JP5488322B2 - Steel plate manufacturing method - Google Patents

Steel plate manufacturing method Download PDF

Info

Publication number
JP5488322B2
JP5488322B2 JP2010176879A JP2010176879A JP5488322B2 JP 5488322 B2 JP5488322 B2 JP 5488322B2 JP 2010176879 A JP2010176879 A JP 2010176879A JP 2010176879 A JP2010176879 A JP 2010176879A JP 5488322 B2 JP5488322 B2 JP 5488322B2
Authority
JP
Japan
Prior art keywords
zone
steel sheet
heating
chemical conversion
direct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010176879A
Other languages
Japanese (ja)
Other versions
JP2012036437A (en
Inventor
成人 佐々木
秀行 高橋
淳一郎 平澤
英幸 鶴丸
慶太 米津
真司 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010176879A priority Critical patent/JP5488322B2/en
Publication of JP2012036437A publication Critical patent/JP2012036437A/en
Application granted granted Critical
Publication of JP5488322B2 publication Critical patent/JP5488322B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、直火加熱炉を備えた連続焼鈍設備を用いた鋼板の製造方法に関する。   The present invention relates to a method for manufacturing a steel sheet using a continuous annealing facility equipped with a direct-fired heating furnace.

近年、自動車、家電、建材等の分野において、構造物の軽量化等に寄与可能な高張力鋼(ハイテン材)の需要が高まっている。このハイテン技術では、鋼中にSiを添加すると穴広げ性の良好な高張力鋼板が製造できる可能性があり、また、SiやAlを含有すると残留γが形成されやすくなり、延性の良好な鋼板が提供できる可能性が示されている。
鋼板の連続焼鈍ラインでは、鋼板を横型若しくは竪型の連続焼鈍設備内を通板させて連続焼鈍した後、ガスジェット冷却若しくはウォータークエンチ冷却などを施し、鋼板に機械的特性を付与している。連続焼鈍ライン内を通板する鋼板は、例えば、予熱帯で約450℃程度に予熱された後、加熱帯で直火バーナーにより約680℃に加熱され、さらに還元帯で約800℃に加熱された後、冷却帯で500℃まで冷却されるという一連の工程を経て巻き取られる。
In recent years, in the fields of automobiles, home appliances, building materials, etc., there is an increasing demand for high-tensile steel (high-tensile material) that can contribute to weight reduction of structures. With this high-tensile technology, if Si is added to the steel, there is a possibility that a high-strength steel sheet with good hole-expandability can be produced. The possibility that can be provided is shown.
In a continuous annealing line for steel sheets, the steel sheets are subjected to continuous annealing in a horizontal or saddle type continuous annealing facility, and then subjected to gas jet cooling or water quench cooling to impart mechanical properties to the steel sheets. For example, the steel sheet passing through the continuous annealing line is preheated to about 450 ° C. in the pre-tropical zone, then heated to about 680 ° C. by a direct flame burner in the heating zone, and further heated to about 800 ° C. in the reduction zone. After that, it is wound up through a series of steps of cooling to 500 ° C. in the cooling zone.

高強度冷延鋼板は、鋼中元素としてSi、Mn等が添加された鋼板であり、特に焼鈍時に表面濃化するSi酸化物が化成処理性を著しく劣化させることが従来から知られており、化成処理性に優れた高強度冷延鋼板の開発が従来から切望されていた。
高強度冷延鋼板の化成処理性を改善する技術として、例えば、特許文献1において、塩酸や硫酸などを用いた酸洗処理により鋼板表面に濃化したSi酸化物を特定の被覆率以下まで除去する技術が開示されている。しかしながら、Si酸化物は塩酸や硫酸などの一般的な酸には溶解しないため、この方法によるSi酸化物の除去は全く現実的ではない。また、特定の被覆率以下であってもSi酸化物の残存は化成処理性に甚大な悪影響を及ぼすため、例えば、厳しい条件下で化成処理を行った場合などにおいては、良好な化成処理性を確保することは極めて困難である。
A high-strength cold-rolled steel sheet is a steel sheet to which Si, Mn, and the like are added as elements in the steel, and it has been conventionally known that the Si oxide that is surface-enriched particularly during annealing significantly deteriorates the chemical conversion treatment property, The development of high-strength cold-rolled steel sheets with excellent chemical conversion properties has long been desired.
As a technique for improving the chemical conversion processability of a high-strength cold-rolled steel sheet, for example, in Patent Document 1, the Si oxide concentrated on the steel sheet surface by pickling using hydrochloric acid or sulfuric acid is removed to a specific coverage or less. Techniques to do this are disclosed. However, since Si oxide does not dissolve in common acids such as hydrochloric acid and sulfuric acid, removal of Si oxide by this method is not practical at all. In addition, since the remaining Si oxide has a great adverse effect on the chemical conversion processability even at a specific coverage or less, for example, when chemical conversion is performed under severe conditions, a good chemical conversion processability is obtained. It is extremely difficult to secure.

冷延鋼板の化成処理性と耐型かじり性の改善を目的とした技術として、例えば、特許文献2,3などが開示されている。
特許文献2は、Ni、Mn、Co、Mo、Cuの1種以上を冷延鋼板表面に不連続に析出させる技術である。しかしながら、この技術をSiを含有する冷延鋼板に適用したとしても、鋼板表面上にはSi酸化物がそのまま残存した状態であるため、化成処理性は不良である。さらに、MoやCuなどの元素は化成処理性に悪影響を及ぼすため、化成処理時の溶出により却って化成処理性が劣化するという問題がある。
特許文献3は、冷延鋼板の表面に、下層が0価亜鉛主体の極薄皮膜、上層が2価の亜鉛と第2元素群(P、B、Siの1種以上)の酸化物からなる非晶質皮膜で構成される複層皮膜を形成する技術である。しかしながら、この技術をSiを含有する冷延鋼板に適用したとしても、鋼板表面にはSi酸化物がそのまま残存した状態であるため、化成処理性は不良である。
For example, Patent Documents 2 and 3 are disclosed as techniques aimed at improving the chemical conversion processability and the resistance to galling of cold-rolled steel sheets.
Patent Document 2 is a technique for discontinuously depositing one or more of Ni, Mn, Co, Mo, and Cu on the surface of a cold-rolled steel sheet. However, even if this technique is applied to a cold-rolled steel sheet containing Si, since the Si oxide remains on the steel sheet surface, the chemical conversion treatment performance is poor. Furthermore, since elements such as Mo and Cu have an adverse effect on the chemical conversion processability, there is a problem that the chemical conversion processability deteriorates due to elution during the chemical conversion process.
In Patent Document 3, the surface of a cold-rolled steel sheet is composed of an ultrathin film mainly composed of zero-valent zinc, and the upper layer is composed of divalent zinc and an oxide of a second element group (one or more of P, B, and Si). This is a technique for forming a multilayer film composed of an amorphous film. However, even if this technique is applied to a cold-rolled steel sheet containing Si, the chemical conversion processability is poor because the Si oxide remains on the steel sheet surface as it is.

一方、焼鈍前の冷延鋼板に表面処理を施すことにより化成処理性や耐型かじり性を改善することを目的とした技術が、例えば、特許文献4,5などに開示されている。
特許文献4は、Ni、Co、Al、Zn、Cr、Ti、Sb、Biの1種以上を含む化合物を冷延鋼板表面に塗布した後、焼鈍を行うことにより、冷延鋼板表面に金属酸化化合物または金属を生成させ、これを化成処理反応時の結晶核とすることにより化成処理性を向上させることを狙いとする技術である。しかしながら、上記化合物を焼鈍前のSi含有冷延鋼板の表面に塗布したとしても、焼鈍時のSiの表面濃化を抑制することはできず、焼鈍後の鋼板表面にはSi酸化物が形成されるため、良好な化成処理性を得ることはできない。
On the other hand, for example, Patent Documents 4 and 5 disclose techniques aimed at improving chemical conversion property and mold galling resistance by subjecting a cold-rolled steel sheet before annealing to surface treatment.
Patent Document 4 discloses that metal oxide is applied to the surface of a cold-rolled steel sheet by applying a compound containing one or more of Ni, Co, Al, Zn, Cr, Ti, Sb, Bi to the surface of the cold-rolled steel sheet and then annealing. It is a technique aimed at improving chemical conversion property by generating a compound or metal and using this as a crystal nucleus during chemical conversion reaction. However, even if the above compound is applied to the surface of the Si-containing cold-rolled steel sheet before annealing, the surface concentration of Si during annealing cannot be suppressed, and Si oxide is formed on the surface of the steel sheet after annealing. Therefore, it is not possible to obtain good chemical conversion processability.

特許文献5は、水溶性非金属リン酸塩およびNa、Ca、Mg、Mn、Fe、Sn、Al、Co等の有機酸塩を冷延鋼板の表面に塗布した後、焼鈍を行うことにより、冷延鋼板表面にリン酸塩皮膜を形成して耐型かじり性を向上させることを狙いとする技術である。しかしながら、この技術では、耐型かじり性の多少の改善は認められるものの、良好な化成処理性の確保は全く考慮されておらず、形成されたリン酸塩皮膜の上層には化成処理皮膜はほとんど形成されない。さらに、上記化合物を焼鈍前のSi含有冷延鋼板の表面に塗布したとしても、焼鈍時のSiの表面濃化を抑制することはできず、焼鈍後の鋼板表面にはSi酸化物が形成されるため、化成処理性は不良である。   Patent Document 5 discloses that after applying water-soluble non-metallic phosphate and organic acid salt such as Na, Ca, Mg, Mn, Fe, Sn, Al, Co to the surface of the cold-rolled steel sheet, annealing is performed. This technique aims to improve the anti-galling property by forming a phosphate film on the surface of a cold-rolled steel sheet. However, with this technique, although some improvement in mold galling resistance is recognized, ensuring of good chemical conversion treatment is not considered at all, and almost no chemical conversion treatment film is formed on the upper layer of the formed phosphate film. Not formed. Furthermore, even if the above compound is applied to the surface of the Si-containing cold-rolled steel sheet before annealing, the surface concentration of Si during annealing cannot be suppressed, and Si oxide is formed on the surface of the steel sheet after annealing. Therefore, the chemical conversion processability is poor.

また、直火加熱炉を用いたSi、Mn等の易酸化元素を有する鋼板の製造方法として、溶融亜鉛めっき鋼板のメッキ性の改善を目的とした技術が特許文献6,7に開示されている。このうち特許文献6には、直火加熱炉出側の温度をSi量との関係で規定することで、溶融亜鉛めっき鋼板のメッキ性改善を図る技術が開示されている。この技術は、比較的安価にメッキ性改善が実現できるため有効な手段ではあるが、鋼板酸化物が炉内ロールの表面に付着し、その付着物が再度鋼板に押し付けられて生じる欠陥(ピックアップ欠陥)が発生する場合があり、それにより生産性が阻害されるという問題がある。
また、特許文献7には、直火加熱炉にて連続加熱を行う際に板幅方向の温度を均一化するために、冷却ガスを噴射して鋼板温度を均一化する技術が開示されている。この方法によれば、板幅が変更された場合でも、板幅方向での冷却量を制御することにより板幅方向で均一な温度分布が得られるが、温度均一化による鋼板への過酸化を防止する技術であり、直火バーナーを用いた酸化量制御についての詳細は明らかにされていない。
Further, as a method for producing a steel sheet having an easily oxidizable element such as Si and Mn using a direct-fired heating furnace, techniques for improving the plating property of a hot dip galvanized steel sheet are disclosed in Patent Documents 6 and 7. . Among these, Patent Document 6 discloses a technique for improving the plating property of a hot-dip galvanized steel sheet by defining the temperature on the outlet side of the direct-fired heating furnace in relation to the amount of Si. Although this technology is effective because it can improve plating properties at a relatively low cost, defects (pickup defects) occur when steel plate oxide adheres to the surface of the in-furnace roll and the deposit is pressed against the steel plate again. ) May occur, resulting in a problem that productivity is hindered.
Patent Document 7 discloses a technique for equalizing a steel sheet temperature by injecting a cooling gas in order to make the temperature in the sheet width direction uniform when performing continuous heating in a direct-fired heating furnace. . According to this method, even if the plate width is changed, a uniform temperature distribution in the plate width direction can be obtained by controlling the cooling amount in the plate width direction. It is a technology to prevent, and details about the oxidation amount control using a direct fire burner are not disclosed.

一方、直火加熱炉を用いて、Siを0.1質量%以上含有する冷延鋼板の化成処理性の劣化を防止する技術が特許文献8に開示されている。この特許文献8の技術は、直火加熱炉を通過する際の鋼板温度が400℃以上で、鉄の酸化雰囲気下で鋼板表面に酸化皮膜を形成させ、その後、鉄の還元雰囲気下で鋼板表面の酸化膜を還元するものである。具体的には、酸化膜を形成させる際の空気比を0.93以上、1.10以下として加熱し、その後、ラジアントチューブバーナーを備えた還元雰囲気下で酸化膜を還元するものである。しかしながら、この技術を実操業に適用した場合、化成処理性を確保するために必要な内部酸化量を確保することが困難になる場合がある。   On the other hand, Patent Document 8 discloses a technique for preventing deterioration of chemical conversion property of a cold-rolled steel sheet containing 0.1% by mass or more of Si using a direct-fired heating furnace. In the technique of Patent Document 8, the steel sheet temperature when passing through a direct-fired heating furnace is 400 ° C. or higher, and an oxide film is formed on the steel sheet surface in an iron oxidizing atmosphere, and then the steel sheet surface in an iron reducing atmosphere. The oxide film is reduced. Specifically, the air ratio in forming the oxide film is heated to 0.93 or more and 1.10 or less, and then the oxide film is reduced in a reducing atmosphere equipped with a radiant tube burner. However, when this technology is applied to actual operation, it may be difficult to secure the amount of internal oxidation necessary to ensure chemical conversion.

特開2004−323969号公報JP 2004-323969 A 特開平3−236491号公報JP-A-3-236491 特開平10−158858号公報JP-A-10-158858 特開昭55−14854号公報Japanese Patent Laid-Open No. 55-14854 特開昭52−63831号公報JP 52-63831 A 特開平7−316762号公報JP 7-316762 A 特開平8−209251号公報JP-A-8-209251 特開2006−45615号公報JP 2006-45615 A

以上のように従来においては、Siを含有する冷延鋼板の化成処理性を十分に満足させる技術は確立されておらず、特にSiを含有する高強度冷延鋼板の化成処理性を満足させる技術は存在しなかった。
したがって本発明の目的は、Si含有量が0.2質量%以上の鋼板であって、全長、全幅にわたり良好な化成処理性が得られる鋼板を低コストに製造することができる鋼板の製造方法を提供することにある。
As described above, in the prior art, a technique for sufficiently satisfying the chemical conversion processability of a cold-rolled steel sheet containing Si has not been established, and in particular, a technique for satisfying the chemical conversion processability of a high-strength cold-rolled steel sheet containing Si. Did not exist.
Accordingly, an object of the present invention is to provide a method for producing a steel sheet, which is a steel sheet having a Si content of 0.2% by mass or more, and which can produce a steel sheet having good chemical conversion properties over its entire length and width, at a low cost. It is to provide.

直火加熱炉プロセスは、熱効率が高いため、低コストで鋼板を所定の温度まで加熱できる特徴があるが、直接鋼板に火炎雰囲気が作用し、鋼板表面が酸化や還元されるため、表面品質を維持するのが難しい場合がある。特に、Siを多く含む鋼板の製造時には、内部酸化を利用する必要があるため、バーナー雰囲気を酸化性にすることになるが、そのために均熱帯の炉内ロールへの酸化鉄のピックアップによる欠陥や、均熱帯内での還元不足が発生し、歩留低下を招くことが多い。また、直火加熱炉内でのバーナーの燃焼条件により、化成処理性を確保するために必要な内部酸化量を制御する方法についても、明らかとなっていない。そこで、本発明者らは種々の検討を行い、その結果、直火加熱炉内の通板方向に沿って複数の加熱ゾーンを設け、各加熱ゾーンでの直火バーナーの燃焼条件を最適化することで、内部酸化量の制御を適切に行うことができ、これにより良好な化成処理性が得られることを見出した。   The direct-fired furnace process is characterized by its high thermal efficiency and the ability to heat a steel sheet to a specified temperature at a low cost. However, the flame atmosphere acts directly on the steel sheet and the surface of the steel sheet is oxidized and reduced, so the surface quality is improved. It may be difficult to maintain. In particular, when manufacturing a steel sheet containing a large amount of Si, it is necessary to use internal oxidation, so that the burner atmosphere becomes oxidizable. , Insufficient reduction in the soaking zone occurs, often leading to a decrease in yield. In addition, it is not clear how to control the amount of internal oxidation necessary to ensure the chemical conversion processability according to the combustion conditions of the burner in the direct-fired heating furnace. Therefore, the present inventors have made various studies and, as a result, provided a plurality of heating zones along the direction of the plate in the direct-fired heating furnace to optimize the combustion conditions of the direct-fired burner in each heating zone. Thus, it has been found that the amount of internal oxidation can be appropriately controlled, and thereby good chemical conversion treatment properties can be obtained.

本発明は、このような知見に基づきなされたもので、その要旨は以下のとおりである。
[1]直火加熱炉を備えた連続焼鈍設備において、Si含有量が0.2質量%以上の鋼板を連続焼鈍するに際し、
直火加熱炉内の通板方向に沿って、各々が直火バーナー群を備えた3つ以上の加熱ゾーンを設け、最上流側の1つ以上の加熱ゾーン(A)では、直火バーナーの空気比0.60〜0.95で鋼板を400〜600℃に加熱し、その下流側の1つ以上の加熱ゾーン(B)では、直火バーナーの空気比1.05〜1.25で鋼板を600〜750℃に加熱し、最下流側の1つ以上の加熱ゾーン(C)では、直火バーナーの空気比0.60〜0.95で鋼板を650〜800℃に加熱することを特徴とする鋼板の製造方法。
The present invention has been made based on such findings, and the gist thereof is as follows.
[1] In a continuous annealing facility equipped with a direct-fired heating furnace, when continuously annealing a steel sheet having a Si content of 0.2% by mass or more,
Three or more heating zones each provided with a group of direct flame burners are provided along the direction of the plate in the direct flame heating furnace. In one or more heating zones (A) on the most upstream side, the direct flame burner The steel sheet is heated to 400 to 600 ° C. at an air ratio of 0.60 to 0.95, and in one or more heating zones (B) on the downstream side, the steel sheet is heated at an air ratio of a direct fire burner of 1.05 to 1.25. Is heated to 600 to 750 ° C., and in one or more heating zones (C) on the most downstream side, the steel sheet is heated to 650 to 800 ° C. with an air ratio of 0.60 to 0.95 of a direct fire burner. A method for manufacturing a steel sheet.

[2]上記[1]の製造方法において、加熱ゾーン(A)では、直火バーナーの空気比0.80〜0.90で鋼板を450〜550℃に加熱することを特徴とする鋼板の製造方法。
[3]上記[1]または[2]の製造方法において、加熱ゾーン(B)では、直火バーナーの空気比1.10〜1.20で鋼板を650〜700℃に加熱することを特徴とする鋼板の製造方法。
[4]上記[1]〜[3]のいずれかの製造方法において、加熱ゾーン(C)では、直火バーナーの空気比0.80〜0.90で鋼板を720〜780℃に加熱することを特徴とする鋼板の製造方法。
[5]上記[1]〜[4]のいずれかの製造方法において、Si含有量が0.5質量%以上の鋼板を連続焼鈍することを特徴とする鋼板の製造方法。
[6]上記[1]〜[4]のいずれかの製造方法において、Si含有量が1.0質量%以上の鋼板を連続焼鈍することを特徴とする鋼板の製造方法。
[2] In the manufacturing method of [1] above, in the heating zone (A), the steel plate is heated to 450 to 550 ° C. at an air ratio of 0.80 to 0.90 of a direct fire burner. Method.
[3] In the manufacturing method of [1] or [2], the heating zone (B) is characterized in that the steel sheet is heated to 650 to 700 ° C. with an air ratio of 1.10 to 1.20 of a direct fire burner. Steel sheet manufacturing method.
[4] In the manufacturing method of any one of [1] to [3] above, in the heating zone (C), the steel sheet is heated to 720 to 780 ° C. with an air ratio of a direct fire burner of 0.80 to 0.90. A method for producing a steel sheet characterized by the above.
[5] A method for producing a steel sheet according to any one of the above [1] to [4], wherein the steel sheet having a Si content of 0.5% by mass or more is continuously annealed.
[6] A method for producing a steel sheet according to any one of the above [1] to [4], wherein the steel sheet having a Si content of 1.0 mass% or more is continuously annealed.

本発明によれば、Si含有量が0.2質量%以上の鋼板を連続焼鈍するに際し、直火加熱炉内の通板方向に沿って3つ以上の加熱ゾーンを設け、各加熱ゾーンでの燃焼条件を最適化し、鋼板面での酸化物の生成を制御することにより、全長、全幅にわたり良好な化成処理性が得られる鋼板を低コストに製造することができる。   According to the present invention, when continuously annealing a steel sheet having a Si content of 0.2% by mass or more, three or more heating zones are provided along the plate passing direction in the direct-fired heating furnace. By optimizing the combustion conditions and controlling the generation of oxides on the steel sheet surface, it is possible to produce a steel sheet that provides good chemical conversion treatment over the entire length and width at a low cost.

本発明の実施に供される連続焼鈍設備を模式的に示す説明図Explanatory drawing which shows typically the continuous annealing equipment provided for implementation of this invention 図1の連続焼鈍設備が備える直火加熱炉を模式的に示す側面図The side view which shows typically the direct-fired heating furnace with which the continuous annealing equipment of FIG. 1 is equipped 熱力学データから求めたSiOとFeSiOの平衡状態図Equilibrium diagram of SiO 2 and Fe 2 SiO 4 obtained from thermodynamic data

本発明の製造方法は、Si含有量が0.2質量%以上の鋼板を製造の対象とする。このような鋼板は、良好な化成処理性が得られにくいためである。また、Si含有量が0.5質量%以上、さらに1.0質量%以上であるようなSi含有量が高い鋼板では、良好な化成処理性がより得られにくいので、本発明はこのような鋼板の製造において特に有用であり、良好な化成処理性を付与することができる。図1は、本発明の実施に供される鋼板の連続焼鈍設備(CAL)を模式的に示すものである。この連続焼鈍設備は、ライン上流側から順に、直火加熱炉からなる加熱帯1、均熱帯2、ガスジェット冷却帯3、急速冷却帯4、浸漬槽5、誘導加熱装置6、過時効帯7、酸洗装置8を備えている。連続搬送される鋼板Sは、加熱帯1と均熱帯2で所定の温度で焼鈍された後、ガスジェット冷却帯3を経て急速冷却帯4で焼入れ処理され、浸漬槽5および誘導加熱装置6を経た後、過時効帯7にて焼き戻し処理され、次いで、急速冷却時に鋼板表面に生成した酸化物を酸洗装置8で除去した後、コイルに巻き取られる。   In the production method of the present invention, a steel sheet having a Si content of 0.2% by mass or more is to be produced. This is because such a steel sheet is difficult to obtain good chemical conversion treatment. Further, in a steel sheet having a high Si content such that the Si content is 0.5% by mass or more, and further 1.0% by mass or more, it is difficult to obtain good chemical conversion treatment properties. It is particularly useful in the production of steel sheets and can impart good chemical conversion treatment properties. FIG. 1 schematically shows a continuous annealing equipment (CAL) of a steel sheet used for carrying out the present invention. This continuous annealing equipment includes a heating zone 1, a soaking zone 2, a gas jet cooling zone 3, a rapid cooling zone 4, a soaking bath 5, an induction heating device 6, an overaging zone 7 consisting of a direct heating furnace in order from the upstream side of the line. The pickling device 8 is provided. The continuously conveyed steel sheet S is annealed at a predetermined temperature in the heating zone 1 and the soaking zone 2 and then quenched in the rapid cooling zone 4 through the gas jet cooling zone 3, so that the immersion tank 5 and the induction heating device 6 are treated. After passing, it is tempered in the over-aged zone 7, and then the oxide generated on the surface of the steel plate at the time of rapid cooling is removed by the pickling device 8, and then wound around a coil.

一般に直火加熱炉(加熱帯1)では、鋼板の温度を制御することが第一に優先される事項であるが、高Si鋼に代表される高張力鋼を焼鈍処理した際には、鋼板表面上にSi酸化物の表面濃化が顕著となり、化成処理性を劣化させるため、同時に雰囲気をコントロールすることで、適切な酸化量を確保し、Si酸化物の内部酸化層を形成させる必要がある。しかしながら、Si酸化物の内部酸化層を形成させるだけでは、酸洗処理した際に鋼板表面に内部酸化層が現れてしまい、内部酸化層がSi酸化物で形成されている場合には、化成処理性の改善が認められなかった。   In general, in a direct-fired heating furnace (heating zone 1), the primary priority is to control the temperature of the steel sheet, but when annealing high-tensile steel represented by high-Si steel, Since the surface concentration of Si oxide becomes remarkable on the surface and chemical conversion processability deteriorates, it is necessary to secure an appropriate amount of oxidation and to form an internal oxide layer of Si oxide by simultaneously controlling the atmosphere. is there. However, when only the internal oxide layer of Si oxide is formed, the internal oxide layer appears on the surface of the steel sheet when pickling, and when the internal oxide layer is formed of Si oxide, chemical conversion treatment is performed. There was no improvement in sex.

そこで、本発明では、直火加熱炉内での直火バーナーの燃焼条件を種々変更し、その際に鋼板に形成される内部酸化層厚み、および化成処理性について調査を行った。内部酸化層の厚みは、蛍光X線を用いて酸素強度を測定することにより求めた。その結果、直火加熱炉内の通板方向に沿って複数の加熱ゾーンを設け、各加熱ゾーンでの直火バーナーの燃焼条件を最適化することで、内部酸化量の制御を適切に行うことができ、良好な化成処理性が得られることが判った。すなわち、具体的には、直火加熱炉内の通板方向に沿って、各々が直火バーナー群を備えた3つ以上の加熱ゾーンを設け、最上流側の1つ以上の加熱ゾーンAでは、直火バーナーの空気比0.60〜0.95で鋼板を400〜600℃に加熱し、その下流側の1つ以上の加熱ゾーンBでは、直火バーナーの空気比1.05〜1.25で鋼板を600〜750℃に加熱し、最下流側の1つ以上の加熱ゾーンCでは、直火バーナーの空気比0.60〜0.95で鋼板を650〜800℃に加熱するものである。   Therefore, in the present invention, the combustion conditions of the direct fire burner in the direct fire heating furnace were variously changed, and the thickness of the internal oxide layer formed on the steel sheet and the chemical conversion treatment were investigated. The thickness of the internal oxide layer was determined by measuring the oxygen intensity using fluorescent X-rays. As a result, the internal oxidation amount can be controlled appropriately by providing multiple heating zones along the direction of the plate in the direct heating furnace and optimizing the combustion conditions of the direct fire burner in each heating zone. It was found that good chemical conversion treatment performance was obtained. That is, specifically, three or more heating zones each having a direct-fired burner group are provided along the direction of sheet passing in the direct-fired heating furnace, and in one or more heating zones A on the most upstream side, The steel plate is heated to 400 to 600 ° C. at an air ratio of 0.60 to 0.95 of a direct fire burner, and in one or more heating zones B on the downstream side, the air ratio of the direct fire burner is 1.05 to 1. In 25, the steel plate is heated to 600 to 750 ° C., and in one or more heating zones C on the most downstream side, the steel plate is heated to 650 to 800 ° C. with an air ratio of 0.60 to 0.95 of a direct fire burner. is there.

このようなプロセスにおいて、加熱ゾーンAと加熱ゾーンCが還元ゾーン、加熱ゾーンBが酸化ゾーンとなり、最下流側の加熱ゾーンCでの還元により、均熱帯の炉内ロールによるピックアップが防止できる。本発明では、この還元−酸化−還元のプロセスにおいて、酸化開始温度を高めにすることが特徴の一つであり、これにより、以下のような理由で優れた化成処理性が得られるものと考えられる。SiOがFeと以下の反応式に従い反応すると仮定した場合、この反応に対する温度と酸素濃度の影響について、平衡論に基づき熱力学的に考察すると、以下のようになる。
3SiO+2Fe=3FeSiO+O
In such a process, the heating zone A and the heating zone C serve as a reduction zone, and the heating zone B serves as an oxidation zone. By reduction in the heating zone C on the most downstream side, pick-up by a soaking tropical furnace roll can be prevented. In the present invention, in this reduction-oxidation-reduction process, it is one of the features that the oxidation start temperature is raised, and it is considered that excellent chemical conversion property can be obtained for the following reasons. It is done. Assuming that SiO 2 reacts with Fe 3 O 4 according to the following reaction formula, the influence of temperature and oxygen concentration on this reaction is considered thermodynamically based on equilibrium theory, and is as follows.
3SiO 2 + 2Fe 3 O 4 = 3Fe 2 SiO 4 + O 2

図3は、熱力学データから求めたSiOとFeSiOの平衡状態図であり、これによれば、SiOは高酸素濃度、低温で安定となることが判る。すなわち、低温/酸化雰囲気ではSiOが生成されやすく、高温/還元雰囲気ではFeSiOが生成され易いことになる。ここで、FeSiOは酸に可溶であるが、SiOは酸に不溶であり、酸洗でも除去できないため、良好な化成処理性を得るためには、その生成を極力避ける必要がある。上記の理由より、温度の低い段階から酸化雰囲気にするとSiOが生成され易く、化成処理性が悪化しやすいのに対し、ある程度高い温度になってから酸化雰囲気にするとSiOが生成されにくく、このため優れた化成処理性が得られやすいものと考えられる。したがって、化成処理性を高めるには、酸化ゾーンでの酸化開始温度を高めにすることが有効である。 FIG. 3 is an equilibrium diagram of SiO 2 and Fe 2 SiO 4 obtained from thermodynamic data, and it can be seen that SiO 2 is stable at a high oxygen concentration and at a low temperature. That is, SiO 2 is easily generated in a low temperature / oxidizing atmosphere, and Fe 2 SiO 4 is easily generated in a high temperature / reducing atmosphere. Here, Fe 2 SiO 4 is soluble in acid, but SiO 2 is insoluble in acid and cannot be removed by pickling. Therefore, in order to obtain good chemical conversion treatment, it is necessary to avoid the generation as much as possible. is there. From the above reasons, likely to be generated when the oxidizing atmosphere from a low temperature phase SiO 2, with respect to chemical conversion treatability is most likely to deteriorate, difficult when the oxidizing atmosphere SiO 2 is generated from when a certain elevated temperature, For this reason, it is thought that the excellent chemical conversion property is easy to be obtained. Therefore, it is effective to increase the oxidation start temperature in the oxidation zone in order to improve the chemical conversion treatment property.

図2に、本発明を実施するための直火加熱炉(図1の連続焼鈍設備の加熱帯1を構成する直火加熱炉)の一実施形態を示す。この直火加熱炉には、通板方向に沿って複数の直火バーナー9が設置され、通板する鋼板Sを加熱する。図において、11は炉内ロール(搬送ロール)である。
この実施形態では、直火加熱炉内の通板方向に沿って3つの加熱ゾーン10a〜10cが設けられ、これら加熱ゾーン10a〜10cは、それぞれ複数の直火バーナー9からなる直火バーナー群を備えている。
本発明では、3つの加熱ゾーン10a〜10cのうち、最上流側の加熱ゾーン10aと最下流側の加熱ゾーン10cを還元ゾーンとし、中間の加熱ゾーン10bを酸化ゾーンとして鋼板を加熱することで、鋼板表面に鉄の酸化膜を形成する。したがって、さきに述べた加熱ゾーンAが加熱ゾーン10aに、加熱ゾーンBが加熱ゾーン10bに、加熱ゾーンCが加熱ゾーン10cに、それぞれ相当する。
以下、説明の便宜上、加熱ゾーン10a〜10cを、上流側から第1ゾーン10a、第2ゾーン10b、第3ゾーン10cという。
FIG. 2 shows an embodiment of a direct fire heating furnace (a direct fire heating furnace constituting the heating zone 1 of the continuous annealing equipment of FIG. 1) for carrying out the present invention. In this direct fire heating furnace, a plurality of direct fire burners 9 are installed along the plate passing direction to heat the steel plate S to be passed. In the figure, 11 is a furnace roll (conveyance roll).
In this embodiment, three heating zones 10a to 10c are provided along the plate passing direction in the direct fire heating furnace, and each of these heating zones 10a to 10c is a direct fire burner group composed of a plurality of direct fire burners 9. I have.
In the present invention, among the three heating zones 10a to 10c, by heating the steel sheet using the heating zone 10a on the most upstream side and the heating zone 10c on the most downstream side as a reduction zone and the intermediate heating zone 10b as an oxidation zone, An iron oxide film is formed on the steel plate surface. Accordingly, the heating zone A described above corresponds to the heating zone 10a, the heating zone B corresponds to the heating zone 10b, and the heating zone C corresponds to the heating zone 10c.
Hereinafter, for convenience of explanation, the heating zones 10a to 10c are referred to as a first zone 10a, a second zone 10b, and a third zone 10c from the upstream side.

本発明では、還元ゾーンである第1ゾーン10aの鋼板加熱温度を400〜600℃、酸化ゾーンである第2ゾーン10bの鋼板加熱温度を600〜750℃、還元ゾーンである第3ゾーン10cの鋼板加熱温度を650〜800℃とする。但し、本発明の鋼板加熱温度は、第1ゾーン10a≦第2ゾーン10b<第3ゾーン10c、または、第1ゾーン10a<第2ゾーン10b≦第3ゾーン10cである。
第1ゾーン10aでの鋼板加熱温度が400℃未満では、第2ゾーン10bにて低温領域から酸化されてしまい、第2ゾーン10bの酸化時にSi酸化物の発生が顕著となり、Si酸化物が表面に濃化してしまうため十分な酸化量が得られない。一方、鋼板加熱温度が600℃を超えると、第2ゾーン10bでの酸化に必要な加熱時間、加熱温度が十分に得られないため酸化量の確保が困難となる。また、以上の観点からより好ましい鋼板加熱温度は450〜550℃である。
In the present invention, the steel sheet heating temperature of the first zone 10a which is the reduction zone is 400 to 600 ° C., the steel sheet heating temperature of the second zone 10b which is the oxidation zone is 600 to 750 ° C., and the steel plate of the third zone 10c which is the reduction zone. The heating temperature is 650 to 800 ° C. However, the heating temperature of the steel sheet of the present invention is the first zone 10a ≦ second zone 10b <third zone 10c or the first zone 10a <second zone 10b ≦ third zone 10c.
If the heating temperature of the steel plate in the first zone 10a is less than 400 ° C., the second zone 10b is oxidized from a low temperature region, and the generation of Si oxide becomes significant during the oxidation of the second zone 10b. As a result, a sufficient amount of oxidation cannot be obtained. On the other hand, if the steel plate heating temperature exceeds 600 ° C., the heating time and heating temperature necessary for oxidation in the second zone 10b cannot be obtained sufficiently, so that it is difficult to ensure the amount of oxidation. Moreover, the more preferable steel plate heating temperature is 450-550 degreeC from the above viewpoint.

第2ゾーン10bでの鋼板加熱温度が600℃未満では、鋼板温度が低いため鋼板表面における酸化が不活性となり、十分な酸化量が得られない。一方、第3ゾーン10cでの還元はピックアップ防止の観点から不可欠であるが、第2ゾーン10bでの鋼板加熱温度が750℃を超えると、第3ゾーン10cでの昇温分ΔTが小さくなるため、ピックアップ防止に必要な還元量の確保が不十分になる。また、以上の観点からより好ましい鋼板加熱温度は650〜700℃である。
第3ゾーン10cでの鋼板加熱温度が650℃未満では、第2ゾーン10bでの加熱温度が低温となるために十分な酸化量が得られない。一方、鋼板加熱温度が800℃を超えると、鋼板が高温となり板破断が生じる恐れがある。また、以上の観点からより好ましい鋼板加熱温度は720〜780℃であり、また、還元量を十分に確保するために、第2ゾーン10bでの鋼板加熱温度からの昇温分ΔTが50℃以上であることが好ましい。
If the heating temperature of the steel plate in the second zone 10b is less than 600 ° C., the steel plate surface is low and the oxidation on the steel plate surface becomes inactive, so that a sufficient amount of oxidation cannot be obtained. On the other hand, reduction in the third zone 10c is indispensable from the viewpoint of pickup prevention. However, if the steel plate heating temperature in the second zone 10b exceeds 750 ° C., the temperature increase ΔT in the third zone 10c becomes small. In this case, the amount of reduction necessary to prevent pickup is insufficient. Moreover, the more preferable steel plate heating temperature is 650-700 degreeC from the above viewpoint.
If the steel plate heating temperature in the third zone 10c is less than 650 ° C., the heating temperature in the second zone 10b is low, so that a sufficient amount of oxidation cannot be obtained. On the other hand, if the heating temperature of the steel plate exceeds 800 ° C., the steel plate becomes high temperature and there is a possibility that the plate breaks. Further, the steel plate heating temperature is more preferably 720 to 780 ° C. from the above viewpoint, and in order to ensure a sufficient reduction amount, the temperature increase ΔT from the steel plate heating temperature in the second zone 10b is 50 ° C. or more. It is preferable that

また、各加熱ゾーンにおいて直火バーナー群を構成する直火バーナー9の空気比は、第1ゾーン10aでは0.60〜0.95、第2ゾーン10bでは1.05〜1.25、第3ゾーン10cでは0.60〜0.95とする。
還元ゾーン(第1ゾーン10a,第3ゾーン10c)における直火バーナー9の空気比が0.95超では、炉内に未燃酸素が存在するため鋼板がわずかであるが酸化してしまう。特に、第1ゾーン10aにて酸化雰囲気となった場合、鋼板表面にSi酸化物が濃化するため化成処理性が劣化してしまう。一方、直火バーナー9の空気比が0.60未満では、バーナー燃焼に必要な空気量が不足してしまうため安定したバーナー火炎が得られない。この還元ゾーンでの空気比は、燃焼効率の面からは高めがよいが、あまり高いと制御バラツキなどで弱酸化する可能性があるため、0.80〜0.90が特に好ましい。
The air ratio of the direct fire burner 9 constituting the direct fire burner group in each heating zone is 0.60 to 0.95 in the first zone 10a, 1.05 to 1.25 in the second zone 10b, In the zone 10c, it is set to 0.60 to 0.95.
If the air ratio of the direct fire burner 9 in the reduction zone (the first zone 10a and the third zone 10c) exceeds 0.95, the unburned oxygen is present in the furnace, so that the steel sheet is slightly oxidized but oxidized. In particular, when an oxidizing atmosphere is formed in the first zone 10a, the chemical conversion processability deteriorates because Si oxide is concentrated on the surface of the steel sheet. On the other hand, if the air ratio of the direct fire burner 9 is less than 0.60, the amount of air necessary for burner combustion will be insufficient, and a stable burner flame cannot be obtained. The air ratio in the reduction zone is preferably high from the viewpoint of combustion efficiency, but if it is too high, it may be weakly oxidized due to control variations and the like, so 0.80 to 0.90 is particularly preferable.

酸化ゾーン(第2ゾーン10b)における直火バーナー9の空気比が1.05未満では、未燃酸素が減少して鋼板表面の鉄分を十分に酸化させることができずに、Si酸化物が鋼板表面に濃化してしまう。一方、直火バーナー9の空気比が1.25超では、酸化ゾーンで過酸化となり、直火加熱炉以降の帯域(均熱帯や冷却帯など)で酸化物の剥離が発生してしまう。この酸化ゾーンでの空気比は、燃焼効率の面からは低めがよいが、酸化量のバラツキを考慮すると、1.10〜1.20が特に好ましい。   If the air ratio of the direct fire burner 9 in the oxidation zone (second zone 10b) is less than 1.05, unburned oxygen is reduced and iron on the surface of the steel sheet cannot be sufficiently oxidized, and the Si oxide becomes a steel sheet. It will thicken on the surface. On the other hand, when the air ratio of the direct fire burner 9 exceeds 1.25, it is over-oxidized in the oxidation zone, and oxide separation occurs in a zone (soaking zone, cooling zone, etc.) after the direct fire heating furnace. The air ratio in the oxidation zone is preferably low in terms of combustion efficiency, but is preferably 1.10 to 1.20 in consideration of variations in the amount of oxidation.

なお、図2の実施形態では、還元ゾーンとなる最上流側の加熱ゾーン10a、酸化ゾーンとなる下流側の加熱ゾーン10b、還元ゾーンとなる最下流側の加熱ゾーン10cは、それぞれ1つずつの加熱ゾーンからなるが、それぞれ2以上の加熱ゾーンからなるものでもよい。   In the embodiment of FIG. 2, the heating zone 10a on the most upstream side serving as the reduction zone, the heating zone 10b on the downstream side serving as the oxidation zone, and the heating zone 10c on the most downstream side serving as the reduction zone are each one. Although it consists of heating zones, it may consist of two or more heating zones.

表1に示す化学成分を有する冷延鋼板(板厚1.2mm、板幅1200mm)を、図1および図2に示すような連続焼鈍設備で連続焼鈍し、鋼板の製造試験を実施した。ライン速度は90mpm、直火加熱炉出側温度は種々調整し、焼鈍温度は830℃とした。また、直火加熱炉の直火バーナーの燃料ガスとしては、表2の組成のガスを使用した。   Cold-rolled steel sheets having a chemical composition shown in Table 1 (plate thickness 1.2 mm, sheet width 1200 mm) were continuously annealed with continuous annealing equipment as shown in FIGS. 1 and 2, and steel sheet production tests were carried out. The line speed was 90 mpm, the temperature on the outlet side of the direct-fired heating furnace was variously adjusted, and the annealing temperature was 830 ° C. Moreover, the gas of the composition of Table 2 was used as a fuel gas of the direct fire burner of a direct fire heating furnace.

製造された鋼板の酸化層の厚みを、蛍光X線を用いて酸素強度を測定することにより測定した。また、鋼板に対して、市販の化成処理薬剤(日本パーカライジング株式会社製「パルボンドPB-L3020システム」)を用いて、浴温42℃、化成処理時間120秒の条件で化成処理を施した後、SEMにより化成処理結晶の均一性を調べ、下記基準により評価した。
◎:化成処理結晶にスケ、ムラが全くない。
○:化成処理結晶にスケはないが、ムラが多少ある。
×:化成処理結晶のスケが著しい。
The thickness of the oxide layer of the manufactured steel sheet was measured by measuring the oxygen intensity using fluorescent X-rays. In addition, the steel sheet was subjected to a chemical conversion treatment under the conditions of a bath temperature of 42 ° C. and a chemical conversion treatment time of 120 seconds using a commercially available chemical conversion treatment agent (“Palbond PB-L3020 System” manufactured by Nihon Parkerizing Co., Ltd.) The uniformity of the chemical conversion treatment crystal was examined by SEM and evaluated according to the following criteria.
(Double-circle): A chemical conversion treatment crystal does not have any scale and unevenness.
○: There is no scale in the chemical conversion treatment crystal, but there is some unevenness.
X: The scale of the chemical conversion treatment crystal is remarkable.

以上の製造試験の結果を、各加熱ゾーンの出側温度および空気比とともに、表3および表4に示す。
これによれば、本発明例は、内部酸化量の確保が可能となるため、良好な化成処理性が得られている。
これに対して、比較例1〜3では、第1ゾーンにおいて酸化雰囲気で加熱したため低温領域でのSi酸化物の表面濃化が顕著となり、化成処理性を満たすための内部酸化量が得られず、化成処理性は不良である。
比較例4〜6は、第2ゾーンでの酸化が過酸化条件であるため、酸化物の剥離が発生し、化成処理性が不良である。
比較例7〜9は、第1ゾーンにおける還元時の鋼板温度が高すぎるため、酸化ゾーンでの酸化量が十分確保できず、化成処理性が劣る。
The results of the above production tests are shown in Tables 3 and 4 together with the outlet temperature and air ratio of each heating zone.
According to this, since the example of the present invention can secure the amount of internal oxidation, good chemical conversion treatment properties are obtained.
On the other hand, in Comparative Examples 1 to 3, since the surface was heated in an oxidizing atmosphere in the first zone, the surface concentration of the Si oxide in the low temperature region became significant, and the amount of internal oxidation for satisfying the chemical conversion treatment property could not be obtained. The chemical conversion processability is poor.
In Comparative Examples 4 to 6, since oxidation in the second zone is a peroxidation condition, oxide peeling occurs and chemical conversion property is poor.
In Comparative Examples 7 to 9, since the steel plate temperature during reduction in the first zone is too high, the amount of oxidation in the oxidation zone cannot be ensured sufficiently, and the chemical conversion property is inferior.

比較例10〜12は、第1ゾーンにおける還元時の鋼板温度が低すぎるため、第2ゾーンでの酸化条件の際にSi酸化物の表面濃化が顕著となり、化成処理性を満たすために必要な内部酸化量が得られず、この場合も化成処理性は不良である。
比較例13〜15は、第2ゾーンにおける酸化時の鋼板温度が低すぎるため、酸に不溶なSiOが多く生成されてしまい、また酸化も不十分となるため化成処理性が劣る。
比較例16〜18は、第2ゾーンにおける酸化時の鋼板温度が低すぎ、且つ第3ゾーンにおける還元時の鋼板温度も低すぎるため、酸化ゾーンである第2ゾーンの昇温量が足らず、結果として酸化不足になるため、化成処理性が劣る。
比較例19〜21は、全ゾーン還元雰囲気での加熱であるために酸化不足となり、化成処理性が劣る。
In Comparative Examples 10 to 12, since the steel plate temperature during reduction in the first zone is too low, the surface concentration of the Si oxide becomes remarkable during the oxidation conditions in the second zone, and is necessary for satisfying the chemical conversion treatment property. In this case, the chemical conversion processability is poor.
In Comparative Examples 13 to 15, since the steel plate temperature during oxidation in the second zone is too low, a large amount of SiO 2 that is insoluble in acid is generated, and oxidation is also insufficient, resulting in poor chemical conversion properties.
In Comparative Examples 16 to 18, since the steel plate temperature during oxidation in the second zone is too low and the steel plate temperature during reduction in the third zone is too low, the temperature rise in the second zone, which is the oxidation zone, is insufficient. Therefore, the chemical conversion processability is inferior.
Since Comparative Examples 19 to 21 are heating in an all-zone reducing atmosphere, the oxidation is insufficient and the chemical conversion property is inferior.

Figure 0005488322
Figure 0005488322

Figure 0005488322
Figure 0005488322

Figure 0005488322
Figure 0005488322

Figure 0005488322
Figure 0005488322

1 加熱帯
2 均熱帯
3 ガスジェット冷却帯
4 急速冷却帯
5 浸漬槽
6 誘導加熱装置
7 過時効帯
8 酸洗装置
9 直火バーナー
10a〜10c 加熱ゾーン
11 炉内ロール
S 鋼板
DESCRIPTION OF SYMBOLS 1 Heating zone 2 Soaking zone 3 Gas jet cooling zone 4 Rapid cooling zone 5 Immersion tank 6 Induction heating device 7 Overaging zone 8 Pickling device 9 Direct fire burner 10a-10c Heating zone 11 In-furnace roll S Steel plate

Claims (6)

直火加熱炉を備えた連続焼鈍設備において、Si含有量が0.2質量%以上の鋼板を連続焼鈍するに際し、
直火加熱炉内の通板方向に沿って、各々が直火バーナー群を備えた3つ以上の加熱ゾーンを設け、最上流側の1つ以上の加熱ゾーン(A)では、直火バーナーの空気比0.60〜0.95で鋼板を400〜600℃に加熱し、その下流側の1つ以上の加熱ゾーン(B)では、直火バーナーの空気比1.05〜1.25で鋼板を600〜750℃に加熱し、最下流側の1つ以上の加熱ゾーン(C)では、直火バーナーの空気比0.60〜0.95で鋼板を650〜800℃に加熱することを特徴とする鋼板の製造方法。
In continuous annealing equipment equipped with a direct-fired heating furnace, when continuously annealing a steel sheet having a Si content of 0.2% by mass or more,
Three or more heating zones each provided with a group of direct flame burners are provided along the direction of the plate in the direct flame heating furnace. In one or more heating zones (A) on the most upstream side, the direct flame burner The steel sheet is heated to 400 to 600 ° C. at an air ratio of 0.60 to 0.95, and in one or more heating zones (B) on the downstream side, the steel sheet is heated at an air ratio of a direct fire burner of 1.05 to 1.25. Is heated to 600 to 750 ° C., and in one or more heating zones (C) on the most downstream side, the steel sheet is heated to 650 to 800 ° C. with an air ratio of 0.60 to 0.95 of a direct fire burner. A method for manufacturing a steel sheet.
加熱ゾーン(A)では、直火バーナーの空気比0.80〜0.90で鋼板を450〜550℃に加熱することを特徴とする請求項1に記載の鋼板の製造方法。   In the heating zone (A), a steel plate is heated to 450-550 degreeC with the air ratio of 0.80-0.90 of a direct fire burner, The manufacturing method of the steel plate of Claim 1 characterized by the above-mentioned. 加熱ゾーン(B)では、直火バーナーの空気比1.10〜1.20で鋼板を650〜700℃に加熱することを特徴とする請求項1または2に記載の鋼板の製造方法。   In the heating zone (B), the steel plate is heated to 650 to 700 ° C at an air ratio of 1.10 to 1.20 of an open fire burner, and the method for producing a steel plate according to claim 1 or 2. 加熱ゾーン(C)では、直火バーナーの空気比0.80〜0.90で鋼板を720〜780℃に加熱することを特徴とする請求項1〜3のいずれかに記載の鋼板の製造方法。   In a heating zone (C), a steel plate is heated at 720-780 degreeC by the air ratio of 0.80-0.90 of a direct fire burner, The manufacturing method of the steel plate in any one of Claims 1-3 characterized by the above-mentioned. . Si含有量が0.5質量%以上の鋼板を連続焼鈍することを特徴とする請求項1〜4のいずれかに記載の鋼板の製造方法。   The method for producing a steel sheet according to any one of claims 1 to 4, wherein the steel sheet having a Si content of 0.5 mass% or more is continuously annealed. Si含有量が1.0質量%以上の鋼板を連続焼鈍することを特徴とする請求項1〜4のいずれかに記載の鋼板の製造方法。   The method for producing a steel sheet according to any one of claims 1 to 4, wherein the steel sheet having a Si content of 1.0 mass% or more is continuously annealed.
JP2010176879A 2010-08-06 2010-08-06 Steel plate manufacturing method Expired - Fee Related JP5488322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010176879A JP5488322B2 (en) 2010-08-06 2010-08-06 Steel plate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010176879A JP5488322B2 (en) 2010-08-06 2010-08-06 Steel plate manufacturing method

Publications (2)

Publication Number Publication Date
JP2012036437A JP2012036437A (en) 2012-02-23
JP5488322B2 true JP5488322B2 (en) 2014-05-14

Family

ID=45848740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010176879A Expired - Fee Related JP5488322B2 (en) 2010-08-06 2010-08-06 Steel plate manufacturing method

Country Status (1)

Country Link
JP (1) JP5488322B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6043256B2 (en) * 2013-09-03 2016-12-14 株式会社神戸製鋼所 Method for producing cold-rolled steel sheet with excellent chemical conversion
JP6242247B2 (en) * 2014-03-05 2017-12-06 株式会社神戸製鋼所 Manufacturing method of Si-added cold-rolled steel sheet
JP6822934B2 (en) 2017-10-26 2021-01-27 株式会社神戸製鋼所 Manufacturing method of hot-dip galvanized steel sheet
CN108411098B (en) * 2018-04-27 2019-08-06 安徽电缆股份有限公司 A kind of alloy aluminum steel continuous annealer
JP7243668B2 (en) * 2020-03-18 2023-03-22 Jfeスチール株式会社 Method for manufacturing cold-rolled steel sheet and hot-dip galvanized steel sheet

Also Published As

Publication number Publication date
JP2012036437A (en) 2012-02-23

Similar Documents

Publication Publication Date Title
JP7095804B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet
CN101501235B (en) Hot dip coating process for a steel plate product made of high strengthheavy-duty steel
JP5799997B2 (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet excellent in appearance and plating adhesion, and methods for producing them
JP5799819B2 (en) Method for producing hot-dip galvanized steel sheet with excellent plating wettability and pick-up resistance
JP5799996B2 (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet excellent in appearance and plating adhesion, and methods for producing them
JP5636683B2 (en) High-strength galvannealed steel sheet with excellent adhesion and manufacturing method
WO2014024825A1 (en) Zinc-plated steel sheet for hot press molding
JP2007291498A (en) Manufacturing method of high-strength hot-dip-galvanized steel sheet excellent in appearance and plating adhesion
JP5488322B2 (en) Steel plate manufacturing method
JP4912684B2 (en) High-strength hot-dip galvanized steel sheet, production apparatus therefor, and method for producing high-strength alloyed hot-dip galvanized steel sheet
EP2659019B1 (en) Aluminum coated steel sheet having excellent oxidation resistance and heat resistance
JP5811841B2 (en) Method for producing Si-containing high-strength galvannealed steel sheet
WO2015115112A1 (en) Alloyed hot-dip galvanized steel sheet and method for producing same
US9677148B2 (en) Method for manufacturing galvanized steel sheet
JP2010059510A (en) Method for producing high strength hot dip galvanized steel sheet and high strength galvannealed steel sheet excellent in surface appearance and plating adhesion
JP5581615B2 (en) Steel plate manufacturing method and manufacturing equipment
JP2007277627A (en) Method for producing high strength steel sheet and high strength plated steel sheet, and annealing furnace and production equipment used for producing them
JP6137002B2 (en) Method for producing hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet, hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP5822077B2 (en) Continuous annealing method for steel sheet
JP6740973B2 (en) Method for manufacturing hot-dip galvanized steel sheet
JP5354156B2 (en) Method for producing galvannealed steel sheet
JP4976942B2 (en) Method for producing hot-dip galvanized steel sheet
JP5990892B2 (en) Method for producing high-Si cold-rolled steel sheet with excellent chemical conversion properties
CN115003847B (en) Method for producing high-strength hot-dip galvanized steel sheet
JP2005200711A (en) Method of producing hot dip galvannealed steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140210

R150 Certificate of patent or registration of utility model

Ref document number: 5488322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees