板の製造方法において、
前記加熱帯は鋼板長手方向に複数のゾーンに分割されており、
前記加熱帯に熱伝達係数が100〜400W/(m・K)となる過熱水蒸気を投入し、かつ前記加熱帯の複数のゾーンにおいて、上流側のゾーンより下流側のゾーンの過熱水蒸気温度が低くなるように前記加熱帯の各ゾーンの過熱水蒸気温度を制御し、
前記加熱帯出側の鋼板温度Tを400〜700℃にすることを特徴とする溶融亜鉛めっき鋼板の製造方法。
A heating zone, a soaking zone, and an annealing furnace in which a cooling zone and a cooling zone are arranged in this order, and using an all-radiant tube system continuous hot dip galvanizing equipment having a hot dip galvanizing device adjacent to the cooling zone In the method for producing a galvanized steel sheet for producing a galvanized steel sheet,
The heating zone is divided into a plurality of zones in the longitudinal direction of the steel plate,
Superheated steam having a heat transfer coefficient of 100 to 400 W / (m 2 · K) is introduced into the heating zone, and in the plurality of zones of the heating zone, the superheated steam temperature of the zone on the downstream side of the zone on the upstream side is Control the superheated steam temperature of each zone of the heating zone to be low,
The method for producing a hot-dip galvanized steel sheet, wherein the steel sheet temperature Tf on the heating zone exit side is set to 400 to 700 ° C.
前記加熱帯のゾーン数がn(nは整数)の場合、下記式(1)および(2)を満たすことを特徴とする請求項1に記載の溶融亜鉛めっき鋼板の製造方法。
Figure 0006696495
Figure 0006696495
ただし、
n:加熱帯のゾーン数。ただし、加熱帯上流側から下流側に向けて、第1、第2、第3・・・第nゾーンとする。
:加熱帯出側の鋼板温度(℃)
:第i加熱帯(i=1、2、3・・・n)の過熱水蒸気温度(℃)
α:過熱水蒸気の熱伝達係数(W/(m・K))
とする。
When the number of zones of the said heating zone is n (n is an integer), the following formulas (1) and (2) are satisfy | filled, The manufacturing method of the hot dip galvanized steel sheet of Claim 1 characterized by the above-mentioned.
Figure 0006696495
Figure 0006696495
However,
n: the number of zones in the heating zone. However, from the upstream side to the downstream side of the heating zone, the first, second, third, ... Nth zones are set.
T f : Steel plate temperature (° C.) on the heating zone exit side
G i : Superheated steam temperature (° C.) in the i-th heating zone (i = 1, 2, 3, ... N)
α: heat transfer coefficient of superheated steam (W / (m 2 · K))
And
100℃を超える温度に加熱した鋼板を前記加熱帯に搬送することを特徴とする請求項1または2に記載の溶融亜鉛めっき鋼板の製造方法。   The method for producing a hot-dip galvanized steel sheet according to claim 1, wherein the steel sheet heated to a temperature exceeding 100 ° C. is conveyed to the heating zone. 前記加熱帯の下流側で、かつ均熱帯へ搬送される前に、還元雰囲気中で鋼板を加熱することを特徴とする請求項1〜3のいずれかに記載の溶融亜鉛めっき鋼板の製造方法。   The method for manufacturing a hot-dip galvanized steel sheet according to claim 1, wherein the steel sheet is heated in a reducing atmosphere on the downstream side of the heating zone and before being transported to the soaking zone.
JP2017223454A 2017-11-21 2017-11-21 Method for manufacturing hot dip galvanized steel sheet Active JP6696495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017223454A JP6696495B2 (en) 2017-11-21 2017-11-21 Method for manufacturing hot dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017223454A JP6696495B2 (en) 2017-11-21 2017-11-21 Method for manufacturing hot dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2019094527A JP2019094527A (en) 2019-06-20
JP6696495B2 true JP6696495B2 (en) 2020-05-20

Family

ID=66972703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017223454A Active JP6696495B2 (en) 2017-11-21 2017-11-21 Method for manufacturing hot dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP6696495B2 (en)

Also Published As

Publication number Publication date
JP2019094527A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
EP1936000B1 (en) Continuous annealing and hot-dipping plating method and system for steel sheets containing silicon
US20230082367A1 (en) Method of producing high-strength hot-dip galvanized steel sheet
JP6455544B2 (en) Method for producing hot-dip galvanized steel sheet
JP6131919B2 (en) Method for producing galvannealed steel sheet
CN105814229A (en) Method for manufacturing high-strength hot-dip galvanized steel sheet
JP2010202959A (en) Continuous hot dip galvanizing device and method for producing hot dip galvanized steel sheet
CN111676350A (en) Method for annealing steel sheet
JP2007146241A (en) Method for producing high strength hot dip galvanized steel sheet and production equipment for hot dip galvanized steel sheet
JP4797601B2 (en) High strength hot dip galvanized steel sheet manufacturing method and hot dip galvanized steel sheet manufacturing equipment
JP6607339B1 (en) Method for producing hot dip galvanized steel sheet and continuous hot dip galvanizing apparatus
JP7243668B2 (en) Method for manufacturing cold-rolled steel sheet and hot-dip galvanized steel sheet
JP5488322B2 (en) Steel plate manufacturing method
JP7111059B2 (en) Dew point control method for reducing atmosphere furnace, reducing atmosphere furnace, cold-rolled steel sheet manufacturing method, and hot-dip galvanized steel sheet manufacturing method
JP6439654B2 (en) Method for producing hot-dip galvanized steel sheet
JP6740973B2 (en) Method for manufacturing hot-dip galvanized steel sheet
JP6696495B2 (en) Method for manufacturing hot dip galvanized steel sheet
KR100266037B1 (en) Method of continuously carburizing metal strip
JP6128068B2 (en) Method for producing galvannealed steel sheet
JP3889019B2 (en) Method for producing hot-dip galvanized steel sheet
WO2024014372A1 (en) Method for heating steel plate, method for producing plated steel plate, direct-fired heating furnace, and continuous hot-dip galvanizing equipment
JP5729008B2 (en) Method for producing hot-dip galvanized steel sheet
JP6908062B2 (en) Manufacturing method of hot-dip galvanized steel sheet
WO2024014371A1 (en) Method for heating steel plate, method for manufacturing plated steel plate, direct-fired heating furnace, and continuous hot-dip galvanization facility
JP2011006753A (en) Method and facility for manufacturing steel sheet

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180906

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200406

R150 Certificate of patent or registration of utility model

Ref document number: 6696495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250