JP2007291498A - Manufacturing method of high-strength hot-dip-galvanized steel sheet excellent in appearance and plating adhesion - Google Patents

Manufacturing method of high-strength hot-dip-galvanized steel sheet excellent in appearance and plating adhesion Download PDF

Info

Publication number
JP2007291498A
JP2007291498A JP2007046792A JP2007046792A JP2007291498A JP 2007291498 A JP2007291498 A JP 2007291498A JP 2007046792 A JP2007046792 A JP 2007046792A JP 2007046792 A JP2007046792 A JP 2007046792A JP 2007291498 A JP2007291498 A JP 2007291498A
Authority
JP
Japan
Prior art keywords
steel sheet
heating
plating
hot
galvanized steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007046792A
Other languages
Japanese (ja)
Other versions
JP4972775B2 (en
Inventor
Yoshitsugu Suzuki
善継 鈴木
Masahiko Tada
雅彦 多田
Yusuke Fushiwaki
祐介 伏脇
Yoshiharu Sugimoto
芳春 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007046792A priority Critical patent/JP4972775B2/en
Publication of JP2007291498A publication Critical patent/JP2007291498A/en
Application granted granted Critical
Publication of JP4972775B2 publication Critical patent/JP4972775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a hot-dip-galvanized steel sheet which has no non-deposited area, has a beautiful surface appearance and is excellent in plating adhesion when using a high-Si-content steel sheet as a parent material. <P>SOLUTION: The steel sheet comprising, by mass, ≤0.25% C, 0.1-3.0% Si, 0.5-3.0% Mn and 0.01-3% Al, wherein the Mn/Si ratio is ≤2, is subjected to heating (A-zone heating) at 400-750°C in an atmosphere containing ≥0.1% O<SB>2</SB>and ≥1% H<SB>2</SB>O, subsequently to heating (B-zone heating) at 600-850°C in an atmosphere containing <0.1% O<SB>2</SB>and ≥1% H<SB>2</SB>O, subsequently to heating (C-zone heating) in an atmosphere which contains 1-50% H<SB>2</SB>and has a dew point of 0°C and subsequently to a hot-dip galvanizing treatment. Since oxides at the surface, which conventionally react with a roll at C-zone heating and are picked up, are reduced and cut down by B-zone heating, the occurrence of pick-up at C-zone heating can be prevented. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、Si含有高強度鋼板を母材とする溶融亜鉛めっき鋼板の製造方法に関し、特に不めっきのない美麗な表面外観を有しめっき密着性に優れた溶融亜鉛めっき鋼板を製造する方法に関する。   The present invention relates to a method for producing a hot-dip galvanized steel sheet using a Si-containing high-strength steel sheet as a base material, and more particularly, to a method for producing a hot-dip galvanized steel sheet having a beautiful surface appearance without unplating and excellent plating adhesion. .

近年、自動車、家電、建材等の分野においては、素材鋼板に防錆性を付与した表面処理鋼板、中でも安価に製造できかつ防錆性に優れた溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板が使用されている。 In recent years, in the fields of automobiles, home appliances, building materials, etc., surface-treated steel sheets that give rust prevention to raw steel sheets, especially hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets that can be manufactured inexpensively and have excellent rust prevention properties in use.

一般的に、溶融亜鉛めっき鋼板は、以下の方法にて製造される。まず、スラブを熱延、冷延あるいは熱処理した薄鋼板を用いて、母材鋼板表面を前処理工程にて脱脂および/または酸洗して洗浄するか、あるいは前処理工程を省略して予熱炉内で母材鋼板表面の油分を燃焼除去した後、非酸化性雰囲気中あるいは還元性雰囲気中で加熱することで再結晶焼鈍を行う。その後、非酸化性雰囲気中あるいは還元性雰囲気中で鋼板をめっきに適した温度まで冷却して、大気に触れることなく微量Al(0.1〜0.2%程度)を添加した溶融亜鉛浴中に浸漬する。
また合金化溶融亜鉛めっき鋼板は、溶融亜鉛めっき後、引き続き、鋼板を合金化炉内で熱処理することで製造される。
Generally, a hot dip galvanized steel sheet is manufactured by the following method. First, using a thin steel plate obtained by hot-rolling, cold-rolling or heat-treating the slab, the base steel plate surface is degreased and / or pickled and cleaned in the pretreatment step, or the pretreatment step is omitted. After the oil on the surface of the base steel plate is burned and removed, recrystallization annealing is performed by heating in a non-oxidizing atmosphere or a reducing atmosphere. Then, the steel sheet is cooled to a temperature suitable for plating in a non-oxidizing atmosphere or a reducing atmosphere, and in a molten zinc bath to which a small amount of Al (about 0.1 to 0.2%) is added without being exposed to the air Immerse in.
An alloyed hot-dip galvanized steel sheet is produced by subsequently heat-treating the steel sheet in an alloying furnace after hot-dip galvanizing.

ところで、近年、素材鋼板の高性能化とともに軽量化が推進され、素材鋼板の高強度化が求められてきており、防錆性を兼ね備えた高強度溶融亜鉛めっき鋼板の使用量が増加している。
鋼板の高強度化にはSi、Mn、P、Al等の固溶強化元素の添加が行われる。中でもSiやAlは鋼の延性を損なわずに高強度化できる利点があり、Si含有鋼板は高強度鋼板として有望である。特に鋼中Mn/Si比が低い方が相対的に良好な機械的特性を確保しやすい。しかし、鋼中Mnが少なく、SiやAlを多量に含有する(すなわち鋼中Mn/Si比が低い)高強度鋼板を母材とし溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板を製造しようとする場合、以下の問題がある。
By the way, in recent years, weight reduction has been promoted with higher performance of raw steel sheets, and higher strength of raw steel sheets has been demanded, and the amount of high-strength hot-dip galvanized steel sheets that have rust prevention properties is increasing. .
Addition of solid solution strengthening elements such as Si, Mn, P, and Al is performed to increase the strength of the steel sheet. Among these, Si and Al have an advantage that the strength can be increased without impairing the ductility of the steel, and the Si-containing steel plate is promising as a high-strength steel plate. In particular, a relatively low Mn / Si ratio in steel tends to ensure relatively good mechanical properties. However, it tries to manufacture hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets based on high-strength steel sheets that contain a small amount of Mn in steel and contain a large amount of Si and Al (that is, low Mn / Si ratio in steel). If you have the following problems.

前述のように溶融亜鉛めっき鋼板は還元雰囲気中で600〜900℃程度の温度で加熱焼鈍を行った後に、溶融亜鉛めっき処理を行う。しかし、鋼中のSiやAlは易酸化性元素であり、一般的に用いられる還元雰囲気中でも選択表面酸化されて表面に濃化し、酸化物を形成する。これらの酸化物はめっき処理時の溶融亜鉛との濡れ性を低下させて不めっきを生じさせるので、鋼中Si、Al濃度の増加とともに濡れ性が急激に低下し不めっきが多発する。また、不めっきに至らなかった場合でも、めっき密着性に劣るという問題がある。   As described above, the hot dip galvanized steel sheet is subjected to hot dip galvanizing treatment after heat annealing at a temperature of about 600 to 900 ° C. in a reducing atmosphere. However, Si and Al in steel are easily oxidizable elements and are selectively oxidized in a reducing atmosphere that is generally used to concentrate on the surface to form oxides. Since these oxides reduce the wettability with molten zinc during the plating process and cause non-plating, the wettability rapidly decreases with the increase of the Si and Al concentrations in the steel, and non-plating occurs frequently. In addition, even when non-plating does not occur, there is a problem that the plating adhesion is poor.

さらに鋼中のSiが選択表面酸化されて表面に濃化すると、溶融亜鉛めっき後の合金化過程において著しい合金化遅延が生じる。その結果、生産性を著しく阻害する。生産性を確保するために過剰に高温で合金化処理しようとすると、耐パウダリング性の劣化を招くという問題もあり、高い生産性と良好な耐パウダリング性を両立させることは困難である。またこのようなSi、Alを添加することで残留γ相が形成しやすくなり機械的特性が良好となるメリットがある反面、合金化遅延を回避するため高温合金化すると残留γ相が不安定になり機械的特性が劣化する場合があり、Si、Al添加によるメリットが享受できなくなる。   Further, when Si in steel is selectively surface oxidized and concentrated on the surface, a significant alloying delay occurs in the alloying process after hot dip galvanizing. As a result, productivity is significantly inhibited. If an alloying treatment is attempted at an excessively high temperature in order to ensure productivity, there is a problem that the powdering resistance is deteriorated, and it is difficult to achieve both high productivity and good powdering resistance. In addition, the addition of Si and Al facilitates the formation of residual γ phase and has the advantage of good mechanical properties, but the residual γ phase becomes unstable when alloyed at high temperature to avoid alloying delay. The mechanical properties may deteriorate and the benefits of adding Si and Al cannot be enjoyed.

さらに、同じ鋼中Si量であっても、鋼中Mn/Si比が低い場合、濡れ性が劣りめっき後の合金化反応性が悪いSiO2が多量に生成し、比較的濡れ性やめっき後の反応性の良いMn2SiO4が生成しにくい。そのため、Mn/Si比が低く機械的特性が良好であっても、めっき特性との両立が困難である。このように、良好な機械的特性とめっき特性を具備する高強度溶融亜鉛めっき鋼板を製造することができなかった。 Furthermore, even with the same amount of Si in the steel, if the Mn / Si ratio in the steel is low, a large amount of SiO 2 with poor wettability and poor alloying reactivity after plating is formed. It is difficult to produce Mn 2 SiO 4 having good reactivity. Therefore, even if the Mn / Si ratio is low and the mechanical characteristics are good, it is difficult to achieve compatibility with the plating characteristics. Thus, a high-strength hot-dip galvanized steel sheet having good mechanical properties and plating properties could not be produced.

さらに、近年、このような高強度鋼板が外板や一部の足回り部品のように外見上見えやすい場所に使用される場合があり、上記に加え、表面の外観の美麗さがこと厳しく要求されるようになった。   Furthermore, in recent years, such high-strength steel sheets may be used in places that are easily visible, such as the outer panels and some undercarriage parts, and in addition to the above, the appearance of the surface is strictly required. It came to be.

このような問題に対して、いくつかの技術が開示されている。
予め酸化性雰囲気中で鋼板を加熱して表面に酸化鉄を形成した後加熱し還元焼鈍を行うことで、溶融亜鉛との濡れ性が改善する技術が特許文献1に開示されている。
Several techniques have been disclosed for such problems.
Patent Document 1 discloses a technique in which wettability with molten zinc is improved by heating a steel sheet in an oxidizing atmosphere in advance to form iron oxide on the surface, followed by heating and reduction annealing.

溶融めっき処理に先立って、硫黄または硫黄化合物を鋼板表面にS量として0.1〜1000mg/m2付着させた後、予熱工程を弱酸化性雰囲気で行い、その後、水素を含む非酸化性雰囲気中で焼鈍する方法が特許文献2に開示されている。 Prior to hot dipping, sulfur or a sulfur compound is deposited on the steel sheet surface as an S amount of 0.1 to 1000 mg / m 2, and then a preheating step is performed in a weakly oxidizing atmosphere, and then in a non-oxidizing atmosphere containing hydrogen. A method of annealing is disclosed in Patent Document 2.

また、予熱中の酸素濃度等の雰囲気を制御することで良好なめっき品質を確保する技術が特許文献3に開示されている
しかしながら、鋼中Si量が高く、Mn/Si比が低い鋼板の場合、酸化条件を強化して酸化量を確保すると、めっき密着性は向上し不めっきが改善するが、酸化量が多いため炉内ロールに酸化スケールが付着し、鋼板に押し疵が発生する、いわゆるピックアップ現象が発生する。このような現象が発生すると、めっき外観が劣化し、自動車部品として不適である。
特許登録第2587724号公報 特開平11-50223号公報 特許登録第3415191号公報
Moreover, the technique which ensures favorable plating quality by controlling atmospheres, such as oxygen concentration during preheating, is disclosed by patent document 3. However, in the case of a steel plate with a high Si amount in steel and a low Mn / Si ratio When the oxidation conditions are strengthened to secure the oxidation amount, the plating adhesion is improved and the non-plating is improved. However, since the oxidation amount is large, the oxide scale adheres to the in-furnace roll, and the steel sheet is pressed, so-called A pickup phenomenon occurs. When such a phenomenon occurs, the plating appearance deteriorates and is not suitable as an automobile part.
Patent registration No. 2587724 Japanese Patent Laid-Open No. 11-50223 Patent Registration No. 3415191

本発明はかかる事情に鑑みてなされたものであって、高Si含有鋼板を母材とした場合に不めっきのない美麗な表面外観を有しめっき密着性に優れた溶融亜鉛めっき鋼板を製造する方法を提供することを目的とする。特に機械的特性が良好であるにもかかわらずめっき特性の改善が難しい低Mn/Si鋼のめっき特性を改善するものである。   The present invention has been made in view of such circumstances, and produces a hot dip galvanized steel sheet having a beautiful surface appearance free of non-plating and excellent plating adhesion when a high Si content steel sheet is used as a base material. It aims to provide a method. In particular, it improves the plating characteristics of low Mn / Si steel, which is difficult to improve even though the mechanical characteristics are good.

加熱帯で高Si鋼の酸化強化を図るとめっき密着性は改善するが、還元帯で酸化スケールが剥離して押し疵が発生する。これを解決するため、発明者らは加熱帯の酸化条件を中心に研究を行った。
その結果、加熱帯出側での条件を制御することで、加熱帯出側において、加熱帯前段〜中段で一旦酸化された鋼板表面を還元処理することが可能となり、その結果、加熱帯の後に設置される還元帯炉内におけるピックアップを抑制することが可能となることを見出した。
すなわち、(1)加熱帯前段〜中段において、高Si鋼の酸化強化を図るための酸化加熱(以下、A帯加熱と称す)を行い、次いで、(2)加熱帯出側を、一旦酸化された鋼板表面を還元処理することが可能で、かつ、ピックアップが起こらない条件で、すなわち低O2濃度雰囲気で低温還元の条件で加熱を行う(以下、B帯加熱と称す)ことで、加熱帯前段〜中段において一旦酸化された鋼板表面を還元処理し、さらに、(3)還元帯にて高温還元の加熱(以下、C帯加熱と処す)を行う。この時、従来では、C帯加熱内でロールと反応しピックアップの原因となっていた表面酸化物が、本発明では、すでにB帯加熱により還元され低減しているため、C帯加熱では、ピックアップが起こらず防止されることになる。
Plating adhesion improves when high-Si steel is strengthened by oxidation in the heating zone, but the oxide scale peels off in the reduction zone, resulting in creases. In order to solve this, the inventors conducted research focusing on the oxidation conditions of the heating zone.
As a result, by controlling the conditions on the heating zone exit side, it becomes possible to reduce the steel sheet surface once oxidized in the heating zone front stage to the middle stage on the heating zone exit side, and as a result, installed after the heating zone. It was found that the pickup in the reduction zone furnace can be suppressed.
That is, (1) oxidation heating (hereinafter referred to as A-band heating) for strengthening oxidation of high-Si steel was performed in the preceding stage to the middle stage of the heating zone, and then (2) the heating zone exit side was once oxidized. It is possible to reduce the surface of the steel sheet and perform heating under conditions where pickup does not occur, that is, under conditions of low-temperature reduction in a low O 2 concentration atmosphere (hereinafter referred to as B-band heating). The steel plate surface once oxidized in the middle stage is subjected to a reduction treatment, and (3) high-temperature reduction heating (hereinafter referred to as C-band heating) is performed in the reduction zone. At this time, the surface oxide that has conventionally reacted with the roll in the C-band heating and caused the pickup is already reduced and reduced by the B-band heating in the present invention. Will not occur and will be prevented.

また、B帯加熱後の、主としてFe系酸化スケールで構成される鋼板最表面において、融点が低くピックアップの原因となりやすいFeOの生成比率を制御することで、C帯加熱中のピックアップの発生をより一層防止できること、また、C帯加熱後の鋼板表層部を未還元のFe系酸化物が残留しない状態とすることで、ピックアップの発生をより一層防止し、かつ、合金化遅延や不めっき欠陥の発生を抑制出来ることを見出した。
以上により、酸化強化によるめっき密着性改善、不めっきが解消すると同時に、押し疵が抑制され、極めて美麗なめっき外観が確保することが出来るようになる。
In addition, by controlling the ratio of FeO that has a low melting point and is likely to cause pick-up on the outermost surface of the steel plate, which is mainly composed of Fe-based oxide scale, after B-band heating, more pick-up occurs during C-band heating. It can be further prevented, and by making the steel sheet surface layer part after C-band heating have no unreduced Fe-based oxide remaining, pickup can be further prevented, and alloying delays and non-plating defects can be prevented. It was found that generation can be suppressed.
As described above, improvement in plating adhesion due to oxidation strengthening and non-plating are eliminated, and at the same time, pressing is suppressed, and an extremely beautiful plating appearance can be secured.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]mass%で、C:0.25%以下、Si:0.1〜3.0%、Mn:0.5〜3.0%、Al:0.01〜3%を含み、Mn/Si比が2以下である鋼板に溶融亜鉛めっきを施すに際し、鋼板をO2≧0.1%、H2O≧1%を含有する雰囲気中で、400〜750℃の温度で加熱(A帯加熱)し、次いで、O2<0.1%、H2O≧1%を含有する雰囲気中で、600〜850℃の温度で加熱(B帯加熱)し、次いで、H2=1〜50%を含み露点が0℃以下の雰囲気中で、加熱(C帯加熱)した後、溶融亜鉛めっき処理を施すことを特徴とする外観性とめっき密着性に優れる高強度溶融亜鉛めっき鋼板の製造方法。
[2]前記[1]において、前記A帯加熱を直火バーナー(DFF)もしくは無酸化炉(NOF)により、空気比≧1の条件で行い、前記B帯加熱を直火バーナー(DFF)もしくは無酸化炉(NOF)により、空気比<1の条件で行うことを特徴とする外観性とめっき密着性に優れる高強度溶融亜鉛めっき鋼板の製造方法。
[3]前記[2]において、前記A帯加熱を空気比が下記式(1)で表されるα以上、1.5以下の条件で行い、前記B帯加熱を空気比が下記式(2)で表されるβ以上、1.0未満で行なうことを特徴とする請求項2に記載の外観性とめっき密着性に優れる高強度溶融亜鉛めっき鋼板の製造方法。
α=0.3〔Si〕+〔P〕+0.65 (ただし、α≧1.0) ---(1)
β=0.05〔Si〕+0.25〔P〕+0.675 ---(2)
ただし、〔Si〕、〔P〕はそれぞれ鋼板中のSi、Pのmass%を表す。
[4]前記[1]〜[3]のいずれかにおいて、A帯加熱を行う前に、Sを含む溶液を鋼板に塗布し、鋼板表面にSを10〜1000mg/m2付着させることを特徴とする外観性とめっき密着性に優れる高強度溶融亜鉛めっき鋼板の製造方法。
[5]前記[1]〜[4]のいずれかにおいて、溶融亜鉛めっき処理後に合金化処理することを特徴とする外観性とめっき密着性に優れる高強度溶融亜鉛めっき鋼板の製造方法。
[6]前記[1]〜[5]のいずれかにおいて、前記B帯加熱後の鋼鈑最表面は、mol%で、FeOが30%以下であり、Fe、Fe2O3、Fe3O4の総和が70%以上であることを特徴とする外観性とめっき密着性に優れる高強度溶融亜鉛めっき鋼板の製造方法。
[7]前記[1]〜[6]のいずれかにおいて、前記C帯加熱後の鋼鈑において、鋼鈑最表面から深さ方向5μmまでの領域には、FeO、Fe2O3、Fe3O4を含有しないことを特徴とする外観性とめっき密着性に優れる高強度溶融亜鉛めっき鋼鈑の製造方法。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] Hot dip galvanizing on steel sheet with mass%, C: 0.25% or less, Si: 0.1-3.0%, Mn: 0.5-3.0%, Al: 0.01-3%, and Mn / Si ratio of 2 or less When the steel sheet is subjected to heating, the steel sheet is heated at a temperature of 400 to 750 ° C. in an atmosphere containing O 2 ≧ 0.1% and H 2 O ≧ 1% (A-band heating), and then O 2 <0.1%, H 2 Heat in an atmosphere containing O ≧ 1% at a temperature of 600 to 850 ° C. (B-band heating), then heat in an atmosphere containing H 2 = 1 to 50% and having a dew point of 0 ° C. or less (C A method for producing a high-strength hot-dip galvanized steel sheet excellent in appearance and plating adhesion, characterized by subjecting to hot-dip galvanizing treatment after band heating.
[2] In the above [1], the A-zone heating is performed by a direct fire burner (DFF) or a non-oxidizing furnace (NOF) under the condition of an air ratio ≧ 1, and the B-zone heating is performed by a direct fire burner (DFF) or A method for producing a high-strength hot-dip galvanized steel sheet with excellent appearance and plating adhesion, characterized in that it is performed in a non-oxidizing furnace (NOF) under conditions of an air ratio <1.
[3] In the above [2], the A-band heating is performed under the condition that the air ratio is α or more and 1.5 or less represented by the following formula (1), and the B-band heating is performed using the following formula (2). 3. The method for producing a high-strength hot-dip galvanized steel sheet excellent in appearance and plating adhesion according to claim 2, characterized in that it is carried out at a value of not less than β and less than 1.0.
α = 0.3 [Si] + [P] +0.65 (where α ≧ 1.0) --- (1)
β = 0.05 [Si] + 0.25 [P] + 0.675 (2)
However, [Si] and [P] represent mass% of Si and P in the steel sheet, respectively.
[4] In any one of the above [1] to [3], before performing the A-band heating, a solution containing S is applied to the steel sheet, and S is adhered to the steel sheet surface by 10 to 1000 mg / m 2. A method for producing a high-strength hot-dip galvanized steel sheet having excellent appearance and plating adhesion.
[5] The method for producing a high-strength hot-dip galvanized steel sheet having excellent appearance and plating adhesion, wherein the alloying treatment is performed after the hot-dip galvanizing treatment in any one of the above [1] to [4].
[6] In any one of [1] to [5], the steel鈑最surface after the B band heating, in mol%, FeO is less 30%, Fe, Fe 2 O 3, Fe 3 O A method for producing a high-strength hot-dip galvanized steel sheet excellent in appearance and plating adhesion, characterized in that the sum of 4 is 70% or more.
[7] In any one of the above [1] to [6], in the steel plate after the C-band heating, FeO, Fe 2 O 3, Fe 3 may be formed in a region from the steel plate outermost surface to a depth direction of 5 μm. A method for producing a high-strength hot-dip galvanized steel sheet excellent in appearance and plating adhesion, characterized by not containing O 4 .

なお、本明細書において、鋼の成分を示す%は、すべてmass%である。   In addition, in this specification,% which shows the component of steel is all mass%.

本発明によれば、不めっきがなく美麗な表面外観を有しめっき密着性に優れた溶融亜鉛めっき鋼板が得られる。なお、本発明は、高Si含有鋼板を母材とした場合にも有効であり、機械的特性が良好であるにもかかわらずめっき特性の改善が難しい低Mn/Si鋼のめっき特性を改善する方法として有用な発明といえる。   According to the present invention, there can be obtained a hot dip galvanized steel sheet having a beautiful surface appearance without plating and excellent plating adhesion. The present invention is also effective when a high Si content steel sheet is used as a base material, and improves the plating characteristics of low Mn / Si steel, which is difficult to improve the plating characteristics despite good mechanical characteristics. It can be said that the invention is useful as a method.

以下、本発明について具体的に説明する。
まず、本発明に使用される鋼板について説明する。本発明の鋼板の成分組成は以下の通りである。
Hereinafter, the present invention will be specifically described.
First, the steel plate used in the present invention will be described. The composition of the steel sheet of the present invention is as follows.

C:0.25%以下、
残留γ相を形成しやすくするため、0.05%以上が好ましい。但し、本発明では特に下限を規定する物ではない。一方、上限については、0.25%を越えると溶接性が劣化する。よって、C含有量は0.25%以下とする。
C: 0.25% or less,
In order to easily form a residual γ phase, 0.05% or more is preferable. However, in the present invention, the lower limit is not particularly specified. On the other hand, if the upper limit exceeds 0.25%, the weldability deteriorates. Therefore, the C content is 0.25% or less.

Si:0.1〜3.0%
めっき原板である鋼板は、鋼中にSi、Mn、Al等を含有する高強度鋼板である。特にSi、Alは残留γ形成元素であり、鋼板の機械的特性改善に効果的であるため最重要である。そのためにはSi含有量は0.1%以上必要である。但し3.0%を越えると酸化皮膜の生成抑制が困難で密着性改善が困難である。よって、Si含有量は0.1%以上3.0%以下とする。
Si: 0.1-3.0%
A steel plate as a plating base plate is a high-strength steel plate containing Si, Mn, Al and the like in the steel. In particular, Si and Al are residual γ-forming elements and are most important because they are effective in improving the mechanical properties of steel sheets. For that purpose, the Si content needs to be 0.1% or more. However, if it exceeds 3.0%, it is difficult to suppress the formation of an oxide film and it is difficult to improve adhesion. Therefore, the Si content is 0.1% or more and 3.0% or less.

Mn:0.5〜3.0%
高強度化を図るにはMn≧0.5%添加するとより効果的である。一方、Mnは3.0%を越えると溶接性やめっき密着性の確保、強度延性バランス確保が困難になる。よってMn量は0.5%以上3.0%以下とする。
Mn: 0.5-3.0%
To increase the strength, it is more effective to add Mn ≧ 0.5%. On the other hand, if Mn exceeds 3.0%, it becomes difficult to ensure weldability, plating adhesion, and strength ductility balance. Therefore, the Mn content is 0.5% or more and 3.0% or less.

Al:0.01〜3%
AlはSiと補完的に添加される元素である。Alを含有せずにSiを充分添加すれば機械的特性の確保は可能であるものの、製鋼工程で不可避的に混入するので、Alは0.01%以上含有することが必要である。一方、Al添加量が3%を越えると酸化皮膜の生成抑制が困難で密着性改善が困難である。よってAl量は0.01%以上3%以下とする。
Al: 0.01 to 3%
Al is an element added complementary to Si. If Si is added sufficiently without containing Al, the mechanical properties can be secured, but it is inevitably mixed in the steelmaking process, so Al needs to be contained in an amount of 0.01% or more. On the other hand, if the amount of Al added exceeds 3%, it is difficult to suppress the formation of an oxide film and it is difficult to improve the adhesion. Therefore, the Al content is 0.01% or more and 3% or less.

Mn/Si比が2以下
Mn/Si比は低い方が機械的特性が良好であるため、2以下とする。
Mn / Si ratio is 2 or less
The lower the Mn / Si ratio, the better the mechanical properties.

本発明鋼は、上記の必須添加元素で目的とする特性が得られるが、所望の特性に応じて以下の元素を含有することができる。   The steel of the present invention can achieve the desired properties with the above essential additive elements, but can contain the following elements according to the desired properties.

Pは不可避的に含有される物であり、セメンタイトの析出を遅延させ変態の進行を遅らせるため、0.001%以上が好ましい。一方、0.10%を越えると溶接性が劣化するだけでなく、表面品質が劣化するため、非合金化時にはめっき密着性が劣化し、合金化処理時には合金化温度が上昇し、延性が劣化すると同時に合金化めっき皮膜の密着性が劣化する場合がある。よって、含有する場合、P量は0.001%以上0.10%以下とする。   P is inevitably contained, and is preferably 0.001% or more in order to delay the precipitation of cementite and delay the progress of transformation. On the other hand, if it exceeds 0.10%, not only the weldability deteriorates, but also the surface quality deteriorates, so the plating adhesion deteriorates during non-alloying, the alloying temperature rises during alloying, and the ductility deteriorates at the same time. The adhesion of the alloyed plating film may deteriorate. Therefore, when contained, the P content is 0.001% or more and 0.10% or less.

高強度延性バランスを制御するため、必要であれば0.01≦Cr≦1.0%、0.01≦Mo≦1.0%、0.005≦Nb≦0.2%、、0.005≦Ti≦0.2%の少なくとも1種を、また残留γ相形成促進のため、0.01≦Cu≦0.5%、0.01≦Ni≦1.0%、0.0005≦B≦0.01%の少なくとも1種を必要に応じて添加しても良い。なお、これら元素は機械的特性改善のためだけでなく、Cr、Mo、Nb、Cuは単独もしくは2種以上の複合添加することでSi、Alの内部酸化を促進し、表面濃化を抑制する効果を有する。そのため、良好なめっき密着性を得るために添加することもできる。Crは0.01%未満では強度調整や内部酸化促進効果が得られにくく、1.0%越えではかえってCrが表面濃化するため、めっき密着性や溶接性が劣化する場合がある。Moは0.01%未満では強度調整の効果やNb、もしくはNiやCuとの複合添加時におけるめっき密着性改善効果が得られにくく、1.0%越えではコストアップを招く場合がある。Nbは0.005%未満では強度調整の効果やMoとの複合添加時におけるめっき密着性改善効果が得られにくく、0.2%越えではコストアップを招く場合がある。Tiは0.005%未満では強度調整の効果が得られにくく、0.2%越えではめっき密着性の劣化を招く場合がある。Cuは0.01%未満では残留γ相形成促進効果やNiやMoとの複合添加時におけるめっき密着性改善効果が得られにくく、0.5%越えではコストアップを招く場合がある。Niは0.01%未満では残留γ相形成促進効果やCuやMoとの複合添加時におけるめっき密着性改善効果が得られにくく、1.0%越えではコストアップを招く場合がある。Bは0.0005%未満では残留γ相形成促進効果が得られにくく、0.01%以上ではめっき密着性が劣化する場合がある。
SはPと同様不可避的に含有される元素であるが、多量に含有されると溶接性が劣化するため0.2%以下が好ましい。
In order to control the high strength ductility balance, if necessary, at least one of 0.01 ≦ Cr ≦ 1.0%, 0.01 ≦ Mo ≦ 1.0%, 0.005 ≦ Nb ≦ 0.2%, 0.005 ≦ Ti ≦ 0.2%, and residual γ In order to promote phase formation, at least one of 0.01 ≦ Cu ≦ 0.5%, 0.01 ≦ Ni ≦ 1.0%, 0.0005 ≦ B ≦ 0.01% may be added as necessary. These elements not only improve mechanical properties, but Cr, Mo, Nb, and Cu alone or in combination of two or more promote the internal oxidation of Si and Al and suppress the surface concentration. Has an effect. Therefore, it can also be added to obtain good plating adhesion. If Cr is less than 0.01%, strength adjustment and internal oxidation promotion effects are difficult to obtain, and if it exceeds 1.0%, the surface concentration of Cr is rather concentrated, which may deteriorate the plating adhesion and weldability. If the Mo content is less than 0.01%, it is difficult to obtain the effect of adjusting the strength or improving the adhesion of the plating when combined with Nb, Ni or Cu, and if it exceeds 1.0%, the cost may increase. If Nb is less than 0.005%, it is difficult to obtain the effect of adjusting the strength and the effect of improving the plating adhesion when combined with Mo, and if it exceeds 0.2%, the cost may increase. If Ti is less than 0.005%, the effect of adjusting the strength is difficult to obtain, and if it exceeds 0.2%, plating adhesion may be deteriorated. If Cu is less than 0.01%, it is difficult to obtain the effect of promoting the formation of the residual γ phase and the effect of improving the plating adhesion when combined with Ni or Mo, and if it exceeds 0.5%, the cost may increase. If Ni is less than 0.01%, it is difficult to obtain the effect of promoting the formation of the residual γ phase and the effect of improving the plating adhesion when combined with Cu or Mo, and if it exceeds 1.0%, the cost may increase. If B is less than 0.0005%, the effect of promoting the formation of the residual γ phase is difficult to obtain, and if it is 0.01% or more, the plating adhesion may deteriorate.
S is an element that is inevitably contained as in the case of P. However, since a weldability deteriorates when contained in a large amount, S is preferably 0.2% or less.

次に高強度溶融亜鉛めっき鋼板の製造方法について、説明する。
以上からなる組成を有する鋼板に溶融亜鉛めっきを施す。なお、本発明においては鋼板を以下の3工程からなる加熱を行った後にめっき処理を行うものとする。この加熱は本発明において重要な要件であり、特にB帯加熱は最も重要な要件である。B帯加熱を以下の条件にて、A帯加熱とC帯加熱の間に加えて行うことで、C帯加熱における表面酸化物量を、ピックアップの原因とならない量まで低減し、かつ、表面のSi系酸化物の生成を防止するのに十分な量に調整することが可能となる。
A帯加熱:O2≧0.1%、H2O≧1%を含有する雰囲気中で、400〜750℃の温度で加熱
B帯加熱:O2<0.1%、H2O≧1%を含有する雰囲気中で、600〜850℃の温度で加熱
C帯加熱:H2=1〜50%を含み露点が0℃以下の雰囲気中で、加熱
以下、この3工程からなる加熱について説明する。
Next, a method for producing a high-strength hot-dip galvanized steel sheet will be described.
Hot dip galvanizing is performed on the steel sheet having the above composition. In the present invention, the steel sheet is subjected to plating treatment after being heated in the following three steps. This heating is an important requirement in the present invention, and in particular, B-band heating is the most important requirement. By performing B-band heating between A-band heating and C-band heating under the following conditions, the amount of surface oxide in C-band heating is reduced to an amount that does not cause pickup, and the surface Si It becomes possible to adjust to an amount sufficient to prevent the formation of the system oxide.
A-band heating: heating at a temperature of 400 to 750 ° C. in an atmosphere containing O 2 ≧ 0.1% and H 2 O ≧ 1% B-band heating: containing O 2 <0.1% and H 2 O ≧ 1% In the atmosphere, heating at a temperature of 600 to 850 ° C. C-band heating: In an atmosphere including H 2 = 1 to 50% and having a dew point of 0 ° C. or less, the heating consisting of these three steps will be described below.

A帯加熱
A帯での加熱は鋼板を積極的に酸化させるために行うものである。よって、O2は酸化を行うのに十分な量が必要であり0.1%以上とする。上限は定めないが経済的な理由から大気レベルの20%以下が好ましい。H2Oは酸化を促進するために1%以上とする。上限は定めないが、加湿コストを考えて50%以下が好ましい。また、加熱温度は、400℃未満では酸化しにくく、750℃越えでは酸化しすぎて押し疵が発生するので400℃以上750℃以下とする。
A-Band Heating Heating in the A-band is performed to positively oxidize the steel sheet. Therefore, O 2 must have a sufficient amount for oxidation and is set to 0.1% or more. An upper limit is not set, but it is preferably 20% or less of the atmospheric level for economic reasons. H 2 O is made 1% or more in order to promote oxidation. An upper limit is not set, but 50% or less is preferable in consideration of humidification costs. Further, the heating temperature is less than 400 ° C., and it is difficult to oxidize.

B帯加熱
B帯での加熱は、押し疵を抑制して美麗な外観を確保するために本発明で最も重要である。そのため、B帯加熱では、一旦酸化された鋼板表面を還元処理することが可能で、かつ、ピックアップが起こらない条件、すなわち低O2濃度雰囲気で低温還元加熱の条件で加熱を行い、加熱帯前段〜中段で一旦酸化された鋼板表面を、次のC帯加熱内でロールと反応しピックアップが起こらない範囲まで還元処理する。O2が0.1%以上では還元出来ないのでO2は0.1%未満とする。H2Oは還元しすぎないようにするために1%以上とする。加熱温度は、600℃未満は還元しにくく、850℃越えは加熱コストかかるため、600℃以上850℃以下とする。
B-Band Heating Heating in the B-band is most important in the present invention in order to suppress the pressing and ensure a beautiful appearance. Therefore, in the B-band heating, it is possible to reduce the surface of the steel plate once oxidized, and heating is performed under conditions where pick-up does not occur, that is, low-temperature reduction heating in a low O 2 concentration atmosphere. The steel plate surface once oxidized in the middle stage is reduced to the extent that it reacts with the roll and does not pick up in the next C-band heating. If O 2 is 0.1% or more, it cannot be reduced, so O 2 should be less than 0.1%. H 2 O is made 1% or more so as not to reduce too much. Heating temperatures below 600 ° C are difficult to reduce, and heating temperatures above 850 ° C require heating costs.

以上のように、加熱帯は、上記条件を満たすために少なくてもA帯とB帯の2zone以上に分割されていることが必要である。なお、A帯加熱とB帯加熱は別々の炉内で行うことも可能である。しかし工業的な生産性や現行の製造ラインの改善で実施すること等を考慮すると、同一炉内で、条件設定を変えて2zone以上に分割して行うことが好ましい。   As described above, the heating zone needs to be divided into at least two zones of the A zone and the B zone in order to satisfy the above conditions. In addition, it is also possible to perform A zone | band heating and B zone | band heating in a separate furnace. However, in consideration of industrial productivity and improvement of the current production line, it is preferable to divide into two zones or more by changing the condition setting in the same furnace.

また、前記A帯加熱を直火バーナー(DFF)もしくは無酸化炉(NOF)により、空気比≧1の条件で行い、前記B帯加熱を直火バーナー(DFF)もしくは無酸化炉(NOF)により、空気比<1の条件で行うことが好ましい。直火バーナー(DFF)あるいは無酸化炉(NOF)は溶融亜鉛めっき炉(CGL炉)として多くに用いられており、空気比の制御も容易に行えるため、生産効率等を考慮すると、上記直火バーナー(DFF)あるいは無酸化炉(NOF)を用いるのが好ましい。また、空気比が上記条件を外れると、上記酸素濃度を外れる場合があり、本発明の効果が得れない場合があるため、前記A帯加熱では空気比≧1の条件で、B帯加熱では空気比<1の条件で行うこととする。   The A-zone heating is performed by a direct fire burner (DFF) or non-oxidizing furnace (NOF) under the condition of an air ratio ≧ 1, and the B-zone heating is performed by a direct fire burner (DFF) or non-oxidizing furnace (NOF). The air ratio is preferably less than 1. Direct fire burners (DFF) or non-oxidizing furnaces (NOF) are widely used as hot dip galvanizing furnaces (CGL furnaces), and the air ratio can be easily controlled. It is preferable to use a burner (DFF) or a non-oxidizing furnace (NOF). In addition, if the air ratio is outside the above conditions, the oxygen concentration may be outside the above range, and the effects of the present invention may not be obtained. The air ratio is less than 1.

更に、前記A帯の空気比を下記式で表されるα以上、1.5以下の条件で行い、前記B帯加熱を空気比を下記式で表されるβ以上、1.0未満で行なうことが好ましい。
α=0.3〔Si〕+〔P〕+0.65 (ただし、α≧1.0) ---(1)
β=0.05〔Si〕+0.25〔P〕+0.675 (ただし、β<1.0) ---(2)
ただし、〔Si〕、〔P〕はそれぞれ鋼板中のSi、Pのmass%を表す。
Further, it is preferable that the air ratio of the A band is performed under the condition of α or more and 1.5 or less represented by the following formula, and the B band heating is performed with the air ratio of β or more and represented by the following formula or less than 1.0.
α = 0.3 [Si] + [P] +0.65 (where α ≧ 1.0) --- (1)
β = 0.05 [Si] + 0.25 [P] + 0.675 (where β <1.0) --- (2)
However, [Si] and [P] represent mass% of Si and P in the steel sheet, respectively.

A帯では空気比を高めて、Si,Al等合金元素を添加した鋼のFeを酸化させるため、空気比は1以上であることが必要である。更に鋼中Si、Pのmass%が高くなると、Feの酸化をより促進して酸化物中のFe酸化物比を低下させないため、空気比を1を超える条件としなければ外観とめっき密着性が良好とならないことが判った。そこで、鋼中Si、Pのmass%により空気比を制御する技術を考案した。図1、2に鋼中Si、Pのmass%とめっき鋼板の外観およびめっき密着性との関係を示す。なお測定方法および評価(図中の○と△)については後述する実施例と同様であり、個々の評価材のめっき外観と密着性の評価水準(○、△、×)は同一であったので、まとめて一つの評価記号で示した。これらの特性が特に良好となる空気比の下限をαとすると、αと鋼中Si、Pのmass%との関係で上記(1)式が得られた。   In the A band, the air ratio needs to be 1 or more in order to oxidize Fe of steel added with alloy elements such as Si and Al by increasing the air ratio. Furthermore, if the mass% of Si and P in steel increases, the oxidation of Fe is further promoted and the ratio of Fe oxide in the oxide is not lowered. It turned out not to be good. Therefore, a technology to control the air ratio by mass% of Si and P in steel was devised. Figures 1 and 2 show the relationship between the mass% of Si and P in steel, the appearance of the plated steel sheet, and the plating adhesion. Note that the measurement method and evaluation (◯ and Δ in the figure) are the same as in the examples described later, and the plating appearance and adhesion evaluation level (○, Δ, ×) of each evaluation material were the same. These are shown together with one evaluation symbol. When the lower limit of the air ratio at which these characteristics are particularly good is α, the above equation (1) is obtained in relation to α and the mass% of Si and P in the steel.

B帯では空気比を低めて鋼の表面のFe酸化物を還元させるが、還元させるのはC帯でロールに接触する表面のFe酸化物を金属Feとしてロールピックアップを抑制するためであり、Fe還元量が多くなると、結果的にSi等の酸化物が表面濃化してめっき外観とめっき密着性が劣化し、A帯での酸化効果が得られなくなる。図3、4に鋼中Si、Pのmass%とめっき鋼板の外観およびめっき密着性との関係を示す。なお、測定方法および評価(図中の○と△)については上記図1、2と同様である。これらの特性が特に良好となる空気比の下限をβとすると、βと鋼中Si、Pのmass%との関係で上記(2)式が得られた。   In the B zone, the air ratio is lowered to reduce the Fe oxide on the steel surface. However, the reduction is to suppress the roll pickup by using the Fe oxide on the surface in contact with the roll as the metal Fe in the C zone. When the amount of reduction increases, as a result, oxides such as Si are concentrated on the surface and the plating appearance and plating adhesion deteriorate, and the oxidation effect in the A band cannot be obtained. Figures 3 and 4 show the relationship between the mass% of Si and P in steel, the appearance of the plated steel sheet, and the plating adhesion. The measurement method and evaluation (◯ and Δ in the figure) are the same as those in FIGS. When the lower limit of the air ratio at which these characteristics are particularly favorable is β, the above equation (2) is obtained in relation to β and mass% of Si and P in steel.

また、B帯加熱後の鋼鈑最表面は、主としてFe系酸化スケールで構成されている。この最表面において、FeOの生成比率を低く制御することで、C帯加熱におけるピックアップをより確実に防止できる。FeO(ウスタイト:融点1370℃)はFe2O3(ヘマタイト:融点1550℃)、Fe3O4(マグネタイト:融点1538℃)、Fe(鉄:融点1535℃)と比較して、融点が低く、高温でロールと焼結しやすく、他のFe系酸化スケールと比較してピックアップが発生しやすい。そのため、FeOの生成比率を低くすることでピックアップをより一層抑制できることになる。以上の理由により、本発明においては、FeOの生成比率は30%以下とすることが好ましい。なお、酸化スケール組成の分析方法は、C帯加熱およびめっき浴を空通しにしてB帯加熱を出たままの鋼板を採取し、X線回折法で定量する方法が挙げられる。定量に当たり標準サンプルの測定結果を基にすることで各酸化物の組成構成比を求めることができる。また、B帯加熱出側にX線回折装置を設置し、各スケールの特定の面方位のX線強度をオンラインで測定することから酸化スケールの組成を求めることも可能である。 In addition, the outermost surface of the steel plate after B-band heating is mainly composed of an Fe-based oxide scale. By controlling the FeO generation ratio to be low on the outermost surface, pickup in C-band heating can be more reliably prevented. FeO (wustite: melting point 1370 ° C) has a lower melting point than Fe 2 O 3 (hematite: melting point 1550 ° C), Fe 3 O 4 (magnetite: melting point 1538 ° C), Fe (iron: melting point 1535 ° C), It is easy to sinter with rolls at high temperatures, and pick-up is likely to occur compared to other Fe-based oxide scales. Therefore, the pickup can be further suppressed by lowering the FeO generation ratio. For the reasons described above, in the present invention, the FeO production ratio is preferably 30% or less. In addition, the analysis method of an oxide scale composition includes a method in which a C-band heating and a plating bath are evacuated, a steel plate that has been left with B-band heating is collected, and quantified by an X-ray diffraction method. The compositional composition ratio of each oxide can be obtained based on the measurement result of the standard sample for quantification. It is also possible to determine the composition of the oxide scale by installing an X-ray diffractometer on the B-band heating outlet side and measuring the X-ray intensity of a specific plane orientation of each scale online.

C帯加熱
加熱帯の直後に設置され、還元処理を行う。そのため、還元帯における雰囲気はH2は1%以上50%以下とする。また、露点は0℃以下とする。この条件をはずれると加熱帯で生成した酸化スケールが還元しにくいため、めっき密着性を確保するに十分な酸化スケールや、内部酸化、窒化物が生成しても、かえってめっき特性が劣化する傾向が見られる。また、H2が50%超えではコストアップにつながる。また、露点が-60℃未満では工業的に実施が困難であるため、露点は-60℃以上が好ましい。
It is installed immediately after the C zone heating and heating zone and performs a reduction treatment. For this reason, the atmosphere in the reduction zone has H 2 in the range of 1% to 50%. The dew point is 0 ° C or less. If this condition is not met, the oxide scale generated in the heating zone is difficult to reduce, so even if sufficient oxide scale, internal oxidation, or nitride is generated to ensure plating adhesion, the plating characteristics tend to deteriorate. It can be seen. Also, if H 2 exceeds 50%, the cost will increase. Moreover, since it is difficult to implement industrially when the dew point is less than -60 ° C, the dew point is preferably -60 ° C or higher.

また、B帯で形成された酸化皮膜をC帯で完全に還元するためには、C帯加熱後の鋼板において、最表面から深さ方向5μmまでの領域にFeO、Fe2O3、Fe3O4を含有しないようにすることが重要である。このように制御することで、ピックアップの発生をより一層抑制し、めっき後の合金化反応が促進される。FeO、Fe2O3、Fe3O4のような酸化物が鋼板表層に残存していると、当然ピックアップが発生しやすく、さらに、Fe-Zn拡散反応である合金化の障壁にもなるため、合金化処理を行う場合には問題がある。合金化処理しない場合であっても酸化物が起点となって曲げ加工時におけるめっき密着性が劣化する。なお、酸化スケールの残存の確認は、めっき浴を空通しして採取した鋼板の最表面から5μmまでの領域をXRDで測定することで確認可能である。この方法で上記酸化鉄のピークが検出されなければ問題ない。必要に応じてEPMAを併用しても良い。さらに、めっき後の鋼板断面を分析することでも、酸化鉄残存の有無を確認することも可能である。 In order to completely reduce the oxide film formed in the B band in the C band, FeO, Fe 2 O 3 , Fe 3 in the region from the outermost surface to the depth direction of 5 μm in the steel sheet after the C band is heated. It is important not to contain O 4 . By controlling in this way, generation | occurrence | production of a pickup is suppressed further and the alloying reaction after plating is accelerated | stimulated. If oxides such as FeO, Fe 2 O 3 , and Fe 3 O 4 remain on the surface of the steel sheet, naturally pick-up is likely to occur, and it also becomes a barrier to alloying that is a Fe-Zn diffusion reaction. There is a problem when alloying is performed. Even when the alloying treatment is not performed, the adhesion of the plating during bending is deteriorated starting from the oxide. The remaining oxide scale can be confirmed by measuring the region from the outermost surface of the steel sheet taken through the plating bath to 5 μm by XRD. If the iron oxide peak is not detected by this method, there is no problem. You may use EPMA together as needed. Furthermore, the presence or absence of iron oxide can also be confirmed by analyzing the cross section of the steel sheet after plating.

さらに、上記条件における酸化、特に均一でムラのない酸化を促進するため、本発明においては、A帯加熱を行う前に、Sを含む溶液を鋼板に塗布し、鋼板表面にSを10〜1000mg/m2付着させることが好ましい。Sを事前に鋼板表面に塗布することで鋼板表面の酸化を促進する効果がある。この時、10 mg/m2を下回ると酸化ムラが発生し易い。一方、1000 mg/m2を超えると効果がかえって得られにくくなる。 Furthermore, in order to promote oxidation under the above conditions, particularly uniform and non-uniform oxidation, in the present invention, before performing A-band heating, a solution containing S is applied to the steel sheet, and 10 to 1000 mg of S is applied to the steel sheet surface. It is preferable to attach / m 2 . By applying S to the steel plate surface in advance, there is an effect of promoting oxidation of the steel plate surface. At this time, if it is less than 10 mg / m 2 , uneven oxidation tends to occur. On the other hand, when it exceeds 1000 mg / m 2 , the effect is hardly obtained.

上記3工程(A帯加熱〜C帯加熱)による加熱後、溶融亜鉛めっき処理を施す
溶融亜鉛めっき鋼板の製造には浴温440〜550℃、浴中Al濃度が0.14〜0.24%の亜鉛めっき浴を、合金化溶融亜鉛めっき鋼板の製造には浴温440〜550℃、浴中Al濃度が0.10〜0.20%の亜鉛めっき浴を用いる。浴温が440℃未満では浴内における温度ばらつきが大きい場所ではZnの凝固が起こる可能性があるため不適であり、550℃を越えると浴の蒸発が激しく操業コストや気化したZnが炉内へ付着するため、操業上問題がある。さらにめっき時に合金化が進行するため、過合金になりやすい。
For the production of hot-dip galvanized steel sheets that are hot-dip galvanized after heating in the above three steps (A-band heating to C-band heating), a galvanizing bath with a bath temperature of 440 to 550 ° C and an Al concentration in the bath of 0.14 to 0.24% In the production of the alloyed hot-dip galvanized steel sheet, a zinc plating bath having a bath temperature of 440 to 550 ° C. and an Al concentration in the bath of 0.10 to 0.20% is used. If the bath temperature is less than 440 ° C, there is a possibility that the solidification of Zn may occur in places where the temperature variation in the bath is large. There are operational problems due to adhesion. Furthermore, since alloying proceeds during plating, it tends to be overalloyed.

合金化処理を伴わない場合の浴中Al濃度は、0.14〜0.24%程度が好ましい。0.14%未満では、めっき時にFe-Zn合金化反応が進行して外観ムラが発生する。0.24%超えでは、めっき時にめっき層中のめっき/地鉄界面に生成するFe-Al合金層が厚く生成するため、溶接性が劣化する。また浴中Alが多いためめっき鋼板表面にAl酸化皮膜が多量に生成し、溶接性だけでなく外観性も大きく劣化する。   When the alloying treatment is not performed, the Al concentration in the bath is preferably about 0.14 to 0.24%. If it is less than 0.14%, the Fe—Zn alloying reaction proceeds during plating, resulting in uneven appearance. If it exceeds 0.24%, the Fe-Al alloy layer formed at the plating / base metal interface in the plating layer during plating is formed thick, so that the weldability deteriorates. Also, since there is a lot of Al in the bath, a large amount of Al oxide film is formed on the surface of the plated steel sheet, and not only the weldability but also the appearance is greatly deteriorated.

合金化処理する際の浴中Al濃度は、0.10〜0.20%程度が好ましい。0.10%未満だと、めっき時に、めっき/地鉄界面に固くて脆いFe-Zn合金層が生成するため、めっき密着性が劣化する。0.20%越えだと、めっき直後に、めっき/地鉄界面に生成するFe-Al合金層が厚く成長するため、溶接性が劣化する。   The Al concentration in the bath during the alloying treatment is preferably about 0.10 to 0.20%. If it is less than 0.10%, a hard and brittle Fe-Zn alloy layer is formed at the plating / base metal interface at the time of plating, so that the plating adhesion deteriorates. If it exceeds 0.20%, the Fe—Al alloy layer formed at the plating / base metal interface grows thick immediately after plating, so the weldability deteriorates.

まためっき浴には、耐食性を向上させるために浴中にMgを添加させても良い。本技術は溶融亜鉛めっきだけでなく、溶融Al、溶融Zn-5%Al、溶融Zn-55%Alめっき等にも同様に適用可能である。   In addition, Mg may be added to the plating bath to improve the corrosion resistance. This technique can be applied not only to hot dip galvanizing but also to hot dip Al, hot dip Zn-5% Al, hot dip Zn-55% Al plating, and the like.

合金化処理は460℃より高く、570℃未満で行うのが最適である。460℃以下では合金化進行が遅く、570℃以上では過合金により地鉄界面に生成する固くて脆いZn-Fe合金層が生成しすぎてめっき密着性が劣化するだけでなく、残留オーステナイト相が分解するため、強度延性バランスも劣化する。めっき付着量は特に定めないが、耐食性及びめっき付着量制御上10g/m2以上が好ましく、加工性の観点から120g/m2以下が好ましい。 The alloying process is optimally performed at a temperature higher than 460 ° C. and lower than 570 ° C. Below 460 ° C, alloying progresses slowly, and at 570 ° C and above, not only does the hard and brittle Zn-Fe alloy layer formed at the iron-iron interface due to overalloying deteriorate the plating adhesion, but also the residual austenite phase Since it decomposes, the strength ductility balance also deteriorates. The plating adhesion amount is not particularly defined, but is preferably 10 g / m 2 or more from the viewpoint of corrosion resistance and plating adhesion amount, and preferably 120 g / m 2 or less from the viewpoint of workability.

以下、本発明を、実施例に基づいて具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

表1に示す鋼組成のスラブを加熱炉にて1260℃、60分加熱し、引き続き2.8mmまで熱間圧延を施して540℃で巻き取った。次いで、酸洗で黒皮スケールを除去して、1.6mmまで冷間圧延した。その後、4zoneに分割された加熱帯を有するDFF型もしくはNOF型CGLを用いて、酸化条件を表2に示す範囲に変更して加熱処理(A帯加熱&B帯加熱)を行った後に、表2に示す条件にて焼鈍(C帯加熱)を行った。引き続き、460℃のAl含有Znにて溶融亜鉛めっきを施し、次いで、合金化処理を行い溶融亜鉛めっき鋼板を得た。なお、浴中Al濃度は、0.08〜0.20%Al含有Zn浴を用いた。付着量はガスワイピングにより片面当たり40g/m2に調節した。合金化処理は500〜580℃で行った。また、C帯加熱およびめっき処理を行わず、C帯加熱およびめっき浴を空通しして鋼板を採取することでB帯加熱後の鋼板を得た。また、めっき処理を行わず、めっき浴のみを空通しして鋼板を採取することでC帯加熱後の鋼板を得た。これらの鋼板をX線回折法で定量し、Fe、FeO、Fe2O3、Fe3O4の有無や生成量を確認した。 A slab having a steel composition shown in Table 1 was heated in a heating furnace at 1260 ° C. for 60 minutes, subsequently hot-rolled to 2.8 mm and wound at 540 ° C. Next, the black scale was removed by pickling and cold rolled to 1.6 mm. Then, using DFF type or NOF type CGL having a heating zone divided into 4 zones, changing the oxidation conditions to the range shown in Table 2 and performing heat treatment (A zone heating & B zone heating), Table 2 Annealing (C-band heating) was performed under the conditions shown in FIG. Subsequently, hot dip galvanizing was performed with Al-containing Zn at 460 ° C., followed by alloying treatment to obtain a hot dip galvanized steel sheet. In addition, 0.08 to 0.20% Al-containing Zn bath was used as the Al concentration in the bath. The amount of adhesion was adjusted to 40 g / m 2 per side by gas wiping. The alloying treatment was performed at 500 to 580 ° C. Moreover, the steel sheet after B-band heating was obtained by performing C-band heating and plating bath without performing C-band heating and plating treatment, and collecting the steel sheet. Moreover, the steel plate after heating C zone | band was obtained by emptying only a plating bath and extracting a steel plate, without performing a plating process. These steel sheets were quantified by an X-ray diffraction method, and the presence and amount of Fe, FeO, Fe 2 O 3 and Fe 3 O 4 were confirmed.

Figure 2007291498
Figure 2007291498

以上により得られた溶融亜鉛めっき鋼板に対して、下記に示す方法にてめっき外観およびまっき密着性を調査した。得られた結果を条件と併せて表2に示す。
<めっき外観>
不めっきや押し疵などの外観不良の有無を目視にて判断し、外観不良がない場合は特に良好(○)、外観不良がわずかにあるがおおむね良好である場合には良好(△)、外観不良がある場合には不良(×)と判定した。
<めっき密着性>
合金化溶融亜鉛めっき鋼板にセロテープ(登録商標)を貼り、テープ面を90℃曲げ曲げ戻しをしたときの単位長さ当たりの剥離量を、蛍光X線によるZnカウント数として測定し、下記基準に照らしてランク1、2のものを特に良好(○)良好(△)、3以上の物を不良(×)として評価した。
蛍光X線カウント数 ランク
0-500 1(良)
500-1000 2
1000-2000 3
2000-3000 4
3000以上 5(劣)
合金化していない溶融亜鉛めっき鋼板については、ボールインパクト試験を行い、加工部をセロテープ(登録商標)剥離し、めっき層剥離の有無を目視判定することでめっき密着性を評価した。
With respect to the hot dip galvanized steel sheet obtained as described above, the plating appearance and the tight adhesion were investigated by the method described below. The obtained results are shown in Table 2 together with the conditions.
<Plating appearance>
Judging by visual inspection for appearance defects such as non-plating and push rods, it is particularly good (○) when there is no appearance defect, good (△) when there is a slight appearance defect but generally good, and appearance When there was a defect, it was determined as a defect (x).
<Plating adhesion>
Measure the amount of peel per unit length when cellotape (registered trademark) is applied to an alloyed hot-dip galvanized steel sheet and the tape surface is bent and bent back at 90 ° C as the Zn count by fluorescent X-ray. In light of this, those with ranks 1 and 2 were evaluated as particularly good (◯), good (Δ), and three or more as bad (x).
X-ray fluorescence count rank
0-500 1 (good)
500-1000 2
1000-2000 3
2000-3000 4
3000 or more 5 (poor)
About the hot-dip galvanized steel sheet which is not alloyed, the ball impact test was performed, the processed part was peeled off with cello tape (registered trademark), and the plating adhesion was evaluated by visually judging the presence or absence of peeling of the plating layer.

○:めっき層の剥離なし
×:めっき層が剥離
○: Plating layer is not peeled ×: Plating layer is peeled

Figure 2007291498
Figure 2007291498

表2より、本発明の(合金化)溶融亜鉛めっき鋼板はAl及びSiを含有するにも関わらず、不めっきのなく美麗な表面外観を有しめっき密着性に優れていることがわかる。特に、めっき特性の改善が難しいとされる低Mn/Si鋼においても、めっき性が改善され、優れためっき外観と密着性を有している。   From Table 2, it can be seen that the (alloyed) hot dip galvanized steel sheet of the present invention has a beautiful surface appearance without unplating and excellent plating adhesion despite containing Al and Si. In particular, even in the low Mn / Si steel, which is considered difficult to improve the plating characteristics, the plating properties are improved, and it has excellent plating appearance and adhesion.

実施例1と同様に、表3に示す鋼組成のスラブを加熱炉にて1260℃、60分加熱し、引き続き2.8mmまで熱間圧延を施して540℃で巻き取った。次いで、酸洗で黒皮スケールを除去して、1.6mmまで冷間圧延した。その後、4zoneに分割された加熱帯を有するDFF型もしくはNOF型CGLを用いて、酸化条件を表3に示す範囲に変更して加熱処理(A帯加熱&B帯加熱)を行った後に、表3に示す条件にて焼鈍(C帯加熱)を行った。引き続き、460℃のAl含有Znにて溶融亜鉛めっきを施し、次いで、合金化処理を行い溶融亜鉛めっき鋼板を得た。なお、浴中Al濃度は、0.08〜0.20%Al含有Zn浴を用いた。付着量はガスワイピングにより片面当たり40g/m2に調節した。合金化処理は500〜580℃で行った。以上により得られた溶融亜鉛めっき鋼板に対して、実施例1と同様の方法にてめっき外観およびめっき密着性を調査した。得られた結果を条件と併せて表3に示す。 As in Example 1, a slab having a steel composition shown in Table 3 was heated in a heating furnace at 1260 ° C. for 60 minutes, subsequently hot-rolled to 2.8 mm and wound at 540 ° C. Next, the black scale was removed by pickling and cold rolled to 1.6 mm. After that, using a DFF type or NOF type CGL having a heating zone divided into 4 zones, the oxidation conditions were changed to the ranges shown in Table 3 and heat treatment (A zone heating & B zone heating) was performed. Annealing (C-band heating) was performed under the conditions shown in FIG. Subsequently, hot dip galvanizing was performed with Al-containing Zn at 460 ° C., followed by alloying treatment to obtain a hot dip galvanized steel sheet. In addition, 0.08 to 0.20% Al-containing Zn bath was used as the Al concentration in the bath. The amount of adhesion was adjusted to 40 g / m 2 per side by gas wiping. The alloying treatment was performed at 500 to 580 ° C. With respect to the hot-dip galvanized steel sheet obtained as described above, the plating appearance and the plating adhesion were investigated in the same manner as in Example 1. The obtained results are shown in Table 3 together with the conditions.

Figure 2007291498
Figure 2007291498

表3より、A帯、B帯の空気比を最適に調整することにより、本発明の合金化溶融亜鉛めっき鋼板ではAl及びSiを含有するにも関わらず、特に美麗な表面外観とめっき密着性を有していることがわかる。   From Table 3, by adjusting the air ratios of the A and B bands optimally, the alloyed hot-dip galvanized steel sheet of the present invention contains Al and Si, but has a particularly beautiful surface appearance and plating adhesion. It can be seen that

機械的特性が良好であり、かつ、めっき外観、めっき密着性にも優れているため、自動車、家電、建材等の分野を中心に、幅広い用途での使用が見込まれる。   Since it has good mechanical properties and is excellent in plating appearance and plating adhesion, it is expected to be used in a wide range of applications, especially in the fields of automobiles, home appliances, building materials, and the like.

鋼中Si、P含有率とA帯加熱での適正空気比下限αとの関係を示す図である。It is a figure which shows the relationship between Si and P content rate in steel, and the appropriate air ratio minimum (alpha) in A zone | band heating. 鋼中Si、P含有率とA帯加熱での適正空気比下限αとの関係を示す図である。It is a figure which shows the relationship between Si and P content rate in steel, and the appropriate air ratio minimum (alpha) in A zone | band heating. 鋼中Si、P含有率とB帯加熱での適正空気比下限βとの関係を示す図である。It is a figure which shows the relationship between Si, P content rate in steel, and the appropriate air ratio lower limit (beta) in B zone heating. 鋼中Si、P含有率とB帯加熱での適正空気比下限βとの関係を示す図である。It is a figure which shows the relationship between Si, P content rate in steel, and the appropriate air ratio lower limit (beta) in B zone heating.

Claims (7)

mass%で、C:0.25%以下、Si:0.1〜3.0%、Mn:0.5〜3.0%、Al:0.01〜3%を含み、Mn/Si比が2以下である鋼板に溶融亜鉛めっきを施すに際し、
鋼板を
O2≧0.1%、H2O≧1%を含有する雰囲気中で、400〜750℃の温度で加熱(A帯加熱)し、
次いで、O2<0.1%、H2O≧1%を含有する雰囲気中で、600〜850℃の温度で加熱(B帯加熱)し、
次いで、H2=1〜50%を含み露点が0℃以下の雰囲気中で、加熱(C帯加熱)した後、
溶融亜鉛めっき処理を施すことを特徴とする外観性とめっき密着性に優れる高強度溶融亜鉛めっき鋼板の製造方法。
When hot-dip galvanizing is applied to a steel sheet containing mass%, C: 0.25% or less, Si: 0.1-3.0%, Mn: 0.5-3.0%, Al: 0.01-3%, and an Mn / Si ratio of 2 or less. ,
Steel plate
In an atmosphere containing O 2 ≧ 0.1% and H 2 O ≧ 1%, heating at a temperature of 400 to 750 ° C. (A-band heating)
Next, in an atmosphere containing O 2 <0.1% and H 2 O ≧ 1%, heating at a temperature of 600 to 850 ° C. (B-band heating)
Next, after heating (C-band heating) in an atmosphere containing H 2 = 1 to 50% and having a dew point of 0 ° C. or less,
A method for producing a high-strength hot-dip galvanized steel sheet excellent in appearance and plating adhesion, characterized by performing hot-dip galvanizing treatment.
前記A帯加熱を直火バーナー(DFF)もしくは無酸化炉(NOF)により、空気比≧1の条件で行い、前記B帯加熱を直火バーナー(DFF)もしくは無酸化炉(NOF)により、空気比<1の条件で行うことを特徴とする請求項1に記載の外観性とめっき密着性に優れる高強度溶融亜鉛めっき鋼板の製造方法。   The A-zone heating is performed by a direct fire burner (DFF) or a non-oxidizing furnace (NOF) under the condition of an air ratio ≧ 1, and the B-zone heating is performed by a direct fire burner (DFF) or a non-oxidizing furnace (NOF). The method for producing a high-strength hot-dip galvanized steel sheet having excellent appearance and plating adhesion according to claim 1, which is performed under a condition of ratio <1. 前記A帯加熱を空気比が下記式(1)で表されるα以上、1.5以下の条件で行い、前記B帯加熱を空気比が下記式(2)で表されるβ以上、1.0未満で行なうことを特徴とする請求項2に記載の外観性とめっき密着性に優れる高強度溶融亜鉛めっき鋼板の製造方法。
α=0.3〔Si〕+〔P〕+0.65 (ただし、α≧1.0) ---(1)
β=0.05〔Si〕+0.25〔P〕+0.675 ---(2)
ただし、〔Si〕、〔P〕はそれぞれ鋼板中のSi、Pのmass%を表す。
The A-band heating is performed under the condition that the air ratio is α or more and 1.5 or less represented by the following formula (1), and the B-band heating is performed with the air ratio of β or more and less than 1.0 represented by the following formula (2). 3. The method for producing a high-strength hot-dip galvanized steel sheet having excellent appearance and plating adhesion according to claim 2.
α = 0.3 [Si] + [P] +0.65 (where α ≧ 1.0) --- (1)
β = 0.05 [Si] + 0.25 [P] + 0.675 (2)
However, [Si] and [P] represent mass% of Si and P in the steel sheet, respectively.
A帯加熱を行う前に、Sを含む溶液を鋼板に塗布し、鋼板表面にSを10〜1000mg/m2付着させることを特徴とする請求項1〜3のいずれかに記載の外観性とめっき密着性に優れる高強度溶融亜鉛めっき鋼板の製造方法。 Before performing A-band heating, a solution containing S is applied to a steel sheet, and S is adhered to the steel sheet surface in an amount of 10 to 1000 mg / m 2. A method for producing a high-strength hot-dip galvanized steel sheet with excellent plating adhesion. 溶融亜鉛めっき処理後に合金化処理することを特徴とする請求項1〜4のいずれかに記載の外観性とめっき密着性に優れる高強度溶融亜鉛めっき鋼板の製造方法。   The method for producing a high-strength hot-dip galvanized steel sheet excellent in appearance and plating adhesion according to any one of claims 1 to 4, wherein the alloying treatment is performed after the hot-dip galvanizing treatment. 前記B帯加熱後の鋼鈑最表面は、mol%で、FeOが30%以下であり、Fe0、Fe2O3、Fe3O4の総和が70%以上であることを特徴とする請求項1〜5のいずれかに記載の外観性とめっき密着性に優れる高強度溶融亜鉛めっき鋼板の製造方法。 The outermost surface of the steel sheet after the B-band heating is mol%, FeO is 30% or less, and the total of Fe0, Fe 2 O 3 and Fe 3 O 4 is 70% or more. The manufacturing method of the high intensity | strength hot-dip galvanized steel plate which is excellent in the external appearance property and plating adhesiveness in any one of 1-5. 前記C帯加熱後の鋼鈑において、鋼鈑最表面から深さ方向5μmまでの領域には、FeO、Fe2O3、Fe3O4を含有しないことを特徴とする請求項1〜6のいずれかに記載の外観性とめっき密着性に優れる高強度溶融亜鉛めっき鋼鈑の製造方法。 In the steel sheet after the C-band heating, the region from the outermost surface of the steel sheet to the depth direction of 5 μm does not contain FeO, Fe 2 O 3 , or Fe 3 O 4 . The manufacturing method of the high intensity | strength hot-dip galvanized steel plate which is excellent in the external appearance property and plating adhesiveness in any one.
JP2007046792A 2006-02-28 2007-02-27 Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent appearance and plating adhesion Active JP4972775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007046792A JP4972775B2 (en) 2006-02-28 2007-02-27 Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent appearance and plating adhesion

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2006051999 2006-02-28
JP2006051999 2006-02-28
JP2006085511 2006-03-27
JP2006085511 2006-03-27
JP2007046792A JP4972775B2 (en) 2006-02-28 2007-02-27 Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent appearance and plating adhesion

Publications (2)

Publication Number Publication Date
JP2007291498A true JP2007291498A (en) 2007-11-08
JP4972775B2 JP4972775B2 (en) 2012-07-11

Family

ID=38762388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007046792A Active JP4972775B2 (en) 2006-02-28 2007-02-27 Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent appearance and plating adhesion

Country Status (1)

Country Link
JP (1) JP4972775B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059510A (en) * 2008-09-05 2010-03-18 Jfe Steel Corp Method for producing high strength hot dip galvanized steel sheet and high strength galvannealed steel sheet excellent in surface appearance and plating adhesion
JP2010132975A (en) * 2008-12-05 2010-06-17 Jfe Steel Corp Method of manufacturing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvannealed steel sheet
JP2010196083A (en) * 2009-02-23 2010-09-09 Jfe Steel Corp Method for manufacturing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvannealed steel sheet
JP2010215998A (en) * 2009-03-19 2010-09-30 Jfe Steel Corp Method for producing high strength hot dip galvanized steel sheet, and method for producing high strength hot dip galvannealed steel sheet
JP2011508824A (en) * 2007-12-20 2011-03-17 フェストアルピネ シュタール ゲーエムベーハー Method of manufacturing a coated and hardened component of steel and a coated and hardened steel strip for this method
JP2011117063A (en) * 2009-11-02 2011-06-16 Kobe Steel Ltd Method for manufacturing hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet
WO2012165661A1 (en) * 2011-06-01 2012-12-06 Jfeスチール株式会社 Process for producing high-strength hot-dip galvanized steel sheet with excellent material-quality stability, processability, and deposit appearance
WO2013157146A1 (en) 2012-04-17 2013-10-24 Jfeスチール株式会社 Method for producing alloyed hot-dip galvanized steel sheet having excellent adhesion to plating and excellent sliding properties
JP2013253322A (en) * 2008-07-30 2013-12-19 Jfe Steel Corp Method for producing high-silicon cold-rolled steel sheet excellent in chemical convertibility
WO2014017034A1 (en) * 2012-07-23 2014-01-30 Jfeスチール株式会社 Method for producing high-strength hot-dip galvanized steel sheets
WO2014091702A1 (en) 2012-12-11 2014-06-19 Jfeスチール株式会社 Production method for hot-dip galvanized steel sheet
WO2015037241A1 (en) 2013-09-12 2015-03-19 Jfeスチール株式会社 Hot-dip galvanized steel sheet and galvannealed steel sheet of excellent appearance and plating adhesiveness, and manufacturing method therefor
WO2015037242A1 (en) 2013-09-12 2015-03-19 Jfeスチール株式会社 Hot-dip galvanized steel sheet and galvannealed steel sheet of excellent appearance and plating adhesiveness, and manufacturing method therefor
WO2015087549A1 (en) 2013-12-13 2015-06-18 Jfeスチール株式会社 Method for manufacturing high-strength hot-dip galvanized steel sheet
WO2015115112A1 (en) 2014-02-03 2015-08-06 Jfeスチール株式会社 Alloyed hot-dip galvanized steel sheet and method for producing same
JP2015175040A (en) * 2014-03-17 2015-10-05 Jfeスチール株式会社 Method of manufacturing galvanized steel plate and alloyed galvanized steel plate, and galvanized steel plate and alloyed galvanized steel plate
KR101560930B1 (en) * 2013-12-20 2015-10-15 주식회사 포스코 Method for manufacturing zinc coated steel sheet having excellent coating adhesion and zinc coated steel sheet produced using the same
KR20170039733A (en) 2014-09-08 2017-04-11 제이에프이 스틸 가부시키가이샤 Method and apparatus for producing high-strength hot-dipped galvanized steel sheet
WO2018079124A1 (en) 2016-10-25 2018-05-03 Jfeスチール株式会社 Method for producing high strength hot-dip galvanized steel sheet
KR20180111931A (en) 2016-03-11 2018-10-11 제이에프이 스틸 가부시키가이샤 METHOD FOR MANUFACTURING STRENGTH OF HIGH-STRENGTH HOT WATER

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202630A (en) * 1990-11-30 1992-07-23 Nippon Steel Corp Production of hot-dip galvanized high tensile strength steel sheet of high si content excellent in adhesive strength of plating
JPH05271894A (en) * 1992-03-30 1993-10-19 Nippon Steel Corp Manufacture of high strength galvanized steel sheet
JPH0657390A (en) * 1992-08-06 1994-03-01 Sumitomo Metal Ind Ltd Production of hot dip zinc-coated steel sheet
JPH06306561A (en) * 1993-04-26 1994-11-01 Kawasaki Steel Corp Production of high tensile strength galvannealed steel sheet
JPH0892713A (en) * 1994-09-27 1996-04-09 Kawasaki Steel Corp Production of high-tensile galvanized steel plate excellent in deep drawability
JPH1150223A (en) * 1997-08-05 1999-02-23 Nkk Corp Silicon-containing high strength hot-dip galvanized steel sheet and its production
JP2000212711A (en) * 1999-01-19 2000-08-02 Nkk Corp Production of p-containing high strength galvanized steel sheet and high strength galvannealed steel sheet
JP2003096541A (en) * 2001-09-21 2003-04-03 Kawasaki Steel Corp High tensile hot dip galvanizing steel sheet and high tensile galvannealed steel sheet having excellent balance in strength and ductility, plating adhesion, and corrosion resistance
JP2004263271A (en) * 2003-03-04 2004-09-24 Jfe Steel Kk Method for manufacturing high-tensile galvanized steel plate
JP2007262464A (en) * 2006-03-28 2007-10-11 Jfe Steel Kk Method for producing hot dip galvanized steel sheet

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202630A (en) * 1990-11-30 1992-07-23 Nippon Steel Corp Production of hot-dip galvanized high tensile strength steel sheet of high si content excellent in adhesive strength of plating
JPH05271894A (en) * 1992-03-30 1993-10-19 Nippon Steel Corp Manufacture of high strength galvanized steel sheet
JPH0657390A (en) * 1992-08-06 1994-03-01 Sumitomo Metal Ind Ltd Production of hot dip zinc-coated steel sheet
JPH06306561A (en) * 1993-04-26 1994-11-01 Kawasaki Steel Corp Production of high tensile strength galvannealed steel sheet
JPH0892713A (en) * 1994-09-27 1996-04-09 Kawasaki Steel Corp Production of high-tensile galvanized steel plate excellent in deep drawability
JPH1150223A (en) * 1997-08-05 1999-02-23 Nkk Corp Silicon-containing high strength hot-dip galvanized steel sheet and its production
JP2000212711A (en) * 1999-01-19 2000-08-02 Nkk Corp Production of p-containing high strength galvanized steel sheet and high strength galvannealed steel sheet
JP2003096541A (en) * 2001-09-21 2003-04-03 Kawasaki Steel Corp High tensile hot dip galvanizing steel sheet and high tensile galvannealed steel sheet having excellent balance in strength and ductility, plating adhesion, and corrosion resistance
JP2004263271A (en) * 2003-03-04 2004-09-24 Jfe Steel Kk Method for manufacturing high-tensile galvanized steel plate
JP2007262464A (en) * 2006-03-28 2007-10-11 Jfe Steel Kk Method for producing hot dip galvanized steel sheet

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508824A (en) * 2007-12-20 2011-03-17 フェストアルピネ シュタール ゲーエムベーハー Method of manufacturing a coated and hardened component of steel and a coated and hardened steel strip for this method
US9090951B2 (en) 2007-12-20 2015-07-28 Voestalpine Stahl Gmbh Method for producing coated and hardened components of steel and coated and hardened steel strip therefor
JP2013253322A (en) * 2008-07-30 2013-12-19 Jfe Steel Corp Method for producing high-silicon cold-rolled steel sheet excellent in chemical convertibility
JP2010059510A (en) * 2008-09-05 2010-03-18 Jfe Steel Corp Method for producing high strength hot dip galvanized steel sheet and high strength galvannealed steel sheet excellent in surface appearance and plating adhesion
JP2010132975A (en) * 2008-12-05 2010-06-17 Jfe Steel Corp Method of manufacturing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvannealed steel sheet
JP2010196083A (en) * 2009-02-23 2010-09-09 Jfe Steel Corp Method for manufacturing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvannealed steel sheet
JP2010215998A (en) * 2009-03-19 2010-09-30 Jfe Steel Corp Method for producing high strength hot dip galvanized steel sheet, and method for producing high strength hot dip galvannealed steel sheet
JP2011117063A (en) * 2009-11-02 2011-06-16 Kobe Steel Ltd Method for manufacturing hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet
WO2012165661A1 (en) * 2011-06-01 2012-12-06 Jfeスチール株式会社 Process for producing high-strength hot-dip galvanized steel sheet with excellent material-quality stability, processability, and deposit appearance
TWI493054B (en) * 2011-06-01 2015-07-21 Jfe Steel Corp A method for producing a high-strength galvanized steel sheet excellent in material stability, workability and plating appearance
CN103597102B (en) * 2011-06-01 2016-05-04 杰富意钢铁株式会社 The manufacture method of the good high-strength hot-dip zinc-coated steel sheet of stable material quality, processability and Deposit appearance
CN103597102A (en) * 2011-06-01 2014-02-19 杰富意钢铁株式会社 Process for producing high-strength hot-dip galvanized steel sheet with excellent material-quality stability, processability, and deposit appearance
KR101585311B1 (en) 2011-06-01 2016-01-13 제이에프이 스틸 가부시키가이샤 Method for manufacturing high strength galvanized steel sheet having excellent stability of mechanical properties, formability, and coating appearance
US9340859B2 (en) 2011-06-01 2016-05-17 Jfe Steel Corporation Method for manufacturing high strength galvanized steel sheet having excellent stability of mechanical properties, formability, and coating appearance
EP2840161A1 (en) * 2012-04-17 2015-02-25 JFE Steel Corporation Method for producing alloyed hot-dip galvanized steel sheet having excellent adhesion to plating and excellent sliding properties
CN104245996A (en) * 2012-04-17 2014-12-24 杰富意钢铁株式会社 Method for producing alloyed hot-dip galvanized steel sheet having excellent adhesion to plating and excellent sliding properties
CN104245996B (en) * 2012-04-17 2017-06-13 杰富意钢铁株式会社 The manufacture method of coating adaptation and the excellent alloyed hot-dip galvanized steel sheet of sliding properties
KR101657862B1 (en) * 2012-04-17 2016-09-19 제이에프이 스틸 가부시키가이샤 Method for producing alloyed hot-dip galvanized steel sheet having excellent adhesion to plating and excellent sliding properties
EP2840161A4 (en) * 2012-04-17 2015-04-29 Jfe Steel Corp Method for producing alloyed hot-dip galvanized steel sheet having excellent adhesion to plating and excellent sliding properties
KR20140138245A (en) 2012-04-17 2014-12-03 제이에프이 스틸 가부시키가이샤 Method for producing alloyed hot-dip galvanized steel sheet having excellent adhesion to plating and excellent sliding properties
WO2013157146A1 (en) 2012-04-17 2013-10-24 Jfeスチール株式会社 Method for producing alloyed hot-dip galvanized steel sheet having excellent adhesion to plating and excellent sliding properties
JP2014019935A (en) * 2012-07-23 2014-02-03 Jfe Steel Corp Method for producing high strength hot-dip galvanized steel sheet excellent in surface stability
WO2014017034A1 (en) * 2012-07-23 2014-01-30 Jfeスチール株式会社 Method for producing high-strength hot-dip galvanized steel sheets
US9677148B2 (en) 2012-12-11 2017-06-13 Jfe Steel Corporation Method for manufacturing galvanized steel sheet
EP2933351A4 (en) * 2012-12-11 2016-01-27 Jfe Steel Corp Production method for hot-dip galvanized steel sheet
KR20150079981A (en) 2012-12-11 2015-07-08 제이에프이 스틸 가부시키가이샤 Production method for hot-dip galvanized steel sheet
WO2014091702A1 (en) 2012-12-11 2014-06-19 Jfeスチール株式会社 Production method for hot-dip galvanized steel sheet
WO2015037242A1 (en) 2013-09-12 2015-03-19 Jfeスチール株式会社 Hot-dip galvanized steel sheet and galvannealed steel sheet of excellent appearance and plating adhesiveness, and manufacturing method therefor
US9932659B2 (en) 2013-09-12 2018-04-03 Jfe Steel Corporation Hot-dip galvanized steel sheets and galvannealed steel sheets that have good appearance and adhesion to coating and methods for producing the same (as amended)
US9873934B2 (en) 2013-09-12 2018-01-23 Jfe Steel Corporation Hot-dip galvanized steel sheets and galvannealed steel sheets that have good appearance and adhesion to coating and methods for producing the same
WO2015037241A1 (en) 2013-09-12 2015-03-19 Jfeスチール株式会社 Hot-dip galvanized steel sheet and galvannealed steel sheet of excellent appearance and plating adhesiveness, and manufacturing method therefor
KR20160071423A (en) 2013-12-13 2016-06-21 제이에프이 스틸 가부시키가이샤 Method for manufacturing high-strength hot-dip galvanized steel sheet
WO2015087549A1 (en) 2013-12-13 2015-06-18 Jfeスチール株式会社 Method for manufacturing high-strength hot-dip galvanized steel sheet
EP3081665A4 (en) * 2013-12-13 2017-01-25 JFE Steel Corporation Method for manufacturing high-strength hot-dip galvanized steel sheet
US10138530B2 (en) 2013-12-13 2018-11-27 Jfe Steel Corporation Method for producing high-strength galvannealed steel sheets
KR101560930B1 (en) * 2013-12-20 2015-10-15 주식회사 포스코 Method for manufacturing zinc coated steel sheet having excellent coating adhesion and zinc coated steel sheet produced using the same
US10023933B2 (en) 2014-02-03 2018-07-17 Jfe Steel Corporation Galvannealed steel sheet and method for producing the same
WO2015115112A1 (en) 2014-02-03 2015-08-06 Jfeスチール株式会社 Alloyed hot-dip galvanized steel sheet and method for producing same
KR20160117585A (en) 2014-02-03 2016-10-10 제이에프이 스틸 가부시키가이샤 Alloyed hot-dip galvanized steel sheet and method for producing same
JP2015175040A (en) * 2014-03-17 2015-10-05 Jfeスチール株式会社 Method of manufacturing galvanized steel plate and alloyed galvanized steel plate, and galvanized steel plate and alloyed galvanized steel plate
EP3159420A4 (en) * 2014-09-08 2017-07-26 JFE Steel Corporation Method and apparatus for producing high-strength hot-dipped galvanized steel sheet
US10648054B2 (en) 2014-09-08 2020-05-12 Jfe Steel Corporation Method and facility for producing high-strength galavanized steel sheets
KR20170039733A (en) 2014-09-08 2017-04-11 제이에프이 스틸 가부시키가이샤 Method and apparatus for producing high-strength hot-dipped galvanized steel sheet
KR20180111931A (en) 2016-03-11 2018-10-11 제이에프이 스틸 가부시키가이샤 METHOD FOR MANUFACTURING STRENGTH OF HIGH-STRENGTH HOT WATER
US10988836B2 (en) 2016-03-11 2021-04-27 Jfe Steel Corporation Method for producing high-strength galvanized steel sheet
WO2018079124A1 (en) 2016-10-25 2018-05-03 Jfeスチール株式会社 Method for producing high strength hot-dip galvanized steel sheet
KR20190057335A (en) 2016-10-25 2019-05-28 제이에프이 스틸 가부시키가이샤 METHOD FOR MANUFACTURING STRENGTH OF HIGH-STRENGTH HOT WATER
US11535922B2 (en) 2016-10-25 2022-12-27 Jfe Steel Corporation Method for manufacturing high-strength galvanized steel sheet

Also Published As

Publication number Publication date
JP4972775B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP4972775B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent appearance and plating adhesion
JP5206705B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5720856B2 (en) Galvanized steel sheet for hot forming
JP5799997B2 (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet excellent in appearance and plating adhesion, and methods for producing them
JP5799996B2 (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet excellent in appearance and plating adhesion, and methods for producing them
JP5417797B2 (en) High strength hot dip galvanized steel sheet and method for producing the same
JP5513216B2 (en) Method for producing galvannealed steel sheet
JP5799819B2 (en) Method for producing hot-dip galvanized steel sheet with excellent plating wettability and pick-up resistance
JP5842942B2 (en) Alloyed hot-dip galvanized steel sheet with excellent plating adhesion and method for producing the same
JP5564784B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet
JP5552859B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5444752B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet
JP5667363B2 (en) Hot-dip galvanized steel sheet and method for producing galvannealed steel sheet
JP5555992B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent surface appearance and plating adhesion
JP5626324B2 (en) Method for producing hot-dip galvanized steel sheet
JP6164280B2 (en) Mn-containing alloyed hot-dip galvanized steel sheet excellent in surface appearance and bendability and method for producing the same
JP5614159B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet
JP2002030403A (en) Hot dip galvannealed steel sheet and its production method
JP5556033B2 (en) Method for producing high-strength hot-dip galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

R150 Certificate of patent or registration of utility model

Ref document number: 4972775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250