JP5990892B2 - Method for producing high-Si cold-rolled steel sheet with excellent chemical conversion properties - Google Patents

Method for producing high-Si cold-rolled steel sheet with excellent chemical conversion properties Download PDF

Info

Publication number
JP5990892B2
JP5990892B2 JP2011246102A JP2011246102A JP5990892B2 JP 5990892 B2 JP5990892 B2 JP 5990892B2 JP 2011246102 A JP2011246102 A JP 2011246102A JP 2011246102 A JP2011246102 A JP 2011246102A JP 5990892 B2 JP5990892 B2 JP 5990892B2
Authority
JP
Japan
Prior art keywords
cold
steel sheet
chemical conversion
steel plate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011246102A
Other languages
Japanese (ja)
Other versions
JP2013100590A (en
Inventor
大塚 真司
真司 大塚
淳一郎 平澤
淳一郎 平澤
平 章一郎
章一郎 平
吉見 直人
直人 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011246102A priority Critical patent/JP5990892B2/en
Publication of JP2013100590A publication Critical patent/JP2013100590A/en
Application granted granted Critical
Publication of JP5990892B2 publication Critical patent/JP5990892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、リン酸塩処理等の化成処理を施したのち塗装して使用される高Si冷延鋼板の製造方法に関するもので、特に、Siの強化能を利用した引張強度590MPa以上で化成処理性に優れた高Si冷延鋼板の製造方法に関するものである。   The present invention relates to a method for producing a high-Si cold-rolled steel sheet that is used after being subjected to a chemical conversion treatment such as a phosphate treatment, and in particular, a chemical conversion treatment at a tensile strength of 590 MPa or more utilizing the strengthening ability of Si. The present invention relates to a method for producing a high-Si cold-rolled steel sheet having excellent properties.

近年、自動車の軽量化の観点から、引張強度590MPa以上の高い強度を有する冷延鋼板の需要が高まっている。また、自動車用冷延鋼板は塗装をして使用されており、その塗装の前処理として、リン酸塩処理等の化成処理が施される。この冷延鋼板の化成処理は塗装後の耐食性を確保するための重要な処理のひとつである。   In recent years, from the viewpoint of reducing the weight of automobiles, there is an increasing demand for cold-rolled steel sheets having a high tensile strength of 590 MPa or more. In addition, cold-rolled steel sheets for automobiles are used after being coated, and as a pretreatment for the coating, chemical conversion treatment such as phosphate treatment is performed. The chemical conversion treatment of the cold-rolled steel sheet is one of important treatments for ensuring the corrosion resistance after painting.

冷延鋼板の強度を高めるためには、Siの添加が有効である。しかし、Siを添加した鋼板(高強度冷延鋼板)では、連続焼鈍の際に、Feの酸化が起こらない(Fe酸化物を還元する)還元性のN+Hガス雰囲気でも、Siは酸化し、鋼板最表面にSi酸化物(SiO)の薄膜を形成する。このSi酸化物(SiO)の薄膜は化成処理中の化成皮膜の生成反応を阻害するため、化成皮膜が生成されないミクロな領域(スケ)ができ、化成処理性が低下する。 In order to increase the strength of the cold rolled steel sheet, addition of Si is effective. However, in a steel sheet to which Si is added (high-strength cold-rolled steel sheet), Si is oxidized even in a reducing N 2 + H 2 gas atmosphere in which no oxidation of Fe occurs (reducing Fe oxide) during continuous annealing. Then, a thin film of Si oxide (SiO 2 ) is formed on the outermost surface of the steel plate. Since this Si oxide (SiO 2 ) thin film inhibits the formation reaction of the chemical conversion film during the chemical conversion treatment, a micro region (scaling) in which the chemical conversion film is not formed is formed, and the chemical conversion treatment performance is lowered.

上記に対して、高Si冷延鋼板の化成処理性を改善する従来技術として、特許文献1には、酸化性雰囲気中で鋼板温度を350〜650℃に到達せしめて鋼板表面に酸化膜を形成させ、しかる後還元性雰囲気中で再結晶温度まで加熱し冷却する方法が記載されている。   In contrast to the above, as a conventional technique for improving the chemical conversion processability of a high-Si cold-rolled steel sheet, Patent Document 1 discloses that an oxide film is formed on the steel sheet surface by causing the steel sheet temperature to reach 350 to 650 ° C. in an oxidizing atmosphere. And then heated to a recrystallization temperature in a reducing atmosphere and cooled.

また、特許文献2には、質量%で、Siを0.1%以上、及び/又は、Mnを1.0%以上含有する冷延鋼板について、鋼板温度400℃以上で鉄の酸化雰囲気下で鋼板表面に酸化膜を形成させ、その後、鉄の還元雰囲気下で前記鋼板表面の酸化膜を還元する方法が記載されている。   Patent Document 2 discloses a cold-rolled steel sheet containing, by mass%, Si of 0.1% or more and / or Mn of 1.0% or more in an iron oxidizing atmosphere at a steel plate temperature of 400 ° C. or more. A method is described in which an oxide film is formed on the surface of the steel sheet, and then the oxide film on the surface of the steel sheet is reduced in an iron reducing atmosphere.

さらに、特許文献3には、Siを0.1wt%以上3.0wt%以下含有する高強度冷延鋼板表層の結晶粒界及び/又は結晶粒内に、化成処理性等の改良に有効な酸化物を有することを特徴とする高強度冷延鋼板が記載されている。   Further, Patent Document 3 discloses an oxidation effective for improving chemical conversion treatment properties, etc. in the crystal grain boundaries and / or crystal grains of the surface layer of a high strength cold-rolled steel sheet containing 0.1 wt% or more and 3.0 wt% or less of Si. A high-strength cold-rolled steel sheet characterized by having an article is described.

特許文献4には、鋼板表面と直交する方向の断面を電子顕微鏡にて倍率50000倍以上で観察したときに、鋼板表面長さ10μmに占めるSi含有酸化物の割合が、任意に選択される5箇所の平均で80%以下となるようにするリン酸塩処理性に優れた鋼板が記載されている。   In Patent Document 4, when a cross section in a direction orthogonal to the steel plate surface is observed with an electron microscope at a magnification of 50000 times or more, the ratio of the Si-containing oxide in the steel plate surface length of 10 μm is arbitrarily selected. A steel sheet excellent in phosphatability is described so as to be 80% or less on the average of the places.

特許文献5には、mass%で、C:0.1%超、Si:0.4%以上を含み、Si含有量(mass%)/Mn含有量(mass%)が0.4以上であり、引張強さが700MPa以上であって、鋼板表面におけるSiを主成分とするSi基酸化物の表面被覆率が20面積%以下で、かつ前記Si基酸化物の被覆領域において当該領域内に内接される最大円の直径が5μm以下とされた化成処理性に優れる高強度冷延鋼板が記載されている。   Patent Document 5 includes mass%, C: more than 0.1%, Si: 0.4% or more, and Si content (mass%) / Mn content (mass%) is 0.4 or more. The surface coverage of the Si-based oxide containing Si as a main component on the steel sheet surface is 20 area% or less, and the Si-based oxide is covered within the region. A high-strength cold-rolled steel sheet excellent in chemical conversion treatment with a maximum circle diameter of 5 μm or less in contact is described.

特許文献6には、質量%で、C:0.01〜0.3%、Si:0.2〜3.0%、Mn:0.1〜3.0%、Al:0.01〜2.0%を含有し、引張強度が500MPa以上の高張力鋼板において、該鋼板表面の結晶粒の平均粒径が0.5μm以下であり、かつ該鋼板表面の幅10μm以上の観察領域を断面TEM観察用に薄片加工し、該薄片試料を10nm以下の酸化物が観察できる条件でTEM観察により測定した際に、酸化シリコンおよびマンガンシリケートの1種または2種をこれらの合計量で70質量%以上含有する酸化物種が、上記断面からみた粒界領域表面に対して30%以下存在し、該鋼板表面からの深さで0.1〜1.0μmの範囲内に存在する上記酸化物種の粒径が0.1μm以下であることを特徴とする化成処理性に優れた高張力鋼板が記載されている。   In Patent Document 6, in mass%, C: 0.01 to 0.3%, Si: 0.2 to 3.0%, Mn: 0.1 to 3.0%, Al: 0.01 to 2 In a high-strength steel plate containing 0.0% and a tensile strength of 500 MPa or more, an observation region having an average grain size of 0.5 μm or less on the surface of the steel plate and a width of 10 μm or more on the surface of the steel plate is taken as a cross-sectional TEM. When a thin piece is processed for observation, and the thin piece sample is measured by TEM observation under the condition that an oxide of 10 nm or less can be observed, one or two kinds of silicon oxide and manganese silicate are 70% by mass or more in total of these. The oxide species to be contained is 30% or less with respect to the grain boundary region surface viewed from the cross section, and the particle size of the oxide species present within a range of 0.1 to 1.0 μm in depth from the steel plate surface. For chemical conversion treatment, characterized by being 0.1 μm or less High-tensile steel plate is described which.

特開昭55−145122号公報JP 55-145122 A 特開2006−45615号公報JP 2006-45615 A 特開平9−310148号公報JP 9-310148 A 特開2003−113441号公報JP 2003-113441 A 特開2004−323969号公報JP 2004-323969 A 特開2008−69445号公報JP 2008-69445 A 特開2010−53446号公報JP 2010-53446 A

しかしながら、特許文献1の製造方法では、酸化する方法により鋼板表面に形成される酸化膜の厚みに差があり、十分に酸化が起こらなかったり、酸化膜が厚くなりすぎて、後の還元性雰囲気中での焼鈍において酸化膜の残留またははく離を生じ、表面性状が悪化する場合があった。実施例では、大気中で酸化する技術が記載されているが、大気中での酸化は酸化物が厚く生成してその後の還元が困難である、あるいは高水素濃度の還元雰囲気が必要である等の問題がある。   However, in the manufacturing method of Patent Document 1, there is a difference in the thickness of the oxide film formed on the surface of the steel sheet by the oxidation method, and sufficient oxidation does not occur, or the oxide film becomes too thick, and the subsequent reducing atmosphere. During the annealing, the oxide film may remain or peel off, and the surface properties may deteriorate. In the examples, a technique for oxidizing in the air is described. However, in the oxidation in the air, a thick oxide is formed and subsequent reduction is difficult, or a reducing atmosphere with a high hydrogen concentration is required. There is a problem.

特許文献2の製造方法は、400℃以上で空気比0.93以上1.10以下の直火バーナを用いて鋼板表面のFeを酸化したのち、Fe酸化物を還元するN+Hガス雰囲気で焼鈍することにより、化成処理性を低下させるSiOの最表面での酸化を抑制し、最表面にFeの還元層を形成させる方法である。特許文献2には、直火バーナでの加熱温度が具体的に記されていないが、Siを多く(0.6%以上)含有する場合には、Feより酸化しやすいSiの酸化量が多くなってFeの酸化が抑制されたり、Feの酸化そのものが少なすぎたりする。その結果、還元後の表面Fe還元層の形成が不十分であり、還元後の鋼板表面にSiOが存在し、化成皮膜のスケが発生する場合があった。 The manufacturing method of Patent Document 2 is an N 2 + H 2 gas atmosphere in which Fe on the steel sheet surface is oxidized using a direct fire burner having an air ratio of 0.93 or more and 1.10 or less at 400 ° C. or higher, and then Fe oxide is reduced. Is a method of suppressing oxidation at the outermost surface of SiO 2 that lowers the chemical conversion processability by annealing and forming a reduced layer of Fe on the outermost surface. Patent Document 2 does not specifically describe the heating temperature in an open flame burner, but when it contains a large amount of Si (0.6% or more), the amount of oxidation of Si that is easier to oxidize than Fe is large. Therefore, oxidation of Fe is suppressed, or oxidation of Fe itself is too little. As a result, formation of the surface Fe reduction layer after reduction was insufficient, and SiO 2 was present on the steel plate surface after reduction, and there was a case where the conversion film was scaled.

特許文献3の鋼板は、Si酸化物を鋼板の内部に形成させ、表面のSi酸化物を無くすことにより、化成処理性を改善する鋼板である。製造方法は、鋼板を冷間圧延する前段階の熱間圧延時に、高温(実施例では620℃以上が良好)で巻取り、その熱を利用しSi酸化物を鋼板の内部に形成させるものであるが、巻き取られたコイルは外側の冷却速度は速く、内側の冷却速度は遅いため、鋼板長手方向の温度ムラが大きく、コイル全長で均一な表面品質を得るのが難しいという問題があった。   The steel plate of patent document 3 is a steel plate which improves chemical conversion property by forming Si oxide in the inside of a steel plate, and eliminating Si oxide on the surface. The manufacturing method involves winding at a high temperature (in the embodiment, good at 620 ° C. or higher) at the time of hot rolling before the cold rolling of the steel sheet, and using that heat to form Si oxide inside the steel sheet. However, the wound coil has a fast outer cooling rate and a slow inner cooling rate, which causes large temperature unevenness in the longitudinal direction of the steel sheet, and it is difficult to obtain uniform surface quality over the entire length of the coil. .

特許文献4、5および6は、規定の仕方は異なるが、表面を覆うSi酸化物量の上限を規定した鋼板である。製造方法としては、連続焼鈍の昇温中または均熱中に還元性であるN+Hガス雰囲気の露点(あるいは水蒸気水素分圧比)をある範囲に制御し、Siを鋼板内部に酸化させるものである。その露点範囲は特許文献4では−25℃以上、特許文献5では−20℃から0℃と記載されている。特許文献6では予熱、昇温、再結晶化のそれぞれの工程で水蒸気水素分圧比の範囲を規制する方法を採っている。これらの方法では、一般的には露点が−25℃以下になるN+Hガス雰囲気を、水蒸気や空気を導入する等により高めに制御する必要があり、操業制御性の観点から問題があり、その結果、良好な化成処理性が安定して得られなかった。また、露点を高く(あるいは水蒸気水素分圧比を高く)することは、雰囲気の酸化性を高めるため、炉壁や炉内のロールの劣化を速めたり、ピックアップ疵と呼ばれるスケール疵を鋼板表面に発生させる場合があった。 Patent Documents 4, 5, and 6 are steel sheets that define the upper limit of the amount of Si oxide covering the surface, although the way of defining is different. As a manufacturing method, the dew point (or steam hydrogen partial pressure ratio) of the reducing N 2 + H 2 gas atmosphere is controlled within a certain range during temperature rise or soaking of continuous annealing, and Si is oxidized inside the steel sheet. is there. The dew point range is described in Patent Document 4 as -25 ° C or higher, and in Patent Document 5 as -20 ° C to 0 ° C. Patent Document 6 adopts a method of regulating the range of the steam hydrogen partial pressure ratio in each step of preheating, temperature elevation, and recrystallization. In these methods, it is generally necessary to control the N 2 + H 2 gas atmosphere with a dew point of −25 ° C. or lower by introducing water vapor or air, which is problematic from the viewpoint of operational controllability. As a result, good chemical conversion properties could not be stably obtained. In addition, increasing the dew point (or increasing the steam hydrogen hydrogen partial pressure ratio) increases the oxidization of the atmosphere, so it accelerates the deterioration of the furnace walls and rolls in the furnace, and generates scale soot called pick-up soot on the steel sheet surface. There was a case of letting.

このような背景の中、発明者らは、均熱炉の還元性雰囲気の露点あるいは水蒸気水素分圧比を制御することなく、かつ、Siを0.6%以上含有しても、良好な化成処理性を有する高Si冷延鋼板の製造方法を出願した(特許文献7)。すなわち、特許文献7は、冷延鋼板を連続焼鈍する際に、昇温時に鋼板温度が少なくとも550℃以上で空気比0.95以上の直火バーナを用いて鋼板を加熱し、その後空気比0.89以下の直火バーナを用いて鋼板を加熱して鋼板温度が700℃以上になるまで昇温した後、露点が−25℃以下、1〜10体積%H+残部Nガス雰囲気の炉で均熱焼鈍することを特徴とする化成処理性に優れた高Si冷延鋼板の製造方法である。 In such a background, the inventors do not control the dew point of the reducing atmosphere of the soaking furnace or the steam hydrogen partial pressure ratio, and even if Si is contained in an amount of 0.6% or more, a good chemical conversion treatment is performed. Applied for a method of manufacturing a high-Si cold-rolled steel sheet having the properties (Patent Document 7). That is, in Patent Document 7, when a cold-rolled steel sheet is continuously annealed, the steel sheet is heated using a direct fire burner having a steel sheet temperature of at least 550 ° C. or higher and an air ratio of 0.95 or higher when the temperature is raised, and then the air ratio is 0. After heating the steel plate using an open flame burner of 89 or less until the steel plate temperature reaches 700 ° C. or higher, the dew point is −25 ° C. or lower, 1 to 10 vol% H 2 + balance N 2 gas atmosphere This is a method for producing a high-Si cold-rolled steel sheet having excellent chemical conversion properties, characterized by soaking in a furnace.

特許文献7により、Siが0.6wt%以上含まれ場合においても化成処理性の良好な鋼板を得ることが可能となったが、連続焼鈍前の鋼板、すなわち冷間圧延後の鋼板の状態により空気比が0.95以上で加熱する適正な鋼板温度範囲が異なる場合があることが明らかとなった。さらに詳細な解析を進めた結果、具体的には熱間圧延終了時のコイル巻き取り温度が高い場合には空気比が0.95以上で加熱する適正温度範囲は低温側にあり、熱間圧延終了時のコイル巻き取り温度が低い場合には空気比が0.95以上で加熱する適正温度範囲は高温側にあるため、製造時の管理が困難になる場合があることが明らかとなった。これは熱延時に形成される内部酸化層が大きく影響し、熱延終了後のコイル巻き取り温度が高い場合には熱延時に形成される内部酸化層が厚くなることが明らかとなってきた。また、コイルの巻き取り温度が同じ場合にあっても、その後の保管環境が熱延時に形成される内部酸化層に影響することから、保管環境、例えば雰囲気温度、保管場所等を常に一定にする必要があることも明らかとなった。しかし、熱延コイルの保管環境を常に一定にすることは操業上困難が多く、保管環境によらず良好な化成処理性を有する冷延鋼板を得る技術が必要である。このような保管環境によらず安定して熱延時に内部酸化層を得る方法として、熱間圧延終了時のコイル巻き取り温度を十分高くする方法が挙げられる。しかし、温度が高すぎる場合には、塗装後の耐食性が悪化する場合があることが明らかとなった。一方、熱延のコイル巻き取り温度を低くした場合、内部酸化層は保管環境によらずほとんど形成されないため、常に一定の表面状態を有する熱延後鋼板を得るには有効な方法である。しかし、コイル低温の場合でも冷間圧延時のゲージハンチングや冷間圧延負荷が大きくなりすぎる等の問題が発生する。以上のように、熱延時に形成する内部酸化層が無い状態においても、製造性を阻害することなく良好な化成処理性を有する冷延鋼板を得ることが望まれている。   According to Patent Document 7, it is possible to obtain a steel sheet with good chemical conversion property even when Si is contained in an amount of 0.6 wt% or more, but depending on the state of the steel sheet before continuous annealing, that is, the steel sheet after cold rolling. It became clear that the proper steel plate temperature range for heating at an air ratio of 0.95 or higher may be different. As a result of further detailed analysis, when the coil winding temperature at the end of hot rolling is high, the appropriate temperature range for heating with an air ratio of 0.95 or higher is on the low temperature side, and hot rolling When the coil winding temperature at the end is low, the appropriate temperature range for heating at an air ratio of 0.95 or higher is on the high temperature side, and thus it has become clear that management during manufacture may be difficult. It has been clarified that the internal oxide layer formed at the time of hot rolling is greatly affected, and that the internal oxide layer formed at the time of hot rolling becomes thick when the coil winding temperature after the hot rolling is high. Even when the coil winding temperature is the same, the subsequent storage environment affects the internal oxide layer formed during hot rolling, so the storage environment, for example, the ambient temperature, the storage location, etc. are always constant. It became clear that there was a need. However, it is often difficult to keep the hot-rolled coil storage environment constant, and a technique for obtaining a cold-rolled steel sheet having good chemical conversion properties regardless of the storage environment is required. As a method for stably obtaining the internal oxide layer during hot rolling regardless of such a storage environment, a method for sufficiently increasing the coil winding temperature at the end of hot rolling can be mentioned. However, it has been found that if the temperature is too high, the corrosion resistance after painting may deteriorate. On the other hand, when the coiling temperature for hot rolling is lowered, the internal oxide layer is hardly formed regardless of the storage environment, so that this is an effective method for obtaining a hot-rolled steel sheet having a constant surface state. However, problems such as gauge hunting during cold rolling and excessive cold rolling load occur even at low coil temperatures. As described above, it is desired to obtain a cold-rolled steel sheet having good chemical conversion properties without impairing manufacturability even in a state where there is no internal oxide layer formed during hot rolling.

本発明は、かかる事情に鑑み、均熱炉の還元性雰囲気の露点あるいは水蒸気水素分圧比を制御することなく、かつ、Siを0.6%以上含有しても良好な化成処理性を有する高Si冷延鋼板の製造方法を提供することを目的とする。   In view of such circumstances, the present invention has a high chemical conversion treatment property without controlling the dew point of the reducing atmosphere of the soaking furnace or the steam hydrogen partial pressure ratio, and even if Si is contained in an amount of 0.6% or more. It aims at providing the manufacturing method of Si cold-rolled steel plate.

本発明者らが課題解決のため鋭意検討した結果、以下の知見を得た。   As a result of intensive studies by the present inventors for solving the problems, the following findings were obtained.

連続焼鈍の前にNiを鋼板表面に被覆し酸化雰囲気で昇温処理を行うことにより、熱延時に形成される内部酸化層を有しない鋼板であっても優れた化成処理性を有することが可能となることを見出した。
本発明は、以上の知見に基づきなされたものであり、その要旨は以下のとおりである。
[1]質量%で、C:0.05〜0.30%、Si:0.6〜3.0%、Mn:1.0〜3.0%、P:0.1%以下、S:0.05%以下、Al:0.01〜1.00%、N:0.01%以下を含有し、残部がFeおよび不可避的不純物からなる鋼を熱間圧延し、形成される内部酸化層の厚さを2μm以下とした後、冷間圧延し、次いで、Niを40〜2000mg/m被覆する処理を施し、その後、空気比:0.95以上の直火バーナを用いて、少なくとも鋼板温度:550℃から鋼板温度:650℃まで鋼板を昇温し、露点:−25℃以下、雰囲気:1〜10体積%H+残部Nで均熱する焼鈍を行うことを特徴とする化成処理性に優れた高Si冷延鋼板の製造方法。
[2]前記焼鈍は、空気比:0.95以上の直火バーナを用いて、少なくとも鋼板温度:550℃から鋼板温度:650℃まで鋼板を昇温し、次いで、空気比0.89以下の直火バーナを用いて、更に鋼板を30℃以上昇温し、露点:−25℃以下、雰囲気:1〜10体積%H+残部Nで均熱焼鈍することを特徴とする前記[1]に記載の化成処理性に優れた高Si冷延鋼板の製造方法。
[3]前記鋼は、さらに、質量%で、Cr:0.01〜1.0%、Mo:0.01〜1.0%、Ni:0.01〜1.0%、Cu:0.01〜1.0%の1種又は2種以上を含有することを特徴とする前記[1]または[2]に記載の化成処理性に優れた高Si冷延鋼板の製造方法。
[4]前記鋼は、さらに、質量%で、Ti:0.001〜0.1%、Nb:0.001〜0.1%、V:0.001〜0.1%の1種又は2種以上を含有することを特徴とする前記[1]〜[3]のいずれかに記載の化成処理性に優れた高Si冷延鋼板の製造方法。
[5]前記鋼は、さらに、質量%で、B:0.0003〜0.005%含有することを特徴とする前記[1]〜[4]のいずれかに記載の化成処理性に優れた高Si冷延鋼板の製造方法。
[6]前記連続焼鈍において、空気比:0.95以上の直火バーナを用いての加熱は、鋼板温度:700℃まで行うことを特徴とする前記[1]〜[5]のいずれかに記載の化成処理性に優れた高Si冷延鋼板の製造方法。
[7]前記連続焼鈍において、空気比:0.95以上の直火バーナを用いての加熱は、鋼板温度:800℃まで行うことを特徴とする前記[1]〜[6]のいずれかに記載の化成処理性に優れた高Si冷延鋼板の製造方法。
[8]前記連続焼鈍において、空気比0.95以上の直火バーナを用いての加熱時間は、空気比0.89以下の直火バーナを用いての加熱時間以上であることを特徴とする前記[2]〜[7]のいずれかに記載の化成処理性に優れた高Si冷延鋼板の製造方法。
[9]前記連続焼鈍において、空気比0.89以下の直火バーナを用いての加熱は鋼板温度:800℃まで行うことを特徴とする前記[2]〜[6]、[8]のいずれかに記載の化成処理性に優れた高Si冷延鋼板の製造方法。
なお、本明細書において、鋼の成分を示す%は、すべて質量%である。また、本発明において、「高強度冷延鋼板」とは、引張強度TSが590MPa以上である冷延鋼板である。
By coating Ni on the surface of the steel plate before continuous annealing and performing a temperature increase treatment in an oxidizing atmosphere, even a steel plate without an internal oxide layer formed during hot rolling can have excellent chemical conversion treatment properties. I found out that
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] By mass%, C: 0.05 to 0.30%, Si: 0.6 to 3.0%, Mn: 1.0 to 3.0%, P: 0.1% or less, S: 0.05% or less, Al: 0.01 to 1.00%, N: 0.01% or less, the inner oxide layer formed by hot rolling steel comprising the balance Fe and inevitable impurities After the thickness of the steel sheet is set to 2 μm or less, it is cold-rolled and then coated with Ni at 40 to 2000 mg / m 2 , and then at least a steel plate using a direct flame burner with an air ratio of 0.95 or more. The temperature is raised from 550 ° C. to the steel plate temperature: 650 ° C., and the annealing is performed by soaking at a dew point of −25 ° C. or less, atmosphere: 1 to 10% by volume H 2 + the balance N 2. A method for producing a high-Si cold-rolled steel sheet having excellent processability.
[2] The annealing is performed by heating the steel plate at least from a steel plate temperature: 550 ° C. to a steel plate temperature: 650 ° C. using an open flame burner having an air ratio of 0.95 or more, and then an air ratio of 0.89 or less. The temperature of the steel sheet is further raised by 30 ° C. or higher using an open flame burner, and the soaking is performed with dew point: −25 ° C. or lower, atmosphere: 1 to 10% by volume H 2 + remaining N 2 [1 ] The manufacturing method of the high Si cold-rolled steel plate excellent in the chemical conversion processability of description.
[3] The steel is further in mass%, Cr: 0.01 to 1.0%, Mo: 0.01 to 1.0%, Ni: 0.01 to 1.0%, Cu: 0.00. The method for producing a high-Si cold-rolled steel sheet having excellent chemical conversion treatment properties according to the above [1] or [2], comprising one or more of 01 to 1.0%.
[4] The steel is further in mass%, Ti: 0.001 to 0.1%, Nb: 0.001 to 0.1%, V: 0.001 to 0.1%, 1 type or 2 The method for producing a high-Si cold-rolled steel sheet having excellent chemical conversion properties according to any one of the above [1] to [3], which contains seeds or more.
[5] The steel is further excellent in chemical conversion treatment according to any one of the above [1] to [4], wherein the steel further contains B: 0.0003 to 0.005% by mass%. Manufacturing method of high Si cold-rolled steel sheet.
[6] In any one of the above [1] to [5], in the continuous annealing, heating using an open flame burner having an air ratio of 0.95 or more is performed up to a steel plate temperature: 700 ° C. The manufacturing method of the high Si cold-rolled steel plate excellent in the chemical conversion property of description.
[7] In any one of the above [1] to [6], in the continuous annealing, heating using an open flame burner having an air ratio of 0.95 or more is performed up to a steel plate temperature: 800 ° C. The manufacturing method of the high Si cold-rolled steel plate excellent in the chemical conversion property of description.
[8] In the continuous annealing, the heating time using a direct fire burner having an air ratio of 0.95 or more is longer than the heating time using a direct fire burner having an air ratio of 0.89 or less. The manufacturing method of the high Si cold-rolled steel plate excellent in chemical conversion property in any one of said [2]-[7].
[9] In any of the above [2] to [6], [8], in the continuous annealing, the heating using a direct fire burner having an air ratio of 0.89 or less is performed up to a steel plate temperature: 800 ° C. The manufacturing method of the high Si cold-rolled steel plate excellent in the chemical conversion property of the crab.
In addition, in this specification,% which shows the component of steel is mass% altogether. In the present invention, the “high-strength cold-rolled steel sheet” is a cold-rolled steel sheet having a tensile strength TS of 590 MPa or more.

本発明によれば、直火バーナを用いた鋼板表面でのNiとFeの酸化と、その後の還元を利用して一部のSiを鋼板内部に酸化させ、一部のSiをNi−Siの複合酸化物とすることで、Siを0.6%以上含有する高Si冷延鋼板について、化成処理性を改善するとともに、引張強度590MPa以上で、TS×Elが18000MPa・%以上で加工性の優れた高Si冷延鋼板を製造することが出来る。また、焼鈍雰囲気の制御(特に露点を高く制御すること)が不要であるので、操業制御性の点で有利であり、また炉壁や炉内のロールの劣化を早めたり、ピックアップと呼ばれるスケール疵を鋼板表面に発生させたりする問題も改善することができる。   According to the present invention, oxidation of Ni and Fe on the surface of a steel sheet using an open flame burner and subsequent reduction are used to oxidize a part of Si into the steel sheet, and a part of Si is made of Ni-Si. By making it a complex oxide, the high Si cold-rolled steel sheet containing 0.6% or more of Si improves the chemical conversion processability, has a tensile strength of 590 MPa or more, and TS × El is 18000 MPa ·% or more and is workable. An excellent high Si cold-rolled steel sheet can be produced. In addition, control of the annealing atmosphere (especially controlling the dew point to a high level) is unnecessary, which is advantageous in terms of operational controllability, speeds up deterioration of the furnace wall and rolls in the furnace, and scales called pickups. It is also possible to improve the problem of generating slag on the steel sheet surface.

熱間圧延板の任意の部分でせん断した断面をSEMで観察した結果を示す断面図。Sectional drawing which shows the result of having observed the cross section sheared in the arbitrary parts of a hot-rolled board with SEM.

本発明が対象とする鋼板の化学成分の限定理由を説明する。なお、成分に関する「%」表示は特に断らない限り質量%を意味する。   The reason for limiting the chemical components of the steel sheet to which the present invention is applied will be described. In addition, unless otherwise indicated, the "%" display regarding a component means the mass%.

Siは鋼板の加工性を低下させずに強度を上げる元素であり、0.6%未満では加工性すなわち、TS×Elが劣化する。よって、0.6%以上含有する。好ましくは1.10%を超えて含有する。ただし3.0%を超えると鋼板の脆化が著しく、加工性が劣化し、また化成処理性が劣化するため、上限は3.0%とする。   Si is an element that increases the strength without reducing the workability of the steel sheet, and if it is less than 0.6%, the workability, that is, TS × El is deteriorated. Therefore, it contains 0.6% or more. Preferably it contains more than 1.10%. However, if it exceeds 3.0%, the steel sheet becomes extremely brittle, the workability deteriorates, and the chemical conversion property deteriorates, so the upper limit is made 3.0%.

鋼板の化学成分は、Siの他に、金属組織をフェライト−マルテンサイト、TRIPなどに制御し、所望する材質を得るために、固溶強化能およびマルテンサイト生成能を有するC、Mnを、Cを0.05%以上、好ましくは0.10%以上を含有し、またMnを1.0%以上含有する。一方C、Mnを過度に添加すると、鋼板の加工性が著しく低下することから、Cは0.30%以下、Mnを3.0%以下とする。   In addition to Si, the chemical composition of the steel sheet is controlled to have a metal structure of ferrite-martensite, TRIP, etc., and in order to obtain a desired material, C and Mn having solid solution strengthening ability and martensite forming ability are added. Is 0.05% or more, preferably 0.10% or more, and Mn is 1.0% or more. On the other hand, when C and Mn are added excessively, the workability of the steel sheet is remarkably lowered, so C is 0.30% or less and Mn is 3.0% or less.

Alは脱酸材として添加される。0.01%未満では、その効果が不十分である。一方、1.00%を超えると、その効果が飽和し、不経済となる。したがって、Al量は0.01〜1.00%とする。   Al is added as a deoxidizing material. If it is less than 0.01%, the effect is insufficient. On the other hand, if it exceeds 1.00%, the effect is saturated and uneconomical. Therefore, the Al amount is set to 0.01 to 1.00%.

その他、不可避的不純物としてP、S、Nが含有される。Pは0.1%以下、好ましくは0.015%以下である。Sは0.05%以下、好ましくは0.003%以下である。Nは0.01%以下である。   In addition, P, S, and N are contained as inevitable impurities. P is 0.1% or less, preferably 0.015% or less. S is 0.05% or less, preferably 0.003% or less. N is 0.01% or less.

残部はFeおよび不可避的不純物である。   The balance is Fe and inevitable impurities.

また、材質および金属組織の制御のために、Cr、Mo、Ni、Cuの1種または2種以上を各々0.01〜1.0%の範囲で含有してもよい。鋼板の強度を上げるため、Ti、Nb、Vの1種または2種以上を各々0.001〜0.1%の範囲で含有してもよい。素材の強度および塗装焼付け後の強度を上げるため、Bを0.0003〜0.005%の範囲で含有させてもよい。   Moreover, in order to control a material and a metal structure, you may contain 1 type, or 2 or more types of Cr, Mo, Ni, Cu in 0.01 to 1.0% of range, respectively. In order to increase the strength of the steel sheet, one or more of Ti, Nb, and V may be contained in a range of 0.001 to 0.1%, respectively. In order to raise the intensity | strength of a raw material and the intensity | strength after coating baking, you may contain B in 0.0003 to 0.005% of range.

次に、本発明の化成処理性に優れた高Si冷延鋼板の製造方法について説明する。
上記成分組成を有する鋼を熱間圧延し、必要に応じて酸洗した後、冷間圧延を施し、その後鋼板上にNiを被覆した後、連続焼鈍ラインで連続焼鈍する。ただし、冷間圧延前の鋼板の内部酸化層の厚さは2μm以下とする。また、連続焼鈍は、空気比:0.95以上の直火バーナを用いて、少なくとも鋼板温度:550℃から鋼板温度:650℃まで鋼板を昇温し、露点:−25℃以下、雰囲気:1〜10体積%H+残部Nで均熱焼鈍する。
Next, the manufacturing method of the high Si cold-rolled steel plate excellent in chemical conversion treatment property of the present invention will be described.
The steel having the above component composition is hot-rolled, pickled as necessary, cold-rolled, then coated with Ni on the steel sheet, and then continuously annealed in a continuous annealing line. However, the thickness of the internal oxide layer of the steel sheet before cold rolling is 2 μm or less. Moreover, continuous annealing uses a direct-fired burner with an air ratio of 0.95 or more to raise the temperature of the steel plate from at least the steel plate temperature: 550 ° C. to the steel plate temperature: 650 ° C., dew point: −25 ° C. or lower, atmosphere: 1 Soaking is performed with 10% by volume H 2 + the balance N 2 .

冷間圧延前までの冷延鋼板の製造方法は、特に限定されず、公知の方法を用いることが出来る。   The manufacturing method of the cold rolled steel plate before cold rolling is not particularly limited, and a known method can be used.

ただし、本発明においては、熱間圧延時に形成される内部酸化層の厚さは2μm以下とする。熱間圧延時に形成される内部酸化層が存在する場合には連続焼鈍炉内における酸化処理が容易に達成できるため、酸化処理、還元処理によって良好な化成処理性が得られることが分かっている。しかし、一方で、ユーザーにて使用される環境下、すなわち塗装を行った後の耐食性が劣化する。この原因は明らかではないが、以下のように考えられる。熱間圧延時に形成される内部酸化層は図1に示すとおり、粒界に沿って形成した酸化物の層である。そして、粒界に沿って塩分が流入し、塗装(塗膜)と鋼板との密着力を低下させ、耐食性が劣化すると考えることが出来る。
一方、連続焼鈍時に形成される内部酸化層は粒内に存在するため、上述のような塗装後耐食性を低下させることが無い。本発明では、熱間圧延時に形成される内部酸化層は厚さを2μm以下とし、すなわち、冷間圧延前の鋼板は内部酸化層を有しない鋼板とし、連続焼鈍時に内部酸化層を形成する。この結果、本発明により形成する内部酸化層は塗装後耐食性にも良好に働くものと考える。
なお、本発明において、内部酸化層を有しない鋼板とは、熱間圧延時に形成される内部酸化層の厚さが2μm以下の鋼板である。また、熱間圧延時に形成される内部酸化層の厚さを2μm以下とする鋼板を得る方法としては熱延の巻き取り温度を低下させる方法や、冷間圧延、連続焼鈍ラインに装入する前に酸洗や機械研削などの方法により除去する方法が挙げられる。また、熱間圧延時に形成される内部酸化層の厚さは、任意の部分でせん断した断面SEM観察により観察することが出来、図1に示されるようなクラック状の内部酸化層の筋が鋼板の深さ方向に2μm以下であることとする。
However, in the present invention, the thickness of the internal oxide layer formed during hot rolling is 2 μm or less. It has been found that when an internal oxide layer formed during hot rolling is present, an oxidation treatment in a continuous annealing furnace can be easily achieved, so that good chemical conversion properties can be obtained by oxidation treatment and reduction treatment. However, on the other hand, the corrosion resistance after coating is deteriorated in the environment used by the user. The cause of this is not clear, but is considered as follows. The internal oxide layer formed during hot rolling is an oxide layer formed along the grain boundaries as shown in FIG. And it can be considered that salt flows in along the grain boundary, reduces the adhesion between the coating (coating film) and the steel sheet, and deteriorates the corrosion resistance.
On the other hand, since the internal oxide layer formed during the continuous annealing exists in the grains, the above-mentioned corrosion resistance after coating does not deteriorate. In the present invention, the internal oxide layer formed during hot rolling has a thickness of 2 μm or less, that is, the steel plate before cold rolling is a steel plate having no internal oxide layer, and the internal oxide layer is formed during continuous annealing. As a result, the internal oxide layer formed according to the present invention is considered to work well for the corrosion resistance after coating.
In the present invention, the steel plate having no internal oxide layer is a steel plate having an internal oxide layer thickness of 2 μm or less formed during hot rolling. In addition, as a method of obtaining a steel sheet in which the thickness of the internal oxide layer formed at the time of hot rolling is 2 μm or less, a method for lowering the hot rolling coiling temperature, a cold rolling, before charging in a continuous annealing line. In addition, there is a method of removing by a method such as pickling or mechanical grinding. Further, the thickness of the internal oxide layer formed during hot rolling can be observed by cross-sectional SEM observation sheared at an arbitrary portion, and the cracked internal oxide layer streaks as shown in FIG. It is assumed that it is 2 μm or less in the depth direction.

冷間圧延後、Niを40〜2000mg/m被覆する処理を施す。
連続焼鈍の前の鋼板表面へNiを40mg/m〜2000mg/m被覆させる必要がある。40mg/m未満の被覆量の場合、酸化への効果が無く良好な化成処理性が得られない。2000mg/mより多く被覆してもその後の化成処理性への影響は小さいため性能上の問題は無いが、製造時のラインスピードや電気量及び設備コストが高くなるため好ましくない。
After cold rolling, Ni is coated to 40 to 2000 mg / m 2 .
The Ni previous surface of the steel sheet of the continuous annealing is necessary to 40mg / m 2 ~2000mg / m 2 coating. When the coating amount is less than 40 mg / m 2 , there is no effect on oxidation and good chemical conversion treatment properties cannot be obtained. Even if the coating is more than 2000 mg / m 2 , there is no problem in performance because the influence on the subsequent chemical conversion treatment is small, but this is not preferable because the line speed, the amount of electricity and the equipment cost at the time of production increase.

鋼板表面へのNiの被覆方法は限定しない。電解法、蒸着法などが挙げられるが、製造コストの観点から電解法が好ましい。電解法の場合、めっき浴組成に限定は無く、硫酸塩溶液や塩化物溶液やこれらの複合溶液などを用いることが一般的である。また電気めっき浴への添加物についても限定は無く、電解効率を高めるための高分子化合物などを添加しても構わない。   The method of coating Ni on the steel sheet surface is not limited. Although an electrolytic method, a vapor deposition method, etc. are mentioned, an electrolytic method is preferable from a viewpoint of manufacturing cost. In the case of the electrolytic method, there is no limitation on the plating bath composition, and it is common to use a sulfate solution, a chloride solution, or a composite solution thereof. Moreover, there is no limitation also about the additive to an electroplating bath, You may add the high molecular compound etc. for improving electrolysis efficiency.

鋼板表面へNiを被覆する効果(Niめっきによる効果)は明確ではないが以下のように考えることができる。鋼板が酸化雰囲気内で昇温された場合、鋼板表面の大部分を占める鉄の酸化と鋼板成分の易酸化性元素が酸化される。鋼板中にSiが多量に含まれていた場合、鋼板表面にSi酸化物を形成する。ここでSi酸化物は鋼板成分により変化し、Mnが多量に含まれている場合はSi−Mn複合酸化物を形成し、Mn量が少ない場合はシリカ(SiO2)を形成する。シリカが形成された場合、シリカは酸素透過性が低いため、酸化雰囲気内で鋼板の酸化量が十分に得られず、Siは内部酸化せず外面に残存する。その結果、化成処理性を阻害することになる。一方、Niを鋼板表層に付与(被覆)することで、NiはSiと複合酸化物を形成するため、シリカを形成せず、十分な酸化量が得られ、その後に続く還元焼鈍時にSiを内部酸化させることが出来る。その結果、表層のシリカが無くなり化成処理性が良好となる。また、表層にNi−Si複合酸化物として残存した場合でも、Ni−Si複合酸化物は易溶性でありその後の製造過程における酸洗時に溶解するため、化成処理性が良好となる。また酸洗工程が無い場合においても一般的に自動車の製造ラインで用いられている化成処理液が酸性であるため、化成処理液内で溶解し、化成処理性が良好となる。また、現在の自動車製造ラインで用いられている化成処理液成分としてNiが含有されているため、化成処理液を汚染することもなく使用することが可能である。   The effect of coating Ni on the steel sheet surface (effect by Ni plating) is not clear, but can be considered as follows. When the steel sheet is heated in an oxidizing atmosphere, the oxidation of iron occupying most of the surface of the steel sheet and the oxidizable elements of the steel sheet components are oxidized. When a large amount of Si is contained in the steel plate, Si oxide is formed on the steel plate surface. Here, the Si oxide changes depending on the steel plate component, and forms Si—Mn composite oxide when Mn is contained in a large amount, and forms silica (SiO 2) when the amount of Mn is small. When silica is formed, since silica has low oxygen permeability, a sufficient amount of oxidation of the steel sheet cannot be obtained in an oxidizing atmosphere, and Si does not oxidize internally and remains on the outer surface. As a result, chemical conversion processability is inhibited. On the other hand, by applying (coating) Ni to the steel sheet surface layer, Ni forms a complex oxide with Si, so that a sufficient amount of oxidation is obtained without forming silica, and Si is contained inside during subsequent reduction annealing. It can be oxidized. As a result, there is no silica on the surface layer, and chemical conversion treatment properties are improved. Even when the Ni—Si composite oxide remains on the surface layer, the Ni—Si composite oxide is easily soluble and dissolves during pickling in the subsequent manufacturing process, so that the chemical conversion treatment property is improved. Even in the absence of the pickling step, the chemical conversion treatment liquid generally used in an automobile production line is acidic, so that it dissolves in the chemical conversion treatment liquid and the chemical conversion treatment performance is improved. Moreover, since Ni is contained as a chemical conversion treatment liquid component used in the current automobile production line, the chemical conversion treatment liquid can be used without being contaminated.

次いで、連続焼鈍を行う。
連続焼鈍ラインでは、昇温、均熱、冷却の連続する3工程が行われる。一般的な連続焼鈍ラインは、鋼板を昇温する加熱炉、均熱する均熱炉、冷却炉を備える。あるいは加熱炉の前にさらに予熱炉を備える。
Next, continuous annealing is performed.
In the continuous annealing line, three steps of continuous temperature rise, soaking, and cooling are performed. A general continuous annealing line includes a heating furnace for raising the temperature of a steel sheet, a soaking furnace for soaking, and a cooling furnace. Alternatively, a preheating furnace is further provided before the heating furnace.

昇温時には、空気比を0.95以上に調整した直火バーナを用いた加熱炉で、少なくとも鋼板温度550℃から鋼板温度650℃まで鋼板を昇温する。これにより、鋼板表面にFe酸化物が形成される。鋼板温度550℃未満から空気比を0.95以上に調整した直火バーナで昇温しても問題はない。しかし、550℃未満の温度域では十分なFe酸化量は得られないため、鋼板温度550℃からの鋼板の昇温は空気比を0.95以上に調整した直火バーナを用いることとする。Fe酸化物形成の観点からは、できるだけ高い温度まで到達させた方が良く、好ましくは鋼板温度700℃まで、より好ましくは鋼板温度750℃まで昇温する。しかし、過度に酸化させると、次の還元性雰囲気炉でFe酸化物が剥離し、ピックアップの原因となるので、空気比を0.95以上に調整した直火バーナを用いた昇温は鋼板温度800℃までとするのが好ましい。   At the time of temperature increase, the temperature of the steel plate is raised from at least a steel plate temperature of 550 ° C. to a steel plate temperature of 650 ° C. in a heating furnace using a direct fire burner with an air ratio adjusted to 0.95 or higher. Thereby, Fe oxide is formed on the steel plate surface. There is no problem even if the temperature is raised with a direct flame burner in which the air ratio is adjusted to 0.95 or more from a steel plate temperature of less than 550 ° C. However, since a sufficient amount of Fe oxidation cannot be obtained in a temperature range of less than 550 ° C., a direct fire burner in which the air ratio is adjusted to 0.95 or more is used for raising the temperature of the steel plate from the steel plate temperature of 550 ° C. From the viewpoint of Fe oxide formation, it is better to reach the highest possible temperature, and the temperature is preferably raised to a steel plate temperature of 700 ° C., more preferably to a steel plate temperature of 750 ° C. However, excessive oxidation causes the Fe oxide to peel off in the next reducing atmosphere furnace and cause pickup, so the temperature rise using a direct fire burner with the air ratio adjusted to 0.95 or higher is the steel plate temperature. The temperature is preferably up to 800 ° C.

ここで、直火バーナとは、製鉄所の副生ガスであるコークス炉ガス(COG)等の燃料と空気を混ぜて燃焼させたバーナ火炎を直接鋼板表面に当てて鋼板を昇温するものである。直火バーナは、輻射方式の昇温よりも鋼板の昇温速度が速いため、加熱炉の炉長を短くしたり、ラインスピードを速く出来る利点がある。さらに、直火バーナは空気比を0.95以上とし、燃料に対する空気の割合を多くすると、未燃の酸素が火炎中に残存し、その酸素で鋼板の酸化を促進することが可能となる。空気比が高い方が酸化性が強くなるため、Fe酸化物形成の観点からは、空気比はできるだけ高い方が良く、空気比は1.10以上が好ましい。しかし、過度に酸化させると、次の還元性雰囲気の均熱炉でFe酸化物が剥離し、ピックアップの原因となるので、空気比は1.30以下とすることが好ましい。   Here, the direct-fired burner heats the steel sheet by directly applying the burner flame, which is burned by mixing fuel and air, such as coke oven gas (COG), which is a by-product gas of the steelworks, to the surface of the steel sheet. is there. The direct-fired burner has an advantage that the length of the heating furnace can be shortened and the line speed can be increased because the heating rate of the steel sheet is faster than that of the radiation method. Further, when the direct fire burner has an air ratio of 0.95 or higher and the ratio of air to fuel is increased, unburned oxygen remains in the flame, and the oxygen can promote oxidation of the steel sheet. The higher the air ratio, the stronger the oxidizability. From the viewpoint of Fe oxide formation, the air ratio should be as high as possible, and the air ratio is preferably 1.10 or more. However, if oxidized excessively, the Fe oxide is peeled off in the following soaking furnace in a reducing atmosphere, causing pickup, so the air ratio is preferably 1.30 or less.

直火バーナの燃料は、COG、液化天然ガス(LNG)等を使用できる。   COG, liquefied natural gas (LNG), etc. can be used for the fuel of the direct fire burner.

加熱炉の前に予熱炉を備える場合、予熱炉の雰囲気は特に限定されない。通常行われている条件でよい。例えば、直火バーナを備えた加熱炉の高温の燃焼ガスを予熱炉に導入してもよい。また、予熱炉に、空気比0.7〜1.3の直火バーナを用いることも出来る。   When the preheating furnace is provided before the heating furnace, the atmosphere of the preheating furnace is not particularly limited. The usual conditions may be used. For example, you may introduce the high temperature combustion gas of the heating furnace provided with the direct-fired burner into the preheating furnace. In addition, a direct fire burner having an air ratio of 0.7 to 1.3 can be used for the preheating furnace.

直火バーナを備える加熱炉では、Feの過度の酸化を防止する点から、加熱炉前段は空気比0.95以上の直火バーナを使用し、加熱炉後段は空気比0.89以下の直火バーナ使用してもよい。この場合、加熱炉前段で空気比0.95以上の直火バーナを少なくとも鋼板温度550℃から650℃まで使用し、次いで、空気比0.89以下の直火バーナを用いて、更に鋼板を30℃以上昇温すれば、十分なFe酸化量を得ることが可能である。Fe酸化物形成の観点からは、できるだけ高い温度まで到達させた方が良く、好ましくは鋼板温度750℃まで昇温するのが好ましい。また、十分なFe酸化量を得るという効果の点からは、空気比0.95以上の直火バーナによる鋼板昇温時間は、空気比0.89以下の直火バーナによる鋼板昇温時間以上とすることが好ましい。また、加熱炉後段の直火バーナの空気比は燃焼効率の点から0.7以上が好ましい。さらに、空気比0.89以下の直火バーナを用いた昇温雰囲気はFe還元性であり、過度に高温まで昇温すると、次の均熱炉に入る前にFe酸化物が還元されてしまい、均熱炉でのFe酸化物の還元によるSiの内部酸化の生成が少なくなる。よって、空気比0.89以下の直火バーナを用いた昇温は鋼板温度800℃まで行うことが好ましい。   In a heating furnace equipped with a direct-fired burner, from the viewpoint of preventing excessive oxidation of Fe, a direct-fired burner having an air ratio of 0.95 or more is used for the front stage of the heating furnace, and a direct-fired burner having an air ratio of 0.89 or less is used for the latter stage of the heating furnace. A fire burner may be used. In this case, a direct fire burner having an air ratio of 0.95 or more is used at least from a steel plate temperature of 550 ° C. to 650 ° C. in the pre-stage of the heating furnace, and then a steel plate is further separated by using a direct fire burner having an air ratio of 0.89 or less. If the temperature is raised at or above ° C, a sufficient amount of Fe oxidation can be obtained. From the viewpoint of Fe oxide formation, it is better to reach as high a temperature as possible, and it is preferable to raise the temperature to a steel plate temperature of 750 ° C. From the standpoint of the effect of obtaining a sufficient amount of Fe oxidation, the steel plate heating time with an open flame burner with an air ratio of 0.95 or more is equal to or longer than the steel plate heating time with a direct fire burner with an air ratio of 0.89 or less It is preferable to do. The air ratio of the direct-fired burner at the latter stage of the heating furnace is preferably 0.7 or more from the viewpoint of combustion efficiency. Furthermore, the temperature rising atmosphere using an open flame burner with an air ratio of 0.89 or less is Fe reducing, and if the temperature is raised to an excessively high temperature, the Fe oxide is reduced before entering the next soaking furnace. The generation of internal oxidation of Si due to the reduction of Fe oxide in a soaking furnace is reduced. Therefore, it is preferable to raise the temperature using an open flame burner with an air ratio of 0.89 or less up to a steel plate temperature of 800 ° C.

直火バーナを用いて鋼板を上記のように昇温した後、例えば、ラジアントチューブバーナを備えた均熱炉で均熱焼鈍する。均熱炉に導入する雰囲気ガスは、1〜10体積%H+残りNである。1体積%未満では連続的に通板される鋼板表面のFe酸化物を還元するのにHが不足する。一方、10体積%を超えてもFe酸化物の還元は飽和するため、過分のHが無駄になる。露点が−25℃超になると炉内のHOの酸素による酸化が著しくなりSiの内部酸化が過度に起こるため、露点は−25℃以下に限定する。これにより、均熱炉内は、Fe、Niの還元性雰囲気となり、加熱炉で生成したFe酸化物、Ni酸化物の還元が起こる。このとき、還元によりFeおよびNiと分離された酸素が、一部鋼板内部に拡散し、Siと反応することにより、SiOの内部酸化が起こる。Siが鋼板内部で酸化し、化成処理反応が起こる鋼板最表面のSi酸化物が減少するため、鋼板最表面の化成処理性は良好となる。 After heating the steel sheet as described above using a direct fire burner, for example, soaking is performed in a soaking furnace equipped with a radiant tube burner. The atmospheric gas introduced into the soaking furnace is 1 to 10% by volume H 2 + the remaining N 2 . If it is less than 1% by volume, H 2 is insufficient to reduce the Fe oxide on the surface of the continuously passing steel sheet. On the other hand, even if it exceeds 10% by volume, the reduction of Fe oxide is saturated, so excess H 2 is wasted. When the dew point exceeds -25 ° C, the oxidation of H 2 O in the furnace by oxygen becomes significant and excessive internal oxidation of Si occurs, so the dew point is limited to -25 ° C or less. Thereby, the inside of the soaking furnace becomes a reducing atmosphere of Fe and Ni, and reduction of Fe oxide and Ni oxide generated in the heating furnace occurs. At this time, oxygen separated from Fe and Ni by reduction partially diffuses inside the steel plate and reacts with Si, thereby causing internal oxidation of SiO 2 . Since Si is oxidized inside the steel sheet and the Si oxide on the outermost surface of the steel sheet where the chemical conversion reaction occurs is reduced, the chemical conversion property of the outermost surface of the steel sheet is improved.

均熱焼鈍は、材質調整の観点から、鋼板温度が750℃から900℃の範囲内で行われるのが好ましい。均熱時間は20秒から180秒が好ましい。   It is preferable that the soaking is performed in the range of 750 ° C. to 900 ° C. from the viewpoint of material adjustment. The soaking time is preferably 20 seconds to 180 seconds.

均熱焼鈍後の工程は、品種によって様々であり、本発明では、その工程は特に限定されない。例えば、均熱焼鈍後、ガス、気水、水等により冷却され、必要に応じ、150℃から400℃の焼き戻しを施す。冷却後、あるいは焼き戻し後に、表面性状を調整するために、塩酸や硫酸などを用いた酸洗を行ってもよい。   The process after soaking is varied depending on the type, and the process is not particularly limited in the present invention. For example, after soaking, it is cooled with gas, air, water, etc., and tempered at 150 ° C. to 400 ° C. as necessary. In order to adjust the surface properties after cooling or tempering, pickling using hydrochloric acid or sulfuric acid may be performed.

表1に示す化学成分を有する鋼Aを公知の方法により熱間圧延、酸洗、冷間圧延して厚さ1.5mmの鋼板を製造した。ここで、熱間圧延後の巻き取り温度を540℃〜620℃とし、熱延時に形成される内部酸化層の厚さを変化させた。内部酸化層厚さの測定は、冷間圧延後の断面SEM観察により測定し、断面SEM観察用試験片10mmの中央部500μmの中で最大長さの内部酸化層を内部酸化層厚さと定義し表2に示す。
以上により得られた鋼板に対して、めっき設備で電気Niめっきを行った。めっき浴は以下の通りである。
(1)硫酸ニッケル・6水和物を240g/L、ほう酸を30g/Lとし硫酸を用いてpHを3.0に調整
(2)塩化ニッケル・7水和物を260g/L、ほう酸を30g/Lとし塩酸を用いてpHを3.0に調整
(3)硫酸ニッケル・6水和物を200g/L、塩化ニッケル・7水和物を60g/L、ほう酸を30g/Lとし硫酸を用いてpHを3.0に調整
電気めっき条件は1A/dmの電流密度で通電時間を変更することによりNiめっきを行った。
次に、直火バーナを備える加熱炉を用いて昇温し、一旦冷却後にラジアントチューブタイプの均熱炉、冷却炉をシミュレートできる設備を用いて昇温焼鈍して高強度冷延鋼板を得た。直火バーナは燃料にCOGを使用し、空気比を種々変更した。均熱後の冷却は窒素ガスで行い、表2に記載の保持温度で保持した。さらに、表2に記載の酸で酸洗し、機械的特性、化成処理性および塗装後耐食性を評価した。
Steel A having a chemical composition shown in Table 1 was hot-rolled, pickled, and cold-rolled by a known method to produce a steel plate having a thickness of 1.5 mm. Here, the coiling temperature after hot rolling was set to 540 ° C. to 620 ° C., and the thickness of the internal oxide layer formed during hot rolling was changed. The thickness of the internal oxide layer is measured by cross-sectional SEM observation after cold rolling, and the maximum internal oxide layer is defined as the internal oxide layer thickness in the central portion of 500 μm of the 10 mm cross-section SEM observation test piece. It shows in Table 2.
The steel plate obtained as described above was subjected to electro Ni plating with a plating facility. The plating bath is as follows.
(1) Nickel sulfate hexahydrate is 240 g / L, boric acid is 30 g / L, and the pH is adjusted to 3.0 using sulfuric acid. (2) Nickel chloride heptahydrate is 260 g / L, boric acid is 30 g. / L adjusted to pH 3.0 using hydrochloric acid (3) Nickel sulfate hexahydrate 200 g / L, nickel chloride heptahydrate 60 g / L, boric acid 30 g / L and sulfuric acid Then, the pH was adjusted to 3.0, and the electroplating conditions were such that Ni plating was performed by changing the energization time at a current density of 1 A / dm 2 .
Next, the temperature is raised using a heating furnace equipped with a direct-fired burner, and after cooling, a radiant tube type soaking furnace and annealing equipment are used to simulate a cooling furnace to obtain a high-strength cold-rolled steel sheet. It was. The direct fire burner used COG as the fuel and changed the air ratio in various ways. Cooling after soaking was performed with nitrogen gas, and was held at the holding temperatures shown in Table 2. Furthermore, it pickled with the acid of Table 2, and evaluated mechanical characteristics, chemical conversion treatment property, and corrosion resistance after coating.

酸洗条件は下記である。
塩酸酸洗:酸濃度1〜20%、液温度30〜90℃、酸洗時間5〜30sec
硫酸酸洗:酸濃度1〜20%、液温度30〜90℃、酸洗時間5〜30sec
機械的特性はJIS5号試験片(JISZ2201)を圧延方向と直角方向から採取し、JISZ2241に準拠して試験した。塗装焼付け処理後の強度として、5%予歪後、170℃で20分間保持した後、再引張における引張強さ(TSBH)を調査し、初期引張強さ(TS)と比較し、その差をΔTS(TSBH−TS)と定義した。加工性は引張強さ(TS)×伸び(El)の値で評価した。
The pickling conditions are as follows.
Hydrochloric acid pickling: acid concentration 1-20%, liquid temperature 30-90 ° C, pickling time 5-30 sec
Acid pickling: acid concentration 1-20%, liquid temperature 30-90 ° C, pickling time 5-30 sec
For mechanical properties, a JIS No. 5 test piece (JISZ2201) was taken from the direction perpendicular to the rolling direction and tested according to JISZ2241. As strength after paint baking treatment, after 5% pre-strain, after holding at 170 ° C for 20 minutes, the tensile strength in re-tension (TS BH ) was investigated and compared with the initial tensile strength (TS 0 ) The difference was defined as ΔTS (TS BH −TS 0 ). Workability was evaluated by the value of tensile strength (TS) × elongation (El).

化成処理性の評価方法は以下の通りである。
化成処理液は、日本パーカライジング(株)製の化成処理液(パルボンドL3080(登録商標))を用い、下記方法で化成処理を施した。
日本パーカライジング(株)製の脱脂液ファインクリーナ(登録商標)で脱脂したのち、水洗し、次に日本パーカライジング(株)製の表面調整液プレパレンZ(登録商標)で30秒表面調整行い、43℃の化成処理液(パルボンドL3080)に120秒浸漬した後、水洗し、温風で乾燥した。
化成皮膜を走査型電子顕微鏡(SEM)で、倍率500倍で無作為に5視野を観察し、化成皮膜のスケ面積率を画像処理により測定し、スケ面積率によって以下の評価をした。○、◎が合格レベルである。
◎:0%(スケがない)
○:5%以下
△:5%超10%以下
×:10%超え
塗装後耐食性の評価方法は以下の通りである。
前記と同様に、日本パーカライジング(株)製の化成処理液(パルボンドL3080)により化成処理皮膜を形成させた後、関西ペイント(株)製の電着塗装液(GT−10)により電着塗装を行った後、170℃の炉内に25分間放置することで20μmの電着皮膜を形成させた。その後、カッターナイフで鋼板に到達するまでのカットをX状に入れ、50℃の5%NaCl溶液内に10日間放置し、カット部からの片側の塗装剥離長さの最大値を測定した。塗装剥離長さから以下のように評価を行った。
○:2.5mm未満
×:2.5mm以上
以上により得られた評価結果を製造条件と併せて表2に示す。
The evaluation method of chemical conversion property is as follows.
The chemical conversion treatment solution was subjected to chemical conversion treatment by the following method using a chemical conversion treatment solution (Palbond L3080 (registered trademark)) manufactured by Nippon Parkerizing Co., Ltd.
After degreasing with a degreasing liquid Fine Cleaner (registered trademark) manufactured by Nihon Parkerizing Co., Ltd., washed with water, and then surface-adjusted with a surface conditioning liquid preparen Z (registered trademark) manufactured by Nihon Parkerizing Co., Ltd. for 30 seconds, 43 ° C. After being immersed in a chemical conversion treatment solution (Palbond L3080) for 120 seconds, it was washed with water and dried with warm air.
The chemical conversion film was randomly observed with a scanning electron microscope (SEM) at a magnification of 500 times, and the scale area ratio of the chemical conversion film was measured by image processing, and the following evaluation was made based on the scale area ratio. ○ and ◎ are acceptable levels.
A: 0% (no scale)
○: 5% or less Δ: Over 5% and 10% or less ×: Over 10% The corrosion resistance evaluation method after coating is as follows.
In the same manner as described above, after a chemical conversion treatment film was formed with a chemical conversion treatment liquid (Palbond L3080) manufactured by Nihon Parkerizing Co., Ltd., electrodeposition coating was performed with an electrodeposition coating liquid (GT-10) manufactured by Kansai Paint Co., Ltd. Then, the film was left in a furnace at 170 ° C. for 25 minutes to form a 20 μm electrodeposition film. Thereafter, the cut until reaching the steel plate with a cutter knife was put in an X shape, left in a 5% NaCl solution at 50 ° C. for 10 days, and the maximum value of the coating peeling length on one side from the cut portion was measured. Evaluation was carried out as follows from the coating peeling length.
○: Less than 2.5 mm x: 2.5 mm or more Table 2 shows the evaluation results obtained as described above together with the production conditions.

表2より、本発明例では、引張強さ(TS)590MPa以上、TS×El:18000MPa・%以上の良好な加工性と、良好な化成処理性、塗装後耐食性が得られている。
一方、比較例1〜4では化成処理性が劣っている。比較例5〜11では塗装後耐食性が劣っている。
さらに熱間圧延の巻き取り温度を変化させることにより熱間圧延時に形成する内部酸化層の厚さを変化させた例について評価を行ったところ、1μm以上の内部酸化層を有する比較例5〜7の場合、直火バーナ温度を高温にすることで化成処理性の改善傾向が認められた。さらに内部酸化層が3μm程度の比較例8、9の場合、炉出側温度が低い場合でも良好な化成処理性が得られていることが分かる。
From Table 2, in the example of the present invention, good workability of tensile strength (TS) of 590 MPa or more, TS × El: 18000 MPa ·% or more, good chemical conversion property, and corrosion resistance after coating are obtained.
On the other hand, the chemical conversion processability is inferior in Comparative Examples 1-4. In Comparative Examples 5 to 11, the corrosion resistance after coating is inferior.
Furthermore, when the example which changed the thickness of the internal oxide layer formed at the time of hot rolling by changing the coiling temperature of hot rolling was evaluated, the comparative examples 5-7 which have an internal oxide layer of 1 micrometer or more In the case of, the improvement tendency of chemical conversion treatment was recognized by increasing the temperature of the open flame burner. Furthermore, in the case of Comparative Examples 8 and 9 having an internal oxide layer of about 3 μm, it can be seen that good chemical conversion properties are obtained even when the furnace exit side temperature is low.

表1に示す化学成分を有する鋼A〜Fを公知の方法により熱間圧延、酸洗、冷間圧延を行い厚さ1.5mmの鋼板を製造した。この鋼板に対して、めっきラインにおいてNiめっきを行い、200mg/mのNiめっきを得た。めっき浴は硫酸ニッケル・6水和物を240g/L、ほう酸を30g/Lとし硫酸を用いてpHを3.0に調整した。通電条件は1A/dmとした。引き続き、予熱炉、直火バーナを備える加熱炉、ラジアントチューブタイプの均熱炉、冷却炉を備える連続焼鈍ラインに上記鋼板を通して昇温焼鈍して高強度冷延鋼板を得た。直火バーナを備える加熱炉は4ゾーンに分かれ、各ゾーン長は同じである。直火バーナは燃料にCOGを使用し、加熱炉の前段(3ゾーン)と後段(1ゾーン)の空気比を種々変更した。均熱後の冷却は表3に示すとおり、水、気水またはガスで冷却した。その際、水冷却の場合は水温まで冷却後、表3記載の保持温度まで再加熱し、保持した。また、気水、ガス冷却の場合は、表3記載の保持温度まで冷却し、そのまま保持した。さらに、表3記載の酸で酸洗し、または、そのまま製品とした。 Steels A to F having chemical components shown in Table 1 were hot-rolled, pickled, and cold-rolled by a known method to produce a steel plate having a thickness of 1.5 mm. The steel plate was subjected to Ni plating in a plating line to obtain 200 mg / m 2 of Ni plating. The plating bath was 240 g / L nickel sulfate hexahydrate, 30 g / L boric acid, and the pH was adjusted to 3.0 using sulfuric acid. Energization conditions were 1A / dm 2. Subsequently, the steel sheet was passed through the steel sheet through a continuous annealing line equipped with a preheating furnace, a heating furnace equipped with a direct-fired burner, a radiant tube type soaking furnace, and a cooling furnace to obtain a high-strength cold-rolled steel sheet. A heating furnace equipped with an open flame burner is divided into four zones, and each zone has the same length. The direct fire burner used COG as the fuel, and variously changed the air ratio between the front stage (3 zones) and the rear stage (1 zone) of the heating furnace. Cooling after soaking was performed with water, air or gas as shown in Table 3. At that time, in the case of water cooling, after cooling to the water temperature, it was reheated to the holding temperature shown in Table 3 and held. Moreover, in the case of air-water and gas cooling, it cooled to the holding temperature of Table 3, and hold | maintained as it was. Furthermore, it pickled with the acid of Table 3, or was made into the product as it was.

得られた高強度冷延鋼板に対して機械的特性と化成処理性を評価した。機械的特性と化成処理性の評価方法は実施例1と同様の方法である。   Mechanical properties and chemical conversion properties were evaluated for the obtained high-strength cold-rolled steel sheets. The evaluation method of mechanical characteristics and chemical conversion treatment is the same as that in Example 1.

以上により得られた評価結果を製造条件と併せて表3に示す。   The evaluation results obtained as described above are shown in Table 3 together with the manufacturing conditions.

本発明例では、引張強さ(TS)590MPa以上、TS×El:18000MPa・%以上の良好な加工性と、良好な化成処理性が得られている。
一方、比較例は、化成処理性が劣っている。
In the example of the present invention, good workability and tensile conversion (TS) of 590 MPa or more, TS × El: 18000 MPa ·% or more are obtained.
On the other hand, the chemical conversion processability is inferior in the comparative example.

本発明の高Si冷延鋼板は、高強度であり、化成処理性に優れるため、自動車の車体そのものを軽量化かつ高強度化するための冷延鋼板として利用することができる。また、自動車以外にも、家電、建材の分野等、広範な分野で適用できる。   Since the high Si cold-rolled steel sheet of the present invention has high strength and excellent chemical conversion properties, it can be used as a cold-rolled steel sheet for reducing the weight and strength of the automobile body itself. In addition to automobiles, the present invention can be applied in a wide range of fields such as home appliances and building materials.

Claims (9)

質量%で、C:0.05〜0.30%、Si:0.6〜3.0%、Mn:1.0〜3.0%、P:0.1%以下、S:0.05%以下、Al:0.01〜1.00%、N:0.01%以下を含有し、残部がFeおよび不可避的不純物からなる鋼を熱間圧延し、巻取温度540〜580℃で巻取り、形成される内部酸化層の厚さを2μm以下とした後、冷間圧延し、次いで、Niを50〜100mg/m被覆する処理を施し、その後、空気比:0.95以上の直火バーナを用いて、少なくとも鋼板温度:550℃から鋼板温度:650℃まで鋼板を昇温し、露点:−25℃以下、雰囲気:1〜10体積%H+残部Nで均熱する焼鈍を行うことを特徴とする化成処理性に優れた高Si冷延鋼板の製造方法。 In mass%, C: 0.05 to 0.30%, Si: 0.6 to 3.0%, Mn: 1.0 to 3.0%, P: 0.1% or less, S: 0.05 % Of steel, Al: 0.01 to 1.00%, N: 0.01% or less of steel, the balance being Fe and inevitable impurities are hot-rolled and wound at a winding temperature of 540 to 580 ° C. Then, after the thickness of the formed internal oxide layer is made 2 μm or less, it is cold-rolled and then coated with Ni of 50 to 100 mg / m 2 , and then the air ratio: 0.95 or more Using a fire burner, the temperature of the steel sheet is raised from at least a steel plate temperature: 550 ° C. to a steel plate temperature: 650 ° C., and annealing is performed with a dew point: −25 ° C. or less, atmosphere: 1 to 10% by volume H 2 + the balance N 2 The manufacturing method of the high Si cold-rolled steel plate excellent in the chemical conversion processability characterized by performing. 前記焼鈍は、空気比:0.95以上の直火バーナを用いて、少なくとも鋼板温度:550℃から鋼板温度:650℃まで鋼板を昇温し、次いで、空気比0.89以下の直火バーナを用いて、更に鋼板を30℃以上昇温し、露点:−25℃以下、雰囲気:1〜10体積%H+残部Nで均熱焼鈍することを特徴とする請求項1に記載の化成処理性に優れた高Si冷延鋼板の製造方法。 The annealing is performed by heating the steel plate at least from a steel plate temperature: 550 ° C. to a steel plate temperature: 650 ° C. using a direct fire burner having an air ratio of 0.95 or more, and then an open flame burner having an air ratio of 0.89 or less. The steel sheet is further heated at 30 ° C. or higher using a heat treatment, and is soaked with dew point: −25 ° C. or lower, atmosphere: 1 to 10% by volume H 2 + remaining N 2 , A method for producing a high-Si cold-rolled steel sheet having excellent chemical conversion properties. 前記鋼は、さらに、質量%で、Cr:0.01〜1.0%、Mo:0.01〜1.0%、Ni:0.01〜1.0%、Cu:0.01〜1.0%の1種又は2種以上を含有することを特徴とする請求項1または2に記載の化成処理性に優れた高Si冷延鋼板の製造方法。   The steel is further in mass%, Cr: 0.01 to 1.0%, Mo: 0.01 to 1.0%, Ni: 0.01 to 1.0%, Cu: 0.01 to 1 The manufacturing method of the high Si cold-rolled steel sheet excellent in chemical conversion treatment property of Claim 1 or 2 characterized by containing 0.0% of 1 type (s) or 2 or more types. 前記鋼は、さらに、質量%で、Ti:0.001〜0.1%、Nb:0.001〜0.1%、V:0.001〜0.1%の1種又は2種以上を含有することを特徴とする請求項1〜3のいずれかの一項に記載の化成処理性に優れた高Si冷延鋼板の製造方法。   The steel further includes one or more of Ti: 0.001 to 0.1%, Nb: 0.001 to 0.1%, and V: 0.001 to 0.1% in mass%. It contains, The manufacturing method of the high Si cold-rolled steel plate excellent in the chemical conversion treatment property of any one of Claims 1-3 characterized by the above-mentioned. 前記鋼は、さらに、質量%で、B:0.0003〜0.005%含有することを特徴とする請求項1〜4のいずれかの一項に記載の化成処理性に優れた高Si冷延鋼板の製造方法。   The steel further contains, in mass%, B: 0.0003 to 0.005%, and the high Si cooling excellent in chemical conversion property according to any one of claims 1 to 4. A method for producing rolled steel sheets. 記焼鈍において、空気比:0.95以上の直火バーナを用いての加熱は、鋼板温度:700℃まで行うことを特徴とする請求項1〜5のいずれか一項に記載の化成処理性に優れた高Si冷延鋼板の製造方法。 Prior Symbol sintered blunt, air ratio: heating 0.95 or more using a direct flame burner, temperature of the steel strip: Kasei according to any one of claims 1 to 5, characterized in that up to 700 ° C. A method for producing a high-Si cold-rolled steel sheet having excellent processability. 記焼鈍において、空気比:0.95以上の直火バーナを用いての加熱は、鋼板温度:800℃まで行うことを特徴とする請求項1〜6のいずれか一項に記載の化成処理性に優れた高Si冷延鋼板の製造方法。 Prior Symbol sintered blunt, air ratio: heating 0.95 or more using a direct flame burner, temperature of the steel strip: Kasei according to any one of claims 1 to 6, characterized in that up to 800 ° C. A method for producing a high-Si cold-rolled steel sheet having excellent processability. 記焼鈍において、空気比0.95以上の直火バーナを用いての加熱時間は、空気比0.89以下の直火バーナを用いての加熱時間以上であることを特徴とする請求項2〜7のいずれか一項に記載の化成処理性に優れた高Si冷延鋼板の製造方法。 Claim before Symbol sintered blunt, heating time using an air ratio 0.95 or more direct flame burners, characterized in that at least the heating time using the following direct flame burner air ratio 0.89 The manufacturing method of the high Si cold-rolled steel plate excellent in the chemical conversion property as described in any one of 2-7. 記焼鈍において、空気比0.89以下の直火バーナを用いての加熱は鋼板温度:800℃まで行うことを特徴とする請求項2〜6、8のいずれか一項に記載の化成処理性に優れた高Si冷延鋼板の製造方法。 Prior Symbol sintered blunt, heating using the following direct flame burner air ratio 0.89 steel plate temperature: Kasei according to any one of claims 2~6,8, which comprises carrying out up to 800 ° C. A method for producing a high-Si cold-rolled steel sheet having excellent processability.
JP2011246102A 2011-11-10 2011-11-10 Method for producing high-Si cold-rolled steel sheet with excellent chemical conversion properties Active JP5990892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011246102A JP5990892B2 (en) 2011-11-10 2011-11-10 Method for producing high-Si cold-rolled steel sheet with excellent chemical conversion properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011246102A JP5990892B2 (en) 2011-11-10 2011-11-10 Method for producing high-Si cold-rolled steel sheet with excellent chemical conversion properties

Publications (2)

Publication Number Publication Date
JP2013100590A JP2013100590A (en) 2013-05-23
JP5990892B2 true JP5990892B2 (en) 2016-09-14

Family

ID=48621440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011246102A Active JP5990892B2 (en) 2011-11-10 2011-11-10 Method for producing high-Si cold-rolled steel sheet with excellent chemical conversion properties

Country Status (1)

Country Link
JP (1) JP5990892B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3085282A1 (en) * 2017-12-15 2019-06-20 Nippon Steel Corporation Steel sheet, hot-dip galvanized steel sheet and galvannealed steel sheet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629680A (en) * 1979-08-21 1981-03-25 Nippon Steel Corp Surface treatment in annealing line
JP5157487B2 (en) * 2008-01-30 2013-03-06 新日鐵住金株式会社 Steel plate for containers and manufacturing method thereof
JP5402357B2 (en) * 2008-07-30 2014-01-29 Jfeスチール株式会社 Method for producing high-Si cold-rolled steel sheet with excellent chemical conversion properties
JP5309862B2 (en) * 2008-10-08 2013-10-09 Jfeスチール株式会社 Steel material excellent in chemical conversion treatment after member processing and manufacturing method thereof
JP5614035B2 (en) * 2009-12-25 2014-10-29 Jfeスチール株式会社 Manufacturing method of high-strength cold-rolled steel sheet

Also Published As

Publication number Publication date
JP2013100590A (en) 2013-05-23

Similar Documents

Publication Publication Date Title
JP5664716B2 (en) Method for producing high-Si cold-rolled steel sheet with excellent chemical conversion properties
JP5614035B2 (en) Manufacturing method of high-strength cold-rolled steel sheet
JP5083354B2 (en) Method for producing high-Si cold-rolled steel sheet with excellent chemical conversion properties
WO2015037241A1 (en) Hot-dip galvanized steel sheet and galvannealed steel sheet of excellent appearance and plating adhesiveness, and manufacturing method therefor
WO2015037242A1 (en) Hot-dip galvanized steel sheet and galvannealed steel sheet of excellent appearance and plating adhesiveness, and manufacturing method therefor
JP2014040653A (en) High-strength steel plate and manufacturing method thereof
JP2010255110A (en) High-strength hot-dip galvanized steel plate and method for producing the same
JP5712542B2 (en) High strength steel plate and manufacturing method thereof
JP6032221B2 (en) Manufacturing method of high-strength steel sheet
JP4912684B2 (en) High-strength hot-dip galvanized steel sheet, production apparatus therefor, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JP5593771B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP2012072452A (en) High-strength steel sheet and manufacturing method therefor
JP6090200B2 (en) High strength steel plate and manufacturing method thereof
JP5962540B2 (en) Manufacturing method of high-strength steel sheet
JP2013122074A (en) High-strength steel sheet and method of producing the same
JP5834870B2 (en) High strength steel plate and manufacturing method thereof
JP5834869B2 (en) High-strength steel sheet with excellent chemical conversion and process for producing the same
JP6020485B2 (en) High strength steel plate and manufacturing method thereof
JP5716338B2 (en) High strength steel plate and manufacturing method thereof
JP5990892B2 (en) Method for producing high-Si cold-rolled steel sheet with excellent chemical conversion properties
JP6114957B2 (en) High strength steel plate and manufacturing method thereof
JP2012072448A (en) High-strength steel sheet and manufacturing method therefor
JP5712541B2 (en) High strength steel plate and manufacturing method thereof
JP2014040654A (en) High-strength steel plate and manufacturing method thereof
JP2013124381A (en) High-strength steel sheet and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160801

R150 Certificate of patent or registration of utility model

Ref document number: 5990892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250