JP2010196083A - Method for manufacturing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvannealed steel sheet - Google Patents

Method for manufacturing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvannealed steel sheet Download PDF

Info

Publication number
JP2010196083A
JP2010196083A JP2009039088A JP2009039088A JP2010196083A JP 2010196083 A JP2010196083 A JP 2010196083A JP 2009039088 A JP2009039088 A JP 2009039088A JP 2009039088 A JP2009039088 A JP 2009039088A JP 2010196083 A JP2010196083 A JP 2010196083A
Authority
JP
Japan
Prior art keywords
steel sheet
heating
vol
hot
galvanized steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009039088A
Other languages
Japanese (ja)
Other versions
JP5444752B2 (en
Inventor
Mai Miyata
麻衣 宮田
Yoshitsugu Suzuki
善継 鈴木
Yoshiharu Sugimoto
芳春 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009039088A priority Critical patent/JP5444752B2/en
Publication of JP2010196083A publication Critical patent/JP2010196083A/en
Application granted granted Critical
Publication of JP5444752B2 publication Critical patent/JP5444752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength hot-dip galvanized steel sheet and a high-strength hot-dip galvannealed steel sheet, which have beautiful surface appearances free from plating deficiency and are superior in plating adhesiveness, while using an Si-containing high-strength steel sheet as a base material. <P>SOLUTION: This manufacturing method includes: heating a steel sheet containing, by mass%, 0.05-0.30% C, 0.1-3.0% Si, 0.5-3.0% Mn, 0.01-3.0% Al, 0.001-0.01% S and 0.001-0.1% P to a temperature in a range of 800-900&deg;C in an atmosphere containing 1-20 vol.% O<SB>2</SB>and 1-50 vol.% H<SB>2</SB>O; subsequently heating the steel sheet to a temperature in the range of 800-900&deg;C in an atmosphere containing 0.01 or more but less than 0.1 vol.% O<SB>2</SB>and 1-20 vol.% H<SB>2</SB>O; subsequently heating the steel sheet to a temperature in the range of 800-900&deg;C in a reducing atmosphere containing 1-50 vol.% H<SB>2</SB>and having a dew point of 0&deg;C or less; and then hot-dip galvanizing the steel sheet. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、Si含有高強度鋼板を母材とする溶融亜鉛めっき鋼板の製造方法に関し、特に不めっきのない美麗な表面外観を有しめっき密着性に優れた溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板を製造する方法に関する。   The present invention relates to a method for producing a hot-dip galvanized steel sheet using a Si-containing high-strength steel sheet as a base material, and in particular, a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel that have a beautiful surface appearance without unplating and excellent plating adhesion. The present invention relates to a method for producing a plated steel sheet.

近年、自動車、家電、建材等の分野においては、素材鋼板に防錆性を付与した表面処理鋼板、中でも安価に製造できかつ防錆性に優れた溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板が使用されている。   In recent years, in the fields of automobiles, home appliances, building materials, etc., surface-treated steel sheets that give rust prevention to raw steel sheets, especially hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets that can be manufactured at low cost and have excellent rust prevention properties. in use.

一般的に、溶融亜鉛めっき鋼板は以下の方法にて製造される。まず、スラブを熱延、冷延あるいは熱処理した薄鋼板を用いて、母材鋼板表面を前処理工程にて脱脂及び/または酸洗して洗浄するか、あるいは前処理工程を省略して予熱炉内で母材鋼板表面の油分を燃焼除去した後、非酸化性雰囲気中あるいは還元性雰囲気中で加熱することで再結晶焼鈍を行う。その後、非酸化性雰囲気中あるいは還元性雰囲気中で鋼板をめっきに適した温度まで冷却して、大気に触れることなく微量Al(0.1〜0.2mass%程度)を添加した溶融亜鉛浴に浸漬めっきする。   Generally, a hot dip galvanized steel sheet is manufactured by the following method. First, using a thin steel plate obtained by hot-rolling, cold-rolling or heat-treating a slab, the base steel plate surface is degreased and / or pickled and cleaned in the pretreatment step, or the pretreatment step is omitted. After the oil on the surface of the base steel plate is burned and removed, recrystallization annealing is performed by heating in a non-oxidizing atmosphere or a reducing atmosphere. Thereafter, the steel sheet is cooled to a temperature suitable for plating in a non-oxidizing atmosphere or a reducing atmosphere, and a molten zinc bath to which a small amount of Al (about 0.1 to 0.2 mass%) is added without being exposed to the atmosphere. Dip plating.

また、合金化溶融亜鉛めっき鋼板は、溶融亜鉛めっき後、引き続き、鋼板を合金化炉内で熱処理することで製造される。   In addition, the alloyed hot-dip galvanized steel sheet is manufactured by subsequently heat-treating the steel sheet in an alloying furnace after hot-dip galvanizing.

ところで、近年、素材鋼板の高性能化とともに軽量化が推進され、素材鋼板の高強度化が求められており、防錆性を兼ね備えた高強度溶融亜鉛めっき鋼板の使用量が増加している。   By the way, in recent years, weight reduction has been promoted along with higher performance of raw steel plates, and higher strength of raw steel plates has been demanded, and the amount of high-strength hot-dip galvanized steel plates having rust prevention properties is increasing.

鋼板の高強度化にはSi、Mn、P、Al等の固溶強化元素の添加が行われる。中でもSiやAlは鋼の延性を損なわずに高強度化できる利点があり、Si含有鋼板は高強度鋼板として有望である。しかし、Siを多量に含有する高強度鋼板を母材とする溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板を製造する場合、以下の問題がある。   Addition of solid solution strengthening elements such as Si, Mn, P, and Al is performed to increase the strength of the steel sheet. Among these, Si and Al have an advantage that the strength can be increased without impairing the ductility of the steel, and the Si-containing steel plate is promising as a high-strength steel plate. However, when producing a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet that use a high-strength steel sheet containing a large amount of Si as a base material, there are the following problems.

前述のように溶融亜鉛めっき鋼板は非酸化性雰囲気中あるいは還元雰囲気中で600〜900℃程度の温度で加熱焼鈍を行った後に、溶融亜鉛めっき処理を行う。しかし、鋼中のSiは易酸化性元素であり、一般的に用いられる還元雰囲気中でも選択酸化されて、表面に濃化し酸化物を形成する。この酸化物はめっき処理時の溶融亜鉛との濡れ性を低下させて不めっきを生じさせるので、鋼中Si濃度の増加と共に濡れ性が急激に低下し不めっきが多発する。また、不めっきに至らなかった場合でも、めっき密着性に劣るという問題がある。   As described above, the hot dip galvanized steel sheet is subjected to hot dip galvanization after being heat-annealed at a temperature of about 600 to 900 ° C. in a non-oxidizing atmosphere or a reducing atmosphere. However, Si in steel is an easily oxidizable element, and is selectively oxidized even in a generally used reducing atmosphere to concentrate on the surface to form an oxide. Since this oxide reduces wettability with molten zinc during plating and causes non-plating, the wettability decreases rapidly as the Si concentration in the steel increases, resulting in frequent non-plating. In addition, even when non-plating does not occur, there is a problem that the plating adhesion is poor.

更に、鋼中のSiが選択酸化されて表面に濃化すると、溶融亜鉛めっき後の合金化過程において著しい合金化遅延が生じる。その結果、生産性を著しく阻害する。生産性を確保するために過剰に高温で合金化処理しようとすると、耐パウダリング性の劣化を招くという問題もあり、高い生産性と良好な耐パウダリング性を両立させることは困難である。   Further, when Si in the steel is selectively oxidized and concentrated on the surface, a significant alloying delay occurs in the alloying process after hot dip galvanizing. As a result, productivity is significantly inhibited. If an alloying treatment is attempted at an excessively high temperature in order to ensure productivity, there is a problem that the powdering resistance is deteriorated, and it is difficult to achieve both high productivity and good powdering resistance.

このような問題に対して、鋼板を焼鈍後に酸洗を行うことで表面の酸化物を除去し、その後、再び焼鈍し溶融亜鉛めっきを行う方法が提案されている。(例えば特許文献1)
また、予め酸化性雰囲気中で鋼板を加熱して表面に酸化鉄を形成したのち、還元焼鈍を行うことにより、溶融亜鉛との濡れ性を改善することが提案されている。(例えば特許文献2)
特許文献1に記載の技術は焼鈍を2回行い、1回目の焼鈍後に表面に生成したSiの表面濃化物を酸洗除去することによって、2回目の焼鈍時に、表面濃化物の生成を抑制しようとするものである。しかしながら、Si濃度が高い場合には酸洗では表面濃化物が除去しきれないため、上述したところと同様にめっき層の性能の問題は解決できない。更に、Siの表面濃化物を除去するための酸洗設備が新たに必要なことからコストがかかるという問題もある。
In order to solve such problems, a method has been proposed in which surface oxides are removed by pickling after annealing a steel sheet, and then annealing and hot dip galvanizing are performed again. (For example, Patent Document 1)
Further, it has been proposed to improve wettability with molten zinc by heating steel sheets in an oxidizing atmosphere in advance to form iron oxide on the surface, followed by reduction annealing. (For example, Patent Document 2)
The technique described in Patent Document 1 performs annealing twice and suppresses the formation of surface concentrate during the second annealing by pickling and removing the surface concentrate of Si generated on the surface after the first annealing. It is what. However, when the Si concentration is high, pickling cannot completely remove the surface concentrate, so that the problem of the performance of the plating layer cannot be solved as described above. Furthermore, there is another problem that the pickling equipment for removing the surface concentrate of Si is newly required, which is costly.

更に、特許文献2に記載の技術は予め酸化性雰囲気中で加熱して鋼板表面に酸化鉄を形成することによって、還元焼鈍時におけるSiの表面濃化を抑制しようとするものである。しかしながら、一般に知られているように、鋼中のSi濃度の増加に伴い鋼板表面における酸化速度が大きく低下するため、特許文献2に記載の記述のみではSiの表面濃化を抑制するために必要な量の酸化鉄を得ることは困難である。   Furthermore, the technique described in Patent Document 2 attempts to suppress Si surface concentration during reduction annealing by heating in an oxidizing atmosphere in advance to form iron oxide on the steel sheet surface. However, as is generally known, since the oxidation rate on the steel sheet surface greatly decreases with an increase in the Si concentration in the steel, it is necessary to suppress the surface concentration of Si only by the description in Patent Document 2. It is difficult to obtain an adequate amount of iron oxide.

特許第3956550号公報Japanese Patent No. 3957550 特許第2587724号公報Japanese Patent No. 2587724

本発明は、Si含有高強度鋼板を母材として、不めっきのない美麗な表面外観を有しめっき密着性に優れた溶融亜鉛めっき鋼板を製造する方法を提供し、また不めっきのない美麗な表面外観を有しめっき密着性に優れた合金化溶融亜鉛めっき鋼板を製造する方法を提供することを課題とする。   The present invention provides a method for producing a hot-dip galvanized steel sheet having a beautiful surface appearance free of non-plating and excellent plating adhesion, using a Si-containing high-strength steel sheet as a base material, and is beautiful without non-plating. It is an object of the present invention to provide a method for producing an galvannealed steel sheet having a surface appearance and excellent plating adhesion.

上記課題を解決する本発明の手段は次のとおりである。
[1]化学成分として、mass%で、C:0.05〜0.30%、Si:0.1〜3.0%、Mn:0.5〜3.0%、Al:0.01〜3.0%、S:0.001〜0.01%、P:0.001〜0.1%を含有し、残部Fe及び不可避的不純物からなる鋼板に溶融亜鉛めっきを施すに際し、O:1〜20vol%、HO:1〜50vol%を含有し、残部がN、CO、COの1種又は2種以上及び不可避的不純物からなる雰囲気中で鋼板を800〜900℃の範囲内の温度になるように加熱するA加熱工程、次いで、O:0.01vol%〜0.1vol%未満、HO:1〜20vol%以下を含有し、残部がN、CO、CO、Hの1種又は2種以上及び不可避的不純物からなる雰囲気中で鋼板を800〜900℃の範囲内の温度になるように加熱するB加熱工程、次にH:1〜50vol%を含み露点が0℃以下の還元性雰囲気中で鋼板を800〜900℃の範囲内の温度になるように加熱するC加熱工程を行った後、溶融亜鉛めっき処理を施すことを特徴とする表面外観とめっき密着性に優れる高強度溶融亜鉛めっき鋼板の製造方法。
Means of the present invention for solving the above-mentioned problems are as follows.
[1] As chemical components, in mass%, C: 0.05 to 0.30%, Si: 0.1 to 3.0%, Mn: 0.5 to 3.0%, Al: 0.01 to In performing hot-dip galvanizing on a steel sheet containing 3.0%, S: 0.001 to 0.01%, P: 0.001 to 0.1%, and the balance Fe and inevitable impurities, O 2 : 1~20vol%, H 2 O: containing 1~50vol%, the balance of N 2, CO, steel plates 800 to 900 ° C. in an atmosphere composed of one or more and incidental impurities CO 2 range a heating step of heating so that a temperature of the inner, then, O 2: less than 0.01vol% ~0.1vol%, H 2 O : containing less 1~20Vol%, the balance being N 2, CO, CO 2 and 800 steel plates in an atmosphere consisting of one or more of H 2 and inevitable impurities B heating step for heating to a temperature in the range of ˜900 ° C., then H 2 : 1-50 vol%, and the steel sheet is in the range of 800-900 ° C. in a reducing atmosphere with a dew point of 0 ° C. or less. A method for producing a high-strength hot-dip galvanized steel sheet excellent in surface appearance and plating adhesion, characterized by performing a hot-dip galvanizing treatment after performing a C heating step of heating to a temperature.

[2]前記A加熱工程は、鋼板表面に50mass%以上がヘマタイト(Fe)で、かつヘマタイトの最表面5〜100nmにMnが濃化している組織を有する酸化膜を形成することを特徴とする[1]に記載の表面外観とめっき密着性に優れる高強度溶融亜鉛めっき鋼板の製造方法。 [2] In the heating step A, an oxide film having a structure in which 50 mass% or more is hematite (Fe 2 O 3 ) and Mn is concentrated on the outermost surface of hematite 5 to 100 nm is formed on the steel sheet surface. The method for producing a high-strength hot-dip galvanized steel sheet having excellent surface appearance and plating adhesion as described in [1].

[3] [1]および[2]に記載の鋼板は、化学成分として、さらに、mass%で、Cr:0.1〜1.0%、Mo:0.1〜1.0%、Ti:0.01〜0.1%、Nb:0.01〜0.1%およびB:0.0005〜0.0050%から選ばれた1または2種以上を含有することを特徴とする[1]または[2]に記載の表面外観とめっき密着性に優れる高強度溶融亜鉛めっき鋼板の製造方法。   [3] The steel sheet according to [1] and [2] is further, as a chemical component, in mass%, Cr: 0.1 to 1.0%, Mo: 0.1 to 1.0%, Ti: One or more selected from 0.01 to 0.1%, Nb: 0.01 to 0.1%, and B: 0.0005 to 0.0050% [1] Or the manufacturing method of the high intensity | strength hot-dip galvanized steel plate which is excellent in the surface external appearance and plating adhesiveness as described in [2].

[4]前記A加熱工程を直火炉(DFF)もしくは無酸化炉(NOF)により、空気比が1以上1.35以下の条件で行い、前記B加熱工程を直火炉(DFF)もしくは無酸化炉(NOF)により空気比1未満の条件で行うことを特徴とする[1]〜[3]のいずれかの項に記載の表面外観とめっき密着性に優れる高強度溶融亜鉛めっき鋼板の製造方法。   [4] The A heating step is performed in a direct fired furnace (DFF) or a non-oxidizing furnace (NOF) under the condition of an air ratio of 1 to 1.35, and the B heating process is performed in a direct fired furnace (DFF) or a non-oxidizing furnace. The method for producing a high-strength hot-dip galvanized steel sheet having excellent surface appearance and plating adhesion as described in any one of [1] to [3], wherein the method is carried out under a condition with an air ratio of less than 1 using (NOF).

[5] [1]〜[4]のいずれかの項に記載の方法で高強度溶融亜鉛めっき鋼板を製造した後、更に合金化処理を行うことを特徴とする表面外観とめっき密着性に優れる高強度合金化溶融亜鉛めっき鋼板の製造方法。   [5] After producing a high-strength hot-dip galvanized steel sheet by the method according to any one of [1] to [4], further alloying treatment is performed, and the surface appearance and plating adhesion are excellent. A method for producing high-strength galvannealed steel sheets.

本発明の製造方法によれば、Si含有高強度鋼板を母材とした場合にあっても、不めっきのない美麗な表面外観を有しめっき密着性に優れた溶融亜鉛めっき鋼板と不めっきのない美麗な表面外観を有する合金化溶融亜鉛めっき鋼板が得られる。   According to the production method of the present invention, even when a Si-containing high-strength steel plate is used as a base material, a hot-dip galvanized steel plate having a beautiful surface appearance without unplating and excellent plating adhesion and an unplated steel An alloyed hot-dip galvanized steel sheet having a beautiful surface appearance is obtained.

A加熱工程で形成した鋼板の酸化鉄の表面から深さ方向のFe、Mn及びOのGDSプロファイルの一例を示す。An example of the GDS profile of Fe, Mn, and O in the depth direction from the surface of the iron oxide of the steel plate formed in the A heating step is shown.

前述したとおり、鋼中Si濃度の高い鋼板の場合、Siの表面濃化の除去または酸化による表面濃化の抑制技術のどちらにしても、不めっきを完全に抑制することは困難であった。鋼中Si濃度の高い鋼板に対しては、鋼板表面に形成した酸化鉄によるSiの表面濃化の抑制が効果的であると考えられるが、従来技術による酸化手段のみでは酸化が進まず、不めっき改善のために必要な量の酸化鉄を得ることが困難であった。   As described above, in the case of a steel sheet having a high Si concentration in steel, it has been difficult to completely suppress non-plating by either removing the Si surface enrichment or suppressing the surface enrichment by oxidation. For steel sheets with a high Si concentration in steel, it is considered effective to suppress the surface concentration of Si by iron oxide formed on the steel sheet surface, but oxidation does not proceed with conventional oxidation means alone, and it is not possible. It was difficult to obtain the amount of iron oxide necessary for improving plating.

発明者らは酸化鉄の量のみではなく、酸化鉄の組成にも着目し不めっきとの関係を調査した。その結果、酸化量に関しては酸化を強化して酸化鉄の量を増加させると不めっきはある程度改善されるものの、酸化量が多い場合には炉内ロールに酸化鉄が付着し鋼板に押し疵が発生する、いわゆるピックアップ現象が発生することが分かった。一方、酸化鉄の組成に関してはウスタイトが多く生成した場合に、ピックアップ現象が発生することが分かった。ウスタイトは他の酸化鉄種に比べボイドを多く含む組織となることが知られている。酸化皮膜内にボイドが多く存在すると、鋼板が炉内ロールに押し付けられた際にボイド付近から酸化鉄が剥離し、剥離した酸化鉄が炉内ロールに付着するものと考えられる。そこで、発明者らは酸化鉄の組成と組織に着目し、更に検討を重ねた結果、高温かつ酸素濃度が比較的高い場合、比較的緻密な組織を有するヘマタイトが多く存在する酸化皮膜が得られ、また、ヘマタイトが50%以上を占める場合に、ウスタイトの生成量が抑制される結果、ピックアップ現象が抑制されることが分かった。また、ヘマタイト(Fe)の最表面にMnが濃化した組織を有する酸化皮膜が形成された場合、濃化したMnが還元時に酸化皮膜内部つまり鋼板側に移動するため、表面濃化が抑制され不めっきが抑制されることが分かった。 The inventors investigated not only the amount of iron oxide but also the composition of iron oxide and investigated the relationship with non-plating. As a result, with regard to the amount of oxidation, increasing the amount of iron oxide by strengthening the oxidation improves the non-plating to some extent, but when the amount of oxidation is large, iron oxide adheres to the roll in the furnace and the steel sheet is pressed. It has been found that a so-called pickup phenomenon occurs. On the other hand, regarding the composition of iron oxide, it was found that the pick-up phenomenon occurs when a lot of wustite is generated. It is known that wustite has a structure containing more voids than other iron oxide species. If there are many voids in the oxide film, it is considered that when the steel sheet is pressed against the in-furnace roll, the iron oxide peels from the vicinity of the void and the peeled iron oxide adheres to the in-furnace roll. Therefore, the inventors focused on the composition and structure of iron oxide, and as a result of further studies, when high temperature and oxygen concentration are relatively high, an oxide film having a large amount of hematite having a relatively dense structure can be obtained. It was also found that when hematite accounts for 50% or more, the amount of wustite produced is suppressed, and as a result, the pickup phenomenon is suppressed. In addition, when an oxide film having a structure in which Mn is concentrated is formed on the outermost surface of hematite (Fe 2 O 3 ), the concentrated Mn moves to the inside of the oxide film, that is, the steel sheet side during reduction. It was found that non-plating was suppressed.

以下、本発明について具体的に説明する。   Hereinafter, the present invention will be specifically described.

まず、本発明において、鋼板の成分組成を上記の範囲に限定した理由について説明する。なお、成分に関する「%」表示は特に断らない限りmass%を意味するものとする。   First, the reason why the component composition of the steel sheet is limited to the above range in the present invention will be described. In addition, unless otherwise indicated, the "%" display regarding a component shall mean mass%.

C:0.05〜0.30%
Cはオーステナイト相を安定化させる元素であり、鋼板の強度を上昇させるために必要な元素である。C量が0.05%未満では、強度の確保が困難であり、C量が0.30%を超えると、溶接性が低下する。従って、C量は0.05〜0.30%の範囲内とする。
C: 0.05-0.30%
C is an element that stabilizes the austenite phase, and is an element necessary for increasing the strength of the steel sheet. If the C content is less than 0.05%, it is difficult to ensure the strength, and if the C content exceeds 0.30%, the weldability decreases. Therefore, the C content is in the range of 0.05 to 0.30%.

Si:0.1〜3.0%
Siは、フェライト相中の固溶Cをオーステナイト相中に濃化させ、鋼の焼戻し軟化抵抗を高めることにより鋼板の成形性を向上させる作用を有している。その効果を得るためには0.1%以上の含有量が必要である。一方、Siは鋼板の酸化を抑制する効果があり、含有量が3.0%を超えると後述する本発明の製造工程を適用しても、酸化促進が困難であるため、めっき密着性が十分に改善されず、不めっきも発生する。従って、Si量は0.1〜3.0%の範囲内とする。
Si: 0.1-3.0%
Si has the effect of improving the formability of the steel sheet by concentrating the solid solution C in the ferrite phase in the austenite phase and increasing the temper softening resistance of the steel. In order to obtain the effect, a content of 0.1% or more is necessary. On the other hand, Si has an effect of suppressing oxidation of the steel sheet, and if the content exceeds 3.0%, it is difficult to promote oxidation even if the production process of the present invention described later is applied, so that plating adhesion is sufficient. However, non-plating also occurs. Accordingly, the Si content is within the range of 0.1 to 3.0%.

Mn:0.5〜3.0%
Mnは、焼入れ性を高め鋼板の強度を高めるために有用な元素である。その効果は、0.5%未満では得られない。一方、含有量が3.0%を超えるとMnの偏析が生じ、加工性が低下する。従って、Mn量は0.5〜3.0%の範囲内とする。
Mn: 0.5 to 3.0%
Mn is an element useful for increasing the hardenability and increasing the strength of the steel sheet. The effect cannot be obtained at less than 0.5%. On the other hand, if the content exceeds 3.0%, segregation of Mn occurs and the workability decreases. Therefore, the amount of Mn is in the range of 0.5 to 3.0%.

Al:0.01〜3.0%
AlはSiと補完的に添加される元素であり、0.01%以上含有させることが好ましい。しかしながら、Al量が3.0%を超えると溶接性や強度延性バランスの確保に悪影響を及ぼす。従って、Al量は0.01〜3.0%の範囲が好ましい。
Al: 0.01 to 3.0%
Al is an element added in a complementary manner to Si, and is preferably contained in an amount of 0.01% or more. However, if the Al content exceeds 3.0%, the weldability and strength ductility balance are adversely affected. Therefore, the Al content is preferably in the range of 0.01 to 3.0%.

S:0.001〜0.01%
Sは鋼に不可避的に含有される元素であり、冷間圧延後に板状の介在物MnSを生成することにより、成形性を低下させる。S量が0.01%まではMnSは生成しないが、過度の低減は製鋼工程における脱硫コストの増加を伴う。従って、S量は0.001〜0.01%の範囲内とする。
S: 0.001 to 0.01%
S is an element inevitably contained in steel, and lowers formability by producing plate-like inclusions MnS after cold rolling. MnS is not produced until the S content is 0.01%, but excessive reduction is accompanied by an increase in desulfurization cost in the steelmaking process. Therefore, the S content is within the range of 0.001 to 0.01%.

P:0.001〜0.1%
Pは鋼に不可避的に含有される元素であり、強度向上に寄与する元素である。その反面、溶接性を低下させる元素でもあり、P量が0.1%を超えるとその影響が顕著に現れる。また一方で、過度のP低減は製鋼工程における製造コストの増加を伴う。従って、P量は0.001〜0.1%の範囲内とする。
P: 0.001 to 0.1%
P is an element inevitably contained in steel, and is an element contributing to strength improvement. On the other hand, it is also an element that deteriorates weldability, and when the amount of P exceeds 0.1%, the influence appears remarkably. On the other hand, excessive P reduction is accompanied by an increase in manufacturing cost in the steelmaking process. Therefore, the P content is within the range of 0.001 to 0.1%.

本発明では、上記の成分組成を必須成分とし、残部はFeおよび不可避的不純物であるが、必要に応じて、下記成分の1種または2種以上を適宜含有することが出来る。   In the present invention, the above component composition is an essential component, and the balance is Fe and unavoidable impurities, but if necessary, one or more of the following components can be appropriately contained.

Cr:0.1〜1.0%
Crは鋼の焼入れ性向上に有効な元素であり、この効果を得るためには、0.1%を超える添加を必要とする。また、Crはフェライト相を固溶強化し、マルテンサイト相とフェライト相の硬度差を低減して、成形性の向上に有効に寄与する。しかしながら、Cr量が1.0%を超えるとこの効果は飽和し、むしろ表面品質を著しく劣化させる。従って、Cr量は0.1〜1.0%の範囲内とする。
Cr: 0.1 to 1.0%
Cr is an element effective for improving the hardenability of steel, and in order to obtain this effect, addition exceeding 0.1% is required. Cr strengthens the ferrite phase in a solid solution, reduces the hardness difference between the martensite phase and the ferrite phase, and effectively contributes to improving the formability. However, if the Cr content exceeds 1.0%, this effect is saturated, but rather the surface quality is significantly degraded. Therefore, the Cr content is within the range of 0.1 to 1.0%.

Mo:0.1〜1.0%
Moは、鋼の焼入れ性向上に有効な元素であると共に、焼戻し二次硬化を発現させる元素でもある。この効果を得るためには0.1%以上の添加を必要とする。しかしながら、Mo量が1.0%超えると、この効果は飽和し、コストアップの要因となる。従って、Mo量は0.1〜1.0%の範囲内とする。
Mo: 0.1 to 1.0%
Mo is an element effective for improving the hardenability of steel and is an element that develops tempering secondary hardening. In order to obtain this effect, addition of 0.1% or more is required. However, if the amount of Mo exceeds 1.0%, this effect is saturated and causes an increase in cost. Therefore, the Mo amount is set within a range of 0.1 to 1.0%.

Ti:0.01〜0.1%
Tiは鋼中でCまたはNと微細炭化物や微細窒化物を形成することにより、焼鈍後の組織の細粒化および析出強化の付与に有効に作用する。この効果を得るためには0.01%以上の添加が必要である。しかしながらTi量が0.1%を超えるとこの効果が飽和する。従って、Ti量は0.01〜0.1%の範囲内とする。
Ti: 0.01 to 0.1%
Ti forms C or N and fine carbides or fine nitrides in steel, and thus effectively acts to refine the structure after annealing and to impart precipitation strengthening. In order to obtain this effect, addition of 0.01% or more is necessary. However, this effect is saturated when the Ti content exceeds 0.1%. Therefore, the Ti amount is within the range of 0.01 to 0.1%.

Nb:0.01〜0.1%
Nbは、固溶強化または析出強化により強度の向上に寄与する元素である。この効果を得るためには0.01%以上の添加を必要とする。しかしながら、0.1%を超えて含有されると、フェライトの延性を低下させ、加工性が低下する。従って、Nb量は0.01〜0.1%の範囲内とする。
Nb: 0.01 to 0.1%
Nb is an element that contributes to improvement in strength by solid solution strengthening or precipitation strengthening. In order to obtain this effect, addition of 0.01% or more is required. However, if the content exceeds 0.1%, the ductility of ferrite is lowered, and the workability is lowered. Therefore, the Nb content is in the range of 0.01 to 0.1%.

B:0.0005〜0.0050%
Bは焼入れ性を高め、焼鈍冷却中のフェライトの生成を抑制し、所望のマルテンサイト量を得るのに必要である。この効果を得るためには、B量は0.0005%以上添加する必要があるが、0.0050%を超えるとこの効果は飽和する。従って、B量は0.0005〜0.0050%の範囲内とする。
B: 0.0005 to 0.0050%
B is necessary for improving the hardenability, suppressing the formation of ferrite during annealing cooling, and obtaining a desired amount of martensite. In order to acquire this effect, it is necessary to add B amount 0.0005% or more, but if it exceeds 0.0050%, this effect will be saturated. Therefore, the B amount is within the range of 0.0005 to 0.0050%.

次に、高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板の製造方法について説明する。なお、雰囲気に関する「%」表示は特に断らない限りvol%を意味するものとする。   Next, the manufacturing method of a high-strength hot-dip galvanized steel sheet and a high-strength galvannealed steel sheet will be described. Unless otherwise specified, “%” in relation to the atmosphere means vol%.

上記の組成を有する鋼板に以下の3工程の加熱処理を行った後にめっき処理を行う。
A加熱工程:O:1〜20vol%、HO:1〜50vol%を含有し、残部がN、CO、COの1種又は2種以上及び不可避的不純物からなる雰囲気中で鋼板を800〜900℃の範囲内の温度になるように加熱
B加熱工程:O:0.01vol%〜0.1vol%未満、HO:1〜20vol%以下を含有し、残部がN、CO、CO、Hの1種又は2種以上及び不可避的不純物からなる雰囲気中で鋼板を800〜900℃の範囲内の温度になるように加熱
C加熱工程:H:1〜50vol%を含み露点が0℃以下の還元性雰囲気中で鋼板を800〜900℃の範囲内の温度になるように加熱
以下、上記3工程からなる加熱について限定理由を説明する。
The steel sheet having the above composition is subjected to the following three heat treatments and then plated.
A heating step: steel sheet in an atmosphere containing O 2 : 1 to 20 vol%, H 2 O: 1 to 50 vol%, and the balance consisting of one or more of N 2 , CO and CO 2 and unavoidable impurities Is heated to a temperature in the range of 800 to 900 ° C. B heating step: O 2 : 0.01 vol% to less than 0.1 vol%, H 2 O: 1 to 20 vol% or less, the balance being N 2 , CO, CO 2 , H 2 in an atmosphere composed of one or more of H 2 and unavoidable impurities, and heating the steel plate to a temperature in the range of 800 to 900 ° C. Heating process: H 2 : 1 to 50 vol The steel sheet is heated in a reducing atmosphere with a dew point of 0 ° C. or less to a temperature in the range of 800 to 900 ° C. Hereinafter, the reason for limitation of heating consisting of the above three steps will be described.

A加熱工程:
A加熱工程は鋼板表面に所望の組成、組織のFe酸化膜を形成するために行うものである。このため加熱雰囲気はO:1〜20vol%、HO:1〜50vol%を含有する雰囲気とする。雰囲気は残部がN、CO、COの1種又は2種以上及び不可避的不純物からなる。加熱雰囲気のOが1vol%未満であると酸化皮膜中のヘマタイト分率が低下する。また経済的な理由からOは大気レベルの20%以下が好ましい。HOは酸化を促進するために1%以上とする。また、加湿コストを考えて50%以下が好ましい。また、加熱温度は800℃未満では所望形態の酸化鉄が得られず、900℃を超えると加熱コストがかかるので800℃以上900℃以下とする。
A heating process:
A heating process is performed in order to form the Fe oxide film of a desired composition and structure | tissue on the steel plate surface. Therefore, the heating atmosphere is an atmosphere containing O 2 : 1 to 20 vol% and H 2 O: 1 to 50 vol%. The atmosphere consists of one or more of N 2 , CO, CO 2 and unavoidable impurities. When the O 2 in the heating atmosphere is less than 1 vol%, the hematite fraction in the oxide film decreases. For economic reasons, O 2 is preferably 20% or less of the atmospheric level. H 2 O is made 1% or more in order to promote oxidation. Further, considering the humidification cost, 50% or less is preferable. Further, if the heating temperature is less than 800 ° C., iron oxide having a desired form cannot be obtained. If the heating temperature exceeds 900 ° C., the heating cost is increased.

A加熱工程後の鋼板表面は主として酸化鉄で構成されている。この表面においてヘマタイト(Fe)の生成比率を高く制御することで、結果としてウスタイト(FeO)の生成比率を低く制御することができ、C加熱工程におけるピックアップを効果的に防止することができる。酸化鉄は鋼板側からウスタイト(FeO)、マグネタイト(Fe)、ヘマタイト(Fe)の順に生成するが、このうちウスタイト(FeO)は他の鉄酸化物に比べ、内部にボイドを多く有する構造であるため、強度が低くボイド付近から剥離し、ピックアップの原因となる。これに対し、ヘマタイトは比較的緻密な組織を有するため剥離しにくい。酸化物中のヘマタイト(Fe)の生成比率を50mass%以上の高比率に制御することで、鋼板表面に剥離しにくい酸化鉄を形成することができる。また、ヘマタイト(Fe)の最表面に5〜100nm程度のMnの濃化層が形成されるが、このMnは、B加熱工程及びC加熱工程での還元時に酸化皮膜内部、地鉄側へと移動するので表面濃化せず、不めっきが抑制され、メカニズムは不明であるが、Mn濃化層が存在すると、表面品質が改善される傾向がある。 The steel plate surface after the A heating step is mainly composed of iron oxide. By controlling the production ratio of hematite (Fe 2 O 3 ) high on this surface, it is possible to control the production ratio of wustite (FeO) low as a result, effectively preventing pickup in the C heating step. it can. Iron oxide is produced in the order of wustite (FeO), magnetite (Fe 3 O 4 ), and hematite (Fe 2 O 3 ) in this order from the steel sheet side. Of these, wustite (FeO) is a void inside than other iron oxides. Since the structure has a large amount, the strength is low, so that it peels off from the vicinity of the void and causes pickup. In contrast, hematite has a relatively dense structure and is difficult to peel off. By controlling the production ratio of hematite (Fe 2 O 3 ) in the oxide to a high ratio of 50 mass% or more, it is possible to form iron oxide that hardly peels on the steel sheet surface. Further, a concentrated layer of about 5 to 100 nm of Mn is formed on the outermost surface of hematite (Fe 2 O 3 ), and this Mn is formed inside the oxide film during the reduction in the B heating step and the C heating step. Since it moves to the side, surface concentration does not occur, non-plating is suppressed, and the mechanism is unknown, but if a Mn concentrated layer is present, the surface quality tends to be improved.

なお、酸化鉄組成の分析法は、B加熱工程、C加熱工程およびめっき浴を空通しにしてA加熱工程を出たままの鋼板を採取し、X線回折法で定量する方法が挙げられる。定量に当たり各酸化鉄種の混合割合を変化させた標準サンプルの測定結果を基にすることで各酸化物の組成構成比を求めることができる。また、ヘマタイト(Fe)表面のMn濃化層の厚さはGDS、AESなどを用いて酸化鉄の表面から深さ方向の各成分の深さプロファイル(Depth Profile)を測定し、Fe酸化物表面のMn強度がFe酸化物内部におけるMnの最低強度の2倍以上になっている部分をMn濃化層として求めることができる。A加熱工程で、5%O−15%HO雰囲気中で850℃で処理(酸化処理)した鋼板の酸化鉄表面から深さ方向のFe、Mn及びOのGDSプロファイルの一例を図1に示す。図1中、ハッチング部がMn濃化層である。 Examples of the method for analyzing the iron oxide composition include a method in which the B heating step, the C heating step, and the plating bath are evacuated and the steel sheet that has been left in the A heating step is collected and quantified by the X-ray diffraction method. The compositional composition ratio of each oxide can be obtained based on the measurement result of a standard sample in which the mixing ratio of each iron oxide species is changed for determination. Further, the thickness of the Mn-enriched layer on the surface of hematite (Fe 2 O 3 ) is measured by measuring the depth profile (Depth Profile) of each component in the depth direction from the surface of iron oxide using GDS, AES, etc. A portion where the Mn strength of the oxide surface is twice or more the minimum strength of Mn inside the Fe oxide can be obtained as the Mn concentrated layer. An example of the GDS profile of Fe, Mn, and O in the depth direction from the iron oxide surface of a steel sheet treated (oxidized) in a 5% O 2 -15% H 2 O atmosphere at 850 ° C. in the A heating step is shown in FIG. Shown in In FIG. 1, the hatched portion is a Mn concentrated layer.

B加熱工程:
B加熱工程での加熱は、A加熱工程で一旦酸化された鋼板表面を還元処理することで、より効果的にピックアップを抑制するために行う。Oが0.1%以上では酸化鉄が還元せず、0.01%未満とするにはコストがかかるので、0.01%以上0.1%未満とする。またHOは還元しすぎないように1%以上とし、20%を超えると加湿コストがかかるので1%以上20%以下とする。雰囲気の残部は、N、CO、CO、Hの1種又は2種以上及び不可避的不純物からなる。
B heating process:
The heating in the B heating step is performed in order to suppress pickup more effectively by reducing the surface of the steel plate once oxidized in the A heating step. If O 2 is 0.1% or more, iron oxide is not reduced, and it takes a cost to make it less than 0.01%, so it is made 0.01% or more and less than 0.1%. Further, H 2 O is made 1% or more so as not to reduce too much, and if it exceeds 20%, the humidification cost is required, so 1% or more and 20% or less. The remainder of the atmosphere consists of one or more of N 2 , CO, CO 2 , H 2 and unavoidable impurities.

B加熱工程は、鋼板を800〜900℃の範囲内の温度になるように加熱する。加熱温度が800℃未満では酸化鉄が還元せず、900℃を超えると加熱コストがかかるのため800℃以上900℃以下とする。A加熱工程に引き続きB加熱工程を行うときは、B加熱工程は、鋼板温度がA加熱工程の鋼板温度以上の温度になるように加熱する。   In the B heating step, the steel sheet is heated to a temperature in the range of 800 to 900 ° C. If the heating temperature is less than 800 ° C, the iron oxide is not reduced. If the heating temperature exceeds 900 ° C, the heating cost is increased. When the B heating step is performed following the A heating step, the B heating step is performed such that the steel plate temperature is equal to or higher than the steel plate temperature in the A heating step.

なお、A加熱工程とB加熱工程は別の加熱炉内で行うことも可能であるが、工業的な生産性や現行の製造ラインの改善で実施すること等を考慮すると、同一加熱炉内で条件設定を変えて2ゾーン以上に分割してA加熱工程とB加熱工程を行うことが望ましい。   The A heating step and the B heating step can be performed in different heating furnaces, but considering the industrial productivity and the improvement of the current production line, the same heating furnace is used. It is desirable to perform the A heating process and the B heating process by changing the condition setting and dividing into two or more zones.

前記A加熱工程を直火炉(DFF)もしくは無酸化炉(NOF)により行う場合は空気比が1以上1.35以下の条件で行い、前記B加熱工程を直火炉(DFF)もしくは無酸化炉(NOF)により空気比1未満の条件で行うことが望ましい。   When the A heating step is performed in a direct fired furnace (DFF) or a non-oxidizing furnace (NOF), the air ratio is 1 to 1.35, and the B heating process is performed in a direct fired furnace (DFF) or a non-oxidizing furnace ( NOF) is preferably performed under conditions with an air ratio of less than 1.

C加熱工程:
C加熱工程はB加熱工程の直後に設置され、鋼板を焼鈍すると同時に、酸化鉄の還元処理を行う。C加熱工程は、通常RTFで行われ、加熱雰囲気は、H:1%以上50%以下を含有する還元性雰囲気とする。残部はN及び不可避的不純物である。Hが1%未満では十分な還元が起こらず、50%を超えるとコストアップにつながる。露点は0℃以下とする。露点が0℃を超えると酸化鉄が還元しにくくなる。また、露点が−60℃未満は工業的に実施が困難であるため、露点は−60℃以上が望ましい。
C heating process:
The C heating process is installed immediately after the B heating process, and simultaneously reduces the iron oxide while annealing the steel sheet. C heating step is performed in a conventional RTF, heating atmosphere is H 2: a reducing atmosphere containing 50% or more and 1% or less. The balance is N 2 and inevitable impurities. If H 2 is less than 1%, sufficient reduction does not occur, and if it exceeds 50%, the cost increases. The dew point is 0 ° C or less. When the dew point exceeds 0 ° C., iron oxide is difficult to reduce. Moreover, since it is difficult to implement industrially when the dew point is less than -60 ° C, the dew point is desirably -60 ° C or higher.

C加熱工程は、鋼板を800〜900℃の範囲内の温度になるように加熱する。加熱温度が800℃未満では還元速度が遅く、900℃を超えると加熱コストがかかるため800℃以上900℃以下とする。B加熱工程に引き続きC加熱工程を行うときは、C加熱工程は、鋼板温度がB加熱工程の鋼板温度以上の温度になるように加熱する。   A C heating process heats a steel plate so that it may become the temperature within the range of 800-900 degreeC. When the heating temperature is less than 800 ° C., the reduction rate is slow, and when it exceeds 900 ° C., the heating cost is increased. When the C heating step is performed following the B heating step, the C heating step is performed such that the steel plate temperature is equal to or higher than the steel plate temperature in the B heating step.

A加熱工程で形成された酸化鉄がC加熱工程で還元されることで鋼板表面は還元鉄で覆われるため、Si等の易酸化性元素の鋼板表層濃化に起因する不めっきやめっき密着性不良の発生が防止される。A加熱工程で剥離しにくい酸化鉄が形成され、B加熱工程で酸化物が還元されることで、C加熱工程におけるピックアップ現象が抑制されるので、ピックアップ現象に起因する押し疵の発生を防止できる。   The iron oxide formed in the A heating process is reduced in the C heating process, so that the steel sheet surface is covered with reduced iron. The occurrence of defects is prevented. The iron oxide that does not easily peel off is formed in the A heating process, and the oxide is reduced in the B heating process, so that the pickup phenomenon in the C heating process is suppressed, so that it is possible to prevent the occurrence of push rods due to the pickup phenomenon. .

上記3工程を行った後、冷却し、溶融亜鉛めっき浴に浸漬して溶融亜鉛めっきを施す。溶融亜鉛めっき鋼板の製造には浴温440〜550℃、浴中Al濃度が0.14〜0.24%の亜鉛めっき浴を用い、合金化溶融亜鉛めっき鋼板の製造には浴温440〜550℃、浴中Al濃度が0.10〜0.20%の亜鉛めっき浴を用いる。   After performing the above three steps, it is cooled and immersed in a hot dip galvanizing bath to perform hot dip galvanizing. For the production of hot dip galvanized steel sheet, a galvanizing bath having a bath temperature of 440 to 550 ° C. and an Al concentration in the bath of 0.14 to 0.24% is used. For the production of galvannealed steel sheet, the bath temperature is 440 to 550. A galvanizing bath having an Al concentration of 0.10 to 0.20% in the bath is used.

浴温が440℃未満では浴内における温度ばらつきが大きい場所はZnの凝固が起こる可能性があるため不適であり、550℃を超えると浴の蒸発が激しく操業コストや気化したZnが炉内へ付着するため操業上問題がある。更にめっき時に合金化が進行するため、過合金になりやすい。   If the bath temperature is less than 440 ° C, there is a possibility that the solidification of Zn may occur in places where the temperature variation in the bath is large. If the bath temperature exceeds 550 ° C, the evaporation of the bath is severe and the operation cost and vaporized Zn will enter the furnace. There are operational problems due to adhesion. Furthermore, since alloying proceeds during plating, it tends to be overalloyed.

溶融亜鉛めっき鋼板を製造する時に浴中Al濃度が0.14%未満になるとFe−Zn合金化が進みめっき密着性が悪化し、0.24%超になるとAl酸化物による欠陥が発生する。合金化溶融亜鉛めっき鋼板を製造する時に浴中Al濃度が0.10%未満になるとζ相が多量に生成しパウダリング性が悪化し、0.20%超になるとFe−Zn合金化が進まない。   If the Al concentration in the bath is less than 0.14% when producing a hot dip galvanized steel sheet, Fe—Zn alloying progresses and plating adhesion deteriorates, and if it exceeds 0.24%, defects due to Al oxide occur. When the alloyed hot-dip galvanized steel sheet is produced, if the Al concentration in the bath is less than 0.10%, a large amount of ζ phase is generated and powdering properties deteriorate, and if it exceeds 0.20%, Fe-Zn alloying progresses. Absent.

合金化処理は460℃より高く、570℃未満で行うのが最適である。460℃以下では合金化進行が遅く、570℃以上では過合金により地鉄界面に生成する硬くて脆いZn−Fe合金層が生成しすぎてめっき密着性が劣化するだけでなく、残留オーステナイト相が分解するため、強度延性バランスも劣化する。めっき付着量は特に定めないが、耐食性およびめっき付着量制御上10g/m以上(片面当り付着量)が好ましい。また、付着量が多いと密着性が低下するので、120g/m以下(片面当り付着量)が望ましい。 The alloying treatment is optimally performed at a temperature higher than 460 ° C. and lower than 570 ° C. At 460 ° C or lower, alloying progresses slowly, and at 570 ° C or higher, a hard and brittle Zn-Fe alloy layer formed at the iron-iron interface due to overalloy is generated too much, resulting in deterioration of plating adhesion and residual austenite phase. Since it decomposes, the strength ductility balance also deteriorates. The plating adhesion amount is not particularly defined, but is preferably 10 g / m 2 or more (adhesion amount per one surface) for corrosion resistance and plating adhesion amount control. Moreover, since adhesion will fall when there is much adhesion amount, 120 g / m < 2 > or less (attachment amount per one side) is desirable.

以下、本発明を実施例に基づいて具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

表1に示す鋼組成のスラブを加熱炉にて1260℃で60分間加熱し、引き続き2.8mmまで熱間圧延を施し、540℃で巻き取った。次いで、酸洗で黒皮スケールを除去して、1.6mmまで冷間圧延した。次に、加熱炉として、DFF(直火炉)−RTF−冷却帯を備えるDFF型CGL、または、NOF(無酸化炉)−RTF−冷却帯を備えるNOF型CGLを用いて、表2〜表5に示す熱処理条件にて、A加熱工程〜C加熱工程を行った。DFF、NOFは、各々第1ゾーン〜第4ゾーンの4ゾーンに分割され、A加熱工程はDFFまたはNOFの第1〜第3ゾーンで行い、B加熱工程は第4ゾーンで行った。燃料ガスにはコークス炉で発生するCガスを用いた。C加熱工程はRTFで行い、雰囲気ガスはH−Nガスを用いた。 A slab having a steel composition shown in Table 1 was heated in a heating furnace at 1260 ° C. for 60 minutes, subsequently hot-rolled to 2.8 mm, and wound at 540 ° C. Next, the black scale was removed by pickling and cold rolled to 1.6 mm. Next, as a heating furnace, DFF type CGL provided with DFF (direct furnace) -RTF-cooling zone, or NOF type CGL provided with NOF (non-oxidizing furnace) -RTF-cooling zone, Tables 2 to 5 are used. The A heating process to the C heating process were performed under the heat treatment conditions shown in FIG. DFF and NOF were each divided into 4 zones of 1st zone-4th zone, A heating process was performed in the 1st-3rd zone of DFF or NOF, and B heating process was performed in the 4th zone. C gas generated in a coke oven was used as the fuel gas. C heating step is carried out in RTF, atmospheric gas used was H 2 -N 2 gas.

加熱温度は、当該工程出口の鋼板温度である。引き続き、460℃のAl含有Zn浴にて溶融亜鉛めっき処理を施し、溶融亜鉛めっき鋼板を得た。なお、浴中Al濃度は0.14〜0.20%Al、付着量はガスワイピングにより片面当り40g/mに調節した。また、溶融亜鉛めっきを施した後に、500〜580℃で合金化処理を行うことで合金化溶融亜鉛めっき鋼板を得た。 The heating temperature is the steel plate temperature at the process outlet. Subsequently, hot dip galvanizing treatment was performed in an Al-containing Zn bath at 460 ° C. to obtain a hot dip galvanized steel sheet. The Al concentration in the bath was 0.14 to 0.20% Al, and the adhesion amount was adjusted to 40 g / m 2 per side by gas wiping. Moreover, after performing hot dip galvanization, the galvannealed steel plate was obtained by performing an alloying process at 500-580 degreeC.

Figure 2010196083
Figure 2010196083

以上より得られた溶融亜鉛めっき鋼板(GI)及び合金化溶融亜鉛めっき鋼板(GA)に対して、下記に示す方法にて表面外観とめっき密着性を調査した。得られた結果を条件と併せて表2〜表5に示す。   With respect to the hot dip galvanized steel sheet (GI) and the alloyed hot dip galvanized steel sheet (GA) obtained as described above, the surface appearance and plating adhesion were investigated by the method described below. The obtained results are shown in Tables 2 to 5 together with the conditions.

〈表面外観〉
不めっきやピックアップ現象に起因する押し疵などの外観不良の有無を目視にて判断し、外観不良がない場合には良好(○)、外観不良がわずかにあるがおおむね良好である場合にはおおむね良好(△)、外観不良がある場合には(×)と判定した。
<Surface appearance>
Judgment is made by visual inspection for appearance defects such as push rods caused by non-plating or pick-up phenomenon. Good (○) if there is no appearance defect, and if there is a slight appearance defect, it is generally good. When there was good (Δ) and poor appearance, it was determined as (×).

〈めっき密着性〉
合金化溶融亜鉛めっき鋼板のめっき密着性は、耐パウダリング性を評価した。具体的には、合金化溶融亜鉛めっき鋼板にセロテープ(登録商標)を貼り、テープ面を90度曲げ、曲げ戻しをした時の単位長さ当りの剥離量を、蛍光X線によるZnカウント数として測定し、下記基準に照らしてランク1、2のものを各々特に良好(○)、良好(△)、3以上のものを不良(×)として評価した。
蛍光X線カウント数 ランク
0〜500未満 :1 (良)
500〜1000未満 :2
1000〜2000未満:3
2000〜3000未満:4
3000以上 :5 (劣)
合金化していない溶融亜鉛めっき鋼板については、ボールインパクト試験を行い、加工部をセロテープ(登録商標)剥離し、めっき層剥離の有無を目視判定することでめっき密着性を評価した。
○:めっき層の剥離なし
×:めっき層が剥離
<Plating adhesion>
The plating adhesion of the galvannealed steel sheet was evaluated for powdering resistance. Specifically, the amount of delamination per unit length when cellotape (registered trademark) is applied to an alloyed hot-dip galvanized steel sheet, the tape surface is bent 90 degrees, and bent back, is taken as the Zn count by fluorescent X-rays. According to the following criteria, those with ranks 1 and 2 were evaluated as particularly good (◯), good (Δ), and those with 3 or more as bad (x).
X-ray fluorescence count Rank 0 to less than 500: 1 (good)
500 to less than 1000: 2
1000 to less than 2000: 3
2000 to less than 3000: 4
3000 or more: 5 (poor)
About the hot-dip galvanized steel sheet which is not alloyed, the ball impact test was performed, the processed part was peeled off with cello tape (registered trademark), and the plating adhesion was evaluated by visually judging the presence or absence of peeling of the plating layer.
○: Plating layer is not peeled ×: Plating layer is peeled

Figure 2010196083
Figure 2010196083

Figure 2010196083
Figure 2010196083

Figure 2010196083
Figure 2010196083

Figure 2010196083
Figure 2010196083

表2〜表5からわかるように、本発明例の溶融亜鉛めっき鋼板と合金化溶融亜鉛めっき鋼板は、Siを含有するにも関わらず、不めっきや押し疵がなく美麗な表面外観を有し、めっき密着性も良好である。これに対して、比較例の溶融亜鉛めっき鋼板と合金化溶融亜鉛めっき鋼板は、表面外観とめっき密着性が劣る。   As can be seen from Tables 2 to 5, the hot-dip galvanized steel sheet and the galvannealed steel sheet of the present invention have a beautiful surface appearance with no unplating or squeezing despite containing Si. The plating adhesion is also good. On the other hand, the hot-dip galvanized steel sheet and the galvannealed steel sheet of the comparative example are inferior in surface appearance and plating adhesion.

本発明法で製造された高強度溶融亜鉛めっき鋼板と高強度合金化溶融亜鉛めっき鋼板は、美麗な表面外観を有し、めっき密着性に優れるので、自動車、家電、建材の分野を中心に幅広い用途での使用が見込まれる。   High-strength hot-dip galvanized steel sheets and high-strength galvannealed steel sheets manufactured by the method of the present invention have a beautiful surface appearance and excellent plating adhesion, so they are widely used mainly in the fields of automobiles, home appliances, and building materials. Use in applications is expected.

Claims (5)

化学成分として、mass%で、C:0.05〜0.30%、Si:0.1〜3.0%、Mn:0.5〜3.0%、Al:0.01〜3.0%、S:0.001〜0.01%、P:0.001〜0.1%を含有し、残部Fe及び不可避的不純物からなる鋼板に溶融亜鉛めっきを施すに際し、O:1〜20vol%、HO:1〜50vol%を含有し、残部がN、CO、COの1種又は2種以上及び不可避的不純物からなる雰囲気中で鋼板を800〜900℃の範囲内の温度になるように加熱するA加熱工程、次いで、O:0.01vol%〜0.1vol%未満、HO:1〜20vol%以下を含有し、残部がN、CO、CO、Hの1種又は2種以上及び不可避的不純物からなる雰囲気中で鋼板を800〜900℃の範囲内の温度になるように加熱するB加熱工程、次にH:1〜50vol%を含み露点が0℃以下の還元性雰囲気中で鋼板を800〜900℃の範囲内の温度になるように加熱するC加熱工程を行った後、溶融亜鉛めっき処理を施すことを特徴とする表面外観とめっき密着性に優れる高強度溶融亜鉛めっき鋼板の製造方法。 As chemical components, in mass%, C: 0.05 to 0.30%, Si: 0.1 to 3.0%, Mn: 0.5 to 3.0%, Al: 0.01 to 3.0 %, S: 0.001 to 0.01%, P: 0.001 to 0.1%, and when hot dip galvanizing is performed on a steel sheet composed of the remaining Fe and inevitable impurities, O 2 : 1 to 20 vol. %, H 2 O: 1 to 50 vol%, and the temperature within the range of 800 to 900 ° C. in the atmosphere where the balance is one or more of N 2 , CO, CO 2 and unavoidable impurities. A heating step of heating to become, then O 2 : 0.01 vol% to less than 0.1 vol%, H 2 O: 1 to 20 vol% or less, the balance being N 2 , CO, CO 2 , H The steel plate is 800 to 90 in an atmosphere composed of one or more of 2 and inevitable impurities. B heating step for heating to a temperature in the range of 0 ° C., and then a temperature in the range of 800 to 900 ° C. in a reducing atmosphere containing H 2 : 1 to 50 vol% and a dew point of 0 ° C. or less. A method for producing a high-strength hot-dip galvanized steel sheet excellent in surface appearance and plating adhesion, characterized by performing a hot-dip galvanizing treatment after performing a C heating step of heating so as to become. 前記A加熱工程は、鋼板表面に50mass%以上がヘマタイト(Fe)で、かつヘマタイトの最表面5〜100nmにMnが濃化している組織を有する酸化膜を形成することを特徴とする請求項1に記載の表面外観とめっき密着性に優れる高強度溶融亜鉛めっき鋼板の製造方法。 The A heating step is characterized in that an oxide film having a structure in which 50 mass% or more is hematite (Fe 2 O 3 ) and Mn is concentrated on the outermost surface of hematite is 5 to 100 nm on the steel sheet surface. The manufacturing method of the high intensity | strength hot-dip galvanized steel plate excellent in the surface external appearance and plating adhesiveness of Claim 1. 請求項1または2に記載の鋼板は、化学成分として、さらに、mass%で、Cr:0.1〜1.0%、Mo:0.1〜1.0%、Ti:0.01〜0.1%、Nb:0.01〜0.1%およびB:0.0005〜0.0050%から選ばれた1または2種以上を含有することを特徴とする請求項1または2に記載の表面外観とめっき密着性に優れる高強度溶融亜鉛めっき鋼板の製造方法。 The steel sheet according to claim 1 or 2 is further, as a chemical component, in mass%, Cr: 0.1 to 1.0%, Mo: 0.1 to 1.0%, Ti: 0.01 to 0. 1 or 2 or more types chosen from 1%, Nb: 0.01-0.1% and B: 0.0005-0.0050% of Claim 1 or 2 characterized by the above-mentioned A method for producing high-strength hot-dip galvanized steel sheets with excellent surface appearance and plating adhesion. 前記A加熱工程を直火炉(DFF)もしくは無酸化炉(NOF)により、空気比が1以上1.35以下の条件で行い、前記B加熱工程を直火炉(DFF)もしくは無酸化炉(NOF)により空気比1未満の条件で行うことを特徴とする請求項1〜3のいずれかの項に記載の表面外観とめっき密着性に優れる高強度溶融亜鉛めっき鋼板の製造方法。 The A heating step is performed in a direct fired furnace (DFF) or a non-oxidizing furnace (NOF) under the condition of an air ratio of 1 to 1.35, and the B heating process is performed in a direct fired furnace (DFF) or a non-oxidizing furnace (NOF). The method for producing a high-strength hot-dip galvanized steel sheet excellent in surface appearance and plating adhesion according to any one of claims 1 to 3, wherein the air ratio is less than 1. 請求項1〜4のいずれかの項に記載の方法で高強度溶融亜鉛めっき鋼板を製造した後、更に合金化処理を行うことを特徴とする表面外観とめっき密着性に優れる高強度合金化溶融亜鉛めっき鋼板の製造方法。 The high strength galvanized steel sheet manufactured by the method according to any one of claims 1 to 4, and further subjected to an alloying treatment. Manufacturing method of galvanized steel sheet.
JP2009039088A 2009-02-23 2009-02-23 Method for producing high-strength hot-dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet Active JP5444752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009039088A JP5444752B2 (en) 2009-02-23 2009-02-23 Method for producing high-strength hot-dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009039088A JP5444752B2 (en) 2009-02-23 2009-02-23 Method for producing high-strength hot-dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet

Publications (2)

Publication Number Publication Date
JP2010196083A true JP2010196083A (en) 2010-09-09
JP5444752B2 JP5444752B2 (en) 2014-03-19

Family

ID=42821101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009039088A Active JP5444752B2 (en) 2009-02-23 2009-02-23 Method for producing high-strength hot-dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet

Country Status (1)

Country Link
JP (1) JP5444752B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149307A (en) * 2011-01-20 2012-08-09 Jfe Steel Corp Method for producing hot dip galvannealed steel sheet having excellent plating adhesion and sliding property
WO2013047804A1 (en) 2011-09-30 2013-04-04 新日鐵住金株式会社 Steel sheet having hot-dip galvanized layer and exhibiting superior plating wettability and plating adhesion, and production method therefor
JP2014095133A (en) * 2012-11-12 2014-05-22 Jfe Steel Corp Method of producing cold rolled steel sheet
KR20150036681A (en) 2012-08-03 2015-04-07 신닛테츠스미킨 카부시키카이샤 Galvanized steel sheet and manufacturing method therefor
EP2716773A4 (en) * 2011-06-01 2015-06-03 Jfe Steel Corp Process for producing high-strength hot-dip galvanized steel sheet with excellent material-quality stability, processability, and deposit appearance
CN107119225A (en) * 2017-04-28 2017-09-01 武汉钢铁有限公司 Hot-forming use niobium titanium complex intensifying galvanneal coating steel plate and its manufacture method
US11136641B2 (en) * 2015-12-22 2021-10-05 Jfe Steel Corporation Mn-containing galvannealed steel sheet and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290762A (en) * 1999-04-07 2000-10-17 Kawasaki Steel Corp Production of hot dip metal coated steel sheet
JP2007039780A (en) * 2004-10-07 2007-02-15 Jfe Steel Kk Hot-dip galvanized steel sheet, galvannealed steel sheet and manufacturing method therefor
JP2007262464A (en) * 2006-03-28 2007-10-11 Jfe Steel Kk Method for producing hot dip galvanized steel sheet
JP2007262463A (en) * 2006-03-28 2007-10-11 Jfe Steel Kk Method for producing hot dip galvanized steel sheet and alloyed hot dip galvanized steel sheet
JP2007291498A (en) * 2006-02-28 2007-11-08 Jfe Steel Kk Manufacturing method of high-strength hot-dip-galvanized steel sheet excellent in appearance and plating adhesion
JP2008184642A (en) * 2007-01-29 2008-08-14 Kobe Steel Ltd High strength hot dip galvannealed steel sheet excellent in phosphate treatability

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290762A (en) * 1999-04-07 2000-10-17 Kawasaki Steel Corp Production of hot dip metal coated steel sheet
JP2007039780A (en) * 2004-10-07 2007-02-15 Jfe Steel Kk Hot-dip galvanized steel sheet, galvannealed steel sheet and manufacturing method therefor
JP2007291498A (en) * 2006-02-28 2007-11-08 Jfe Steel Kk Manufacturing method of high-strength hot-dip-galvanized steel sheet excellent in appearance and plating adhesion
JP2007262464A (en) * 2006-03-28 2007-10-11 Jfe Steel Kk Method for producing hot dip galvanized steel sheet
JP2007262463A (en) * 2006-03-28 2007-10-11 Jfe Steel Kk Method for producing hot dip galvanized steel sheet and alloyed hot dip galvanized steel sheet
JP2008184642A (en) * 2007-01-29 2008-08-14 Kobe Steel Ltd High strength hot dip galvannealed steel sheet excellent in phosphate treatability

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149307A (en) * 2011-01-20 2012-08-09 Jfe Steel Corp Method for producing hot dip galvannealed steel sheet having excellent plating adhesion and sliding property
EP2716773A4 (en) * 2011-06-01 2015-06-03 Jfe Steel Corp Process for producing high-strength hot-dip galvanized steel sheet with excellent material-quality stability, processability, and deposit appearance
US9340859B2 (en) 2011-06-01 2016-05-17 Jfe Steel Corporation Method for manufacturing high strength galvanized steel sheet having excellent stability of mechanical properties, formability, and coating appearance
WO2013047804A1 (en) 2011-09-30 2013-04-04 新日鐵住金株式会社 Steel sheet having hot-dip galvanized layer and exhibiting superior plating wettability and plating adhesion, and production method therefor
KR20150036681A (en) 2012-08-03 2015-04-07 신닛테츠스미킨 카부시키카이샤 Galvanized steel sheet and manufacturing method therefor
US10131981B2 (en) 2012-08-03 2018-11-20 Nippon Steel and Sumitomo Metal Corporation Hot-dip galvanized steel sheet and manufacturing method of the same
JP2014095133A (en) * 2012-11-12 2014-05-22 Jfe Steel Corp Method of producing cold rolled steel sheet
US11136641B2 (en) * 2015-12-22 2021-10-05 Jfe Steel Corporation Mn-containing galvannealed steel sheet and method for producing the same
CN107119225A (en) * 2017-04-28 2017-09-01 武汉钢铁有限公司 Hot-forming use niobium titanium complex intensifying galvanneal coating steel plate and its manufacture method
CN107119225B (en) * 2017-04-28 2019-07-16 武汉钢铁有限公司 It is hot-forming to use niobium titanium complex intensifying galvanneal coating steel plate and its manufacturing method

Also Published As

Publication number Publication date
JP5444752B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5206705B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP4972775B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent appearance and plating adhesion
JP5907221B2 (en) Steel sheet with alloyed hot-dip galvanized layer with excellent plating wettability and plating adhesion and method for producing the same
JP5708884B2 (en) Alloyed hot-dip galvanized steel sheet and manufacturing method thereof
JP5564784B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet
JP5417797B2 (en) High strength hot dip galvanized steel sheet and method for producing the same
JP5982905B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP2010126757A (en) High-strength hot-dip galvanized steel sheet and method for producing the same
JP5513216B2 (en) Method for producing galvannealed steel sheet
JP5799819B2 (en) Method for producing hot-dip galvanized steel sheet with excellent plating wettability and pick-up resistance
JP5888267B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet
JP5444752B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet
JP5552863B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
KR101789958B1 (en) Galvannealed steel sheet and method for producing the same
JP5552859B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5552864B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5593771B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5552862B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5555992B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent surface appearance and plating adhesion
JP6164280B2 (en) Mn-containing alloyed hot-dip galvanized steel sheet excellent in surface appearance and bendability and method for producing the same
JP5556033B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5614159B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet
JP5593770B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5552861B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5552860B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111025

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R150 Certificate of patent or registration of utility model

Ref document number: 5444752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250