JP4797601B2 - High strength hot dip galvanized steel sheet manufacturing method and hot dip galvanized steel sheet manufacturing equipment - Google Patents

High strength hot dip galvanized steel sheet manufacturing method and hot dip galvanized steel sheet manufacturing equipment Download PDF

Info

Publication number
JP4797601B2
JP4797601B2 JP2005343166A JP2005343166A JP4797601B2 JP 4797601 B2 JP4797601 B2 JP 4797601B2 JP 2005343166 A JP2005343166 A JP 2005343166A JP 2005343166 A JP2005343166 A JP 2005343166A JP 4797601 B2 JP4797601 B2 JP 4797601B2
Authority
JP
Japan
Prior art keywords
zone
steel sheet
direct
reduction
galvanized steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005343166A
Other languages
Japanese (ja)
Other versions
JP2007146242A (en
Inventor
善道 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005343166A priority Critical patent/JP4797601B2/en
Publication of JP2007146242A publication Critical patent/JP2007146242A/en
Application granted granted Critical
Publication of JP4797601B2 publication Critical patent/JP4797601B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、直火加熱方式の直火帯と還元帯を備える焼鈍炉で熱処理したのち溶融亜鉛めっきを施して製造する高強度溶融亜鉛めっき鋼板の製造方法に関する。また、本発明は高強度鋼板の製造に好適な溶融亜鉛めっき鋼板の製造設備に関する。   The present invention relates to a method for manufacturing a high-strength hot-dip galvanized steel sheet that is manufactured by performing hot-dip galvanization after heat treatment in an annealing furnace having a direct-fire heating type direct-fire zone and a reduction zone. Moreover, this invention relates to the manufacturing equipment of the hot dip galvanized steel plate suitable for manufacture of a high strength steel plate.

鋼板は安価な金属材料であるため、自動車、家電、建材等の分野において広く用いられている。近年、自動車業界においては、耐久性の向上に加えて、燃費向上および排出ガス削減の観点から自動車の軽量化が進んでおり、高強度溶融亜鉛めっき鋼板の使用が急増している。高強度溶融亜鉛めっき鋼板は鋼中元素としてSi、Mn等が添加され、通常連続溶融亜鉛めっき設備を用いて製造される。連続溶融亜鉛めっき設備を用いて、Si、Mnが多量に添加された鋼板を焼鈍した後溶融亜鉛めっきすると、鋼板表面のSiやMnの酸化物によってめっき不良が発生する問題がある。この問題に対しては、鋼板表面に通常鋼板で形成する酸化皮膜より厚いFe酸化皮膜、例えば0.01〜1μm程度の厚さの酸化皮膜を形成し、その後該Fe酸化皮膜を、還元したのち溶融亜鉛めっきすることが有効である。   Since steel plates are inexpensive metal materials, they are widely used in fields such as automobiles, home appliances, and building materials. In recent years, in the automobile industry, in addition to improving durability, the weight of automobiles has been reduced from the viewpoint of improving fuel efficiency and reducing exhaust gas, and the use of high-strength hot-dip galvanized steel sheets has increased rapidly. A high-strength hot-dip galvanized steel sheet is usually manufactured using continuous hot-dip galvanizing equipment, with Si, Mn, etc. added as elements in the steel. When a hot dip galvanizing is performed after annealing a steel sheet to which a large amount of Si and Mn are added using a continuous hot dip galvanizing facility, there is a problem in that plating defects occur due to Si and Mn oxides on the steel sheet surface. To solve this problem, after forming an Fe oxide film thicker than the oxide film normally formed of a steel sheet on the surface of the steel sheet, for example, an oxide film having a thickness of about 0.01 to 1 μm, and then reducing the Fe oxide film Hot dip galvanizing is effective.

例えば、特許文献1には、鋼板表面に適正なFe酸化皮膜を形成した後形成したFe酸化皮膜厚を還元する方法として、無酸化炉を有しない連続式溶融亜鉛めっき設備を用い、還元炉を2ゾーン以上に分割して各ゾーンの露点を調整、すなわち第1ゾーンでは炉内に水蒸気を導入して露点を調整して鋼板表面に適正なFe酸化皮膜を形成し、次いで第2ゾーンではFe酸化皮膜を還元するように露点を調整する方法が記載されている。   For example, in Patent Document 1, as a method of reducing the thickness of the Fe oxide film formed after forming an appropriate Fe oxide film on the steel sheet surface, a continuous hot dip galvanizing facility having no oxidation furnace is used, and a reduction furnace is provided. Divide into two or more zones to adjust the dew point of each zone. That is, in the first zone, water vapor is introduced into the furnace to adjust the dew point to form an appropriate Fe oxide film on the steel plate surface, and then in the second zone A method is described in which the dew point is adjusted to reduce the oxide film.

また、酸化膜を生成する方法として、直火還元を利用する方法が有効であることが、特許文献2に記載されている。また、直火還元を使用すれば、特許文献1よりもSiやMnを多量に添加した高強度鋼板に溶融亜鉛めっきを施すことができることが、特許文献3に示されている。ここで、直火還元とは、直火加熱方式の直火帯を使用して鋼板表面を酸化した後に、鋼板表面を還元する方法である。   Further, Patent Document 2 describes that a method using direct flame reduction is effective as a method for generating an oxide film. Further, Patent Document 3 shows that hot-dip galvanization can be performed on a high-strength steel sheet to which Si or Mn is added in a larger amount than Patent Document 1 if direct fire reduction is used. Here, the direct fire reduction is a method of reducing the steel plate surface after oxidizing the steel plate surface using a direct fire heating type direct flame.

図1は、直火加熱方式の直火帯で直火還元を利用して酸化膜を生成した後、この酸化膜を還元し、しかる後亜鉛めっきを行う溶融亜鉛めっき鋼板の製造設備の要部構成例を示す概略側面図である。 FIG. 1 shows an essential part of a hot- dip galvanized steel sheet manufacturing facility in which an oxide film is generated by using direct-fire reduction in a direct-fire heating type direct-fire zone, and then this oxide film is reduced and then galvanized. It is a schematic side view which shows a structural example.

図1において、1は鋼板、2は直火加熱方式の直火帯(以下、単に「直火加熱帯」とも記載する。)、3は還元帯(竪型還元帯)、4は冷却帯、5はスナウト、6は溶融めっき槽、7はガスワイピング装置である。直火加熱帯2と竪型還元帯3が連接されている。溶融めっき槽6にはめっき金属である溶融亜鉛が保持されている。   In FIG. 1, 1 is a steel plate, 2 is a direct-fire heating type direct-fire zone (hereinafter also simply referred to as “direct-fire heating zone”), 3 is a reduction zone (a vertical reduction zone), 4 is a cooling zone, 5 is a snout, 6 is a hot dipping bath, and 7 is a gas wiping device. The direct fire heating zone 2 and the vertical reduction zone 3 are connected. The hot dip plating tank 6 holds hot galvanized metal.

直火加熱帯は、(A)加熱速度が速い、(B)鋼板温度が低くても、燃焼ガス温度が高く、燃焼ガス中のラジカルが鋼板に達して鋼板との反応に関与するので反応速度が速く、空気比が高ければ酸化膜が早く形成され、空気比が低く還元が早く行われる直火還元帯を設ければ還元も行える、などの特徴がある。酸化が早いことは、直火以外の加熱の場合にSiやMnなどの易酸化性元素が優先的に酸化されるのに較べ、Fe酸化物の生成も早く進行させることができる利点がある。   The direct-fired heating zone is (A) fast heating rate, (B) even if the steel plate temperature is low, the combustion gas temperature is high, and the radicals in the combustion gas reach the steel plate and participate in the reaction with the steel plate, so the reaction rate However, there is a feature that if the air ratio is high and the air ratio is high, the oxide film is formed earlier, and if a direct flame reduction zone is provided in which the air ratio is low and reduction is performed quickly, reduction can be performed. The fact that the oxidation is fast has an advantage that the formation of the Fe oxide can be advanced faster than the oxidizable elements such as Si and Mn are preferentially oxidized in the case of heating other than an open flame.

直火加熱帯は複数の加熱ゾーンに分割され、各々の加熱ゾーンには直火加熱バーナ103が配置され、燃料供給系統101から燃料ガス、空気供給系統102から燃焼用空気が供給される。各加熱ゾーンの燃料ガス流量、燃焼用空気流量及びその流量比は独立に制御可能である。   The direct fire heating zone is divided into a plurality of heating zones, and a direct fire heating burner 103 is disposed in each heating zone, and fuel gas is supplied from the fuel supply system 101 and combustion air is supplied from the air supply system 102. The fuel gas flow rate, the combustion air flow rate, and the flow rate ratio of each heating zone can be controlled independently.

還元帯3は、炉内の上部及び下部に所定の高さをもって配設された炉内ロールが所定間隔で複数設けられている。還元帯3内を走行する鋼板1は、上部炉内ロールと下部炉内ロールで支持されて鉛直方向に走行する複数の縦パスが存在し、縦パス間に鋼板に面してラジアントチューブバーナ8が配設されている。   The reduction zone 3 is provided with a plurality of in-furnace rolls arranged at a predetermined height at the upper and lower portions in the furnace. The steel plate 1 traveling in the reduction zone 3 has a plurality of vertical paths that are supported by the upper furnace roll and the lower furnace roll and travel in the vertical direction. The radial tube burner 8 faces the steel sheet between the vertical paths. Is arranged.

図示されていない鋼板送り出し装置から送り出された鋼板は、直火加熱帯2で燃料ガスを用いて直火加熱され、鋼板表面の圧延油が除去されるとともに、鋼板表面にFe酸化物(酸化皮膜)を形成する。   A steel sheet fed from a steel sheet feeding device (not shown) is directly heated using a fuel gas in the direct fire heating zone 2 to remove the rolling oil on the steel sheet surface, and Fe oxide (oxide film on the steel sheet surface). ).

直火加熱帯の前段は、空気比を高くして鋼板を加熱し、鋼板表面に酸化膜を形成し、次いで直火加熱帯の後段(以下、直火還元帯とも記載する。)は、前段より空気比を低くして前段で形成した酸化膜を還元する。直火還元帯だけでは還元が不十分であるので、次の還元帯でさらに酸化膜の還元が行われる。   The front stage of the direct fire heating zone heats the steel sheet by increasing the air ratio, forms an oxide film on the surface of the steel sheet, and then the latter stage of the direct fire heating zone (hereinafter also referred to as the direct fire reduction zone). The oxide film formed in the previous stage is reduced by lowering the air ratio. Since the reduction is insufficient only with the direct reduction zone, the oxide film is further reduced in the next reduction zone.

次に鋼板は還元帯3に通板される。通常、還元性ガスとして、水素濃度が数%〜数十%(vol%)の水素と窒素の混合ガスがガス供給配管105から冷却帯4及び還元帯3の複数箇所に供給され、供給されたガスは還元帯3入側に流れ、直火加熱帯2と還元帯3の連接部9を通って直火加熱帯2に流出する。このガスによって、還元帯3の雰囲気は還元性に保持される。鋼板は、還元帯3を通板される間に、高温のラジアントチューブ8によって所定温度で所定時間に加熱焼鈍され、同時に鋼板表面の酸化皮膜が還元される。還元の進行は、炉内の温度パターンや通板速度、炉内ガスの水素濃度と供給量で決まる。還元帯で鋼板の還元が完了するように適宜の条件が設定される。還元帯3に供給された還元性ガスは還元帯3と直火加熱帯2の連接部9を通って直火加熱帯2へ流れる。   Next, the steel plate is passed through the reduction zone 3. Usually, as a reducing gas, a mixed gas of hydrogen and nitrogen having a hydrogen concentration of several percent to several tens of percent (vol%) is supplied from a gas supply pipe 105 to a plurality of locations in the cooling zone 4 and the reducing zone 3 and supplied. The gas flows to the inlet side of the reduction zone 3 and flows out to the direct flame heating zone 2 through the connecting portion 9 of the direct flame heating zone 2 and the reduction zone 3. By this gas, the atmosphere of the reduction zone 3 is maintained in a reducing property. The steel plate is heated and annealed at a predetermined temperature for a predetermined time by the high-temperature radiant tube 8 while the reduction zone 3 is passed through, and at the same time, the oxide film on the surface of the steel plate is reduced. The progress of the reduction is determined by the temperature pattern in the furnace, the feeding speed, the hydrogen concentration of the furnace gas, and the supply amount. Appropriate conditions are set so that the reduction of the steel sheet is completed in the reduction zone. The reducing gas supplied to the reduction zone 3 flows to the direct flame heating zone 2 through the connecting portion 9 between the reduction zone 3 and the direct flame heating zone 2.

酸化皮膜が還元された鋼板1は、冷却帯4で溶融めっき槽6に浸漬させるのに適した鋼板温度に調整されたのち溶融めっき槽6に浸漬めっきされ、溶融めっき浴槽6から引き上げられてガスワイピング装置7で所要のめっき付着量に調整され、さらにスパングル調整あるいは合金化処理が施された後冷却され、あるいは前記処理を施すことなく冷却され、所要の溶融亜鉛めっき鋼板となる。
特許第3014529号公報 特開平5−195084号公報 特許第2530939号公報
The steel plate 1 with the oxide film reduced is adjusted to a steel plate temperature suitable for being immersed in the hot dipping bath 6 in the cooling zone 4, and then dipped in the hot dipping bath 6, pulled up from the hot dipping bath 6, and gas. The wiping device 7 is adjusted to a required plating adhesion amount, further subjected to spangle adjustment or alloying treatment, and then cooled, or cooled without being subjected to the above treatment, to obtain a required hot dip galvanized steel sheet.
Japanese Patent No. 3014529 Japanese Patent Laid-Open No. 5-195084 Japanese Patent No. 2530939

Si濃度やMn濃度が高い鋼板を溶融亜鉛めっきする際に、直火加熱帯で形成するFe系酸化皮膜を厚くして、形成したFe系酸化皮膜が次の還元工程で十分に還元されれば、より高いSi濃度やMn濃度の鋼板のめっきが可能になるはずであるが、酸化皮膜が厚いと還元工程でFe系酸化皮膜の還元が不十分となり、安定して良好なめっきが得られないという問題があった。   When hot-dip galvanizing a steel sheet with high Si or Mn concentration, if the Fe-based oxide film formed in the direct flame heating zone is thickened and the formed Fe-based oxide film is sufficiently reduced in the next reduction step It should be possible to plate steel sheets with higher Si and Mn concentrations. However, if the oxide film is thick, the reduction of the Fe-based oxide film is insufficient in the reduction process, and stable and good plating cannot be obtained. There was a problem.

本発明の課題は、Si濃度及びMn濃度が高い鋼板を加熱焼鈍したのち溶融亜鉛めっきを施して高強度溶融亜鉛めっき鋼板を製造する際に、めっき性不良の発生を防止できる高強度溶融亜鉛めっき鋼板の製造方法を提供することである。   An object of the present invention is to provide a high-strength hot-dip galvanized plate that can prevent the occurrence of poor plating properties when a high-strength hot-dip galvanized steel plate is manufactured by heat-annealing a steel plate having a high Si concentration and Mn concentration. It is providing the manufacturing method of a steel plate.

また、本発明の課題は、Si濃度及びMn濃度が高い高強度溶融亜鉛めっき鋼板の製造に好適な溶融亜鉛めっき鋼板の製造設備を提供することである。   Moreover, the subject of this invention is providing the manufacturing equipment of the hot dip galvanized steel plate suitable for manufacture of the high intensity | strength hot dip galvanized steel plate with high Si density | concentration and Mn density | concentration.

上記課題を解決する本発明の要旨は次のとおりである。   The gist of the present invention for solving the above problems is as follows.

(1)質量%でSi:0.2〜3%及びMn:1〜3%のうちの1種以上を含有する鋼板を、直火加熱方式の直火帯で加熱し、さらに還元帯において還元雰囲気中で表面の還元と焼鈍を行ったのち、溶融亜鉛めっき浴に浸漬させて亜鉛めっきを行う高強度溶融亜鉛めっき鋼板の製造方法において、直火帯と還元帯の連接部またはその付近から炉内のガスを排気することを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。   (1) A steel sheet containing one or more of Si: 0.2 to 3% and Mn: 1 to 3% by mass% is heated in a direct flame heating type direct flame, and further reduced in a reduction zone. In the manufacturing method of high-strength hot-dip galvanized steel sheet, after reducing and annealing the surface in the atmosphere and then dipping in a hot-dip galvanizing bath and galvanizing, A method for producing a high-strength hot-dip galvanized steel sheet characterized by exhausting the gas inside.

(2)直火加熱方式の直火帯と還元帯を有する焼鈍炉と、その下流に溶融亜鉛めっき装置を備える溶融亜鉛めっき鋼板の製造設備において、直火帯と還元帯の連接部またはその付近に炉内のガスを排気する排気手段を有することを特徴とする溶融亜鉛めっき鋼板の製造設備。   (2) In an annealing furnace having a direct-fired heating zone and a reduction zone, and a hot-dip galvanized steel plate equipped with a hot-dip galvanizing device downstream of the furnace, the connection between the direct-fire zone and the reduction zone or the vicinity thereof An apparatus for producing a hot dip galvanized steel sheet, characterized by having exhaust means for exhausting the gas in the furnace.

本発明によれば、還元帯の高露点のガスが直火還元帯に侵入することおよび/または直火還元帯のガスが還元帯に侵入することが防止されることで、直火還元帯および/または還元帯の還元能力の低下が防止され、SiやMnを多量に添加した高強度鋼板において直火加熱帯で形成された酸化皮膜が直火還還元帯で還元され、続く還元帯で十分に還元され、溶融亜鉛めっき時のめっき不良の発生を防止できる。   According to the present invention, the high dew point gas in the reduction zone can be prevented from entering the direct fire reduction zone and / or the gas in the direct fire reduction zone can be prevented from entering the reduction zone. The reduction of the reduction capacity of the reduction zone is prevented, and the oxide film formed in the direct heating heating zone is reduced in the direct heating heating zone in the high-strength steel sheet with a large amount of Si and Mn added. It is possible to prevent the occurrence of defective plating during hot dip galvanizing.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

図2は本発明の実施の形態にかかる溶融亜鉛めっき鋼板の製造設備の直火加熱帯と還元帯の連接部に設けられた煙道の構造を説明する概略側面図で、図1に示した溶融亜鉛亜鉛めっき鋼板の製造設備の直火加熱帯2と還元帯3の連接部9に設けられる。直火加熱帯は加熱を主たる機能とする、前段の直火加熱帯と、還元を主たる機能とする、後段の直火還元帯に分かれている。   FIG. 2 is a schematic side view for explaining the structure of the flue provided at the joint of the direct heating zone and the reduction zone of the hot dip galvanized steel sheet manufacturing equipment according to the embodiment of the present invention. It is provided in the connection part 9 of the direct heating heating zone 2 and the reduction zone 3 of the manufacturing equipment for hot dip galvanized steel sheet. The direct-fired heating zone is divided into a first-stage direct-fired heating zone whose main function is heating, and a second-stage direct-fired reducing zone whose main function is reduction.

直火加熱帯2と還元帯3の連接部9にシールロール10、11が設けられ、さらに前記シールロール10と11の間の排気口13から炉内ガスを吸引し、吸引したガスを炉外に排気する煙道12が設けられ、煙道12の途中に排気するガス流量を調整するダンパー14が設けられている。   Sealing rolls 10 and 11 are provided at the connecting part 9 of the direct heating zone 2 and the reduction zone 3, and the furnace gas is sucked from the exhaust port 13 between the sealing rolls 10 and 11, and the sucked gas is discharged outside the furnace. A flue 12 for exhausting is provided, and a damper 14 for adjusting the gas flow rate exhausted in the middle of the flue 12 is provided.

還元帯3において、鋼板は、鋼板の縦パス間に多数配置されたラジアンチューブバーナ8によって加熱され、還元帯3の出側から入側に向かって流れる還元性ガスによって、直火加熱帯2での加熱によって生じたFe酸化層を還元する。   In the reduction zone 3, the steel sheet is heated by a radiant tube burner 8 arranged in a large number between the longitudinal paths of the steel sheet, and the reducing gas flowing from the exit side to the entry side of the reduction zone 3 causes the direct fire heating zone 2. The Fe oxide layer produced by heating is reduced.

直火加熱帯2の直火還元帯の雰囲気は直接鋼板に当たった後は燃料ガスの燃焼成分であるので多量の水分を含有しており高露点である。従来装置では、直火加熱帯と還元帯が連接されているだけなので、直火加熱帯2の直火還元後の高露点のガスが鋼板1に随伴して還元帯3に侵入する。還元帯の炉壁はラジアントチューブを内部に納めた大きな箱のような構造になっているため、還元帯3内でガスは自由に流れる。還元帯に侵入した高露点のガスは容易に還元帯3内に拡散し、還元帯3内のガスの還元能力を低下させる。そのため、直火加熱帯で通常鋼板に比べて厚いFe酸化皮膜を形成したSiやMnを多量に添加した高強度鋼板では、還元帯でこの酸化皮膜が十分に還元されず、溶融亜鉛めっきすると、めっき不良が発生した。また、従来装置では、還元帯の高露点のガスの全量が直火還元帯に流れこむことで、直火還元した板を再度酸化したり、直火還元帯の還元能力を阻害したりするという問題があった。 The atmosphere of the direct fire reduction zone of the direct fire heating zone 2 is a combustion component of fuel gas after directly hitting the steel plate, and therefore contains a large amount of water and has a high dew point. In the conventional apparatus, since the direct fire heating zone and the reduction zone are merely connected, the gas with a high dew point after the direct fire reduction in the direct fire heating zone 2 enters the reduction zone 3 along with the steel plate 1. Since the furnace wall of the reduction zone has a structure like a large box containing a radiant tube inside, the gas flows freely in the reduction zone 3. The gas with a high dew point that has entered the reduction zone easily diffuses into the reduction zone 3 and reduces the reducing ability of the gas in the reduction zone 3. Therefore, in high-strength steel sheets to which a large amount of Si or Mn formed a thick Fe oxide film compared to normal steel sheets in the direct heating zone, this oxide film is not sufficiently reduced in the reduction zone, A plating failure occurred. In addition, in the conventional apparatus, the total amount of gas with a high dew point in the reduction zone flows into the direct flame reduction zone, so that the plate that has been reduced by direct flame is oxidized again, or the reduction capability of the direct flame reduction zone is hindered. There was a problem.

本発明の実施の形態に係る装置では、直火加熱帯2と還元帯3の連接部9に、炉内ガスを排気する排気口13を備える。鋼板1に随伴して直火加熱帯2から流れ出た高露点のガスは、排気口13から煙道12を経て外部に排気されることで、直火加熱帯2の高露点のガスが還元帯3に侵入することや、還元帯の高露点ガスが直火還元帯に侵入することが防止され、直火加熱帯2の高露点のガスが還元帯3に侵入することによって還元帯の還元能力が低下する問題や、還元帯の高露点のガスが直火還元帯に入って還元能力が低下する問題が解消される。また、還元帯3の雰囲気ガスは排気口13から煙道12を経て外部に排出されるため、還元帯3では出側から入側に向かう還元ガスの流れが安定して形成され、還元帯では良好な還元能力が確保される。その結果、還元帯でSiやMnを多量に添加した高強度鋼板の酸化皮膜が十分に還元され、溶融亜鉛めっき時のめっき不良が発生しなくなる。   In the apparatus according to the embodiment of the present invention, the connection part 9 of the direct-fire heating zone 2 and the reduction zone 3 is provided with an exhaust port 13 for exhausting the in-furnace gas. The high dew point gas flowing from the direct heating zone 2 accompanying the steel plate 1 is exhausted to the outside through the flue 12 from the exhaust port 13 so that the high dew point gas in the direct heating zone 2 is reduced. 3 and the high dew point gas in the reduction zone is prevented from entering the direct flame reduction zone, and the high dew point gas in the direct fire heating zone 2 enters the reduction zone 3 to reduce the reduction zone. This eliminates the problem of lowering the gas, and the problem that the gas having a high dew point in the reduction zone enters the direct flame reduction zone and the reduction capability is reduced. Further, since the atmospheric gas in the reducing zone 3 is discharged to the outside from the exhaust port 13 through the flue 12, the reducing gas flow from the outlet side to the inlet side is stably formed in the reducing zone 3, and in the reducing zone, Good reduction ability is secured. As a result, the oxide film of the high-strength steel sheet to which a large amount of Si or Mn is added in the reduction zone is sufficiently reduced, and no plating failure occurs during hot dip galvanization.

排気量は、直火加熱帯2と還元帯3でのガス移動が無いように調整することが好ましい。排気口13からの排気が強すぎると、直火加熱帯2および還元帯3のガスの流れを乱すので、煙道12にダンパー等の排気量調整手段14を設けて炉外に排気するガス量を調整できるようにすることが好ましい。   The displacement is preferably adjusted so that there is no gas movement in the direct-fire heating zone 2 and the reduction zone 3. If the exhaust from the exhaust port 13 is too strong, the gas flow in the direct-fired heating zone 2 and the reduction zone 3 is disturbed, so the amount of gas exhausted outside the furnace by providing an exhaust amount adjusting means 14 such as a damper in the flue 12 It is preferable to be able to adjust.

本発明は、質量%でSi0.2〜3%及びMn1〜3%を含有する鋼板を対象とする。鋼成分組成の限定理由について説明する。   The present invention is directed to a steel sheet containing 0.2 to 3% Si and 1 to 3% Mn by mass%. The reason for limiting the steel component composition will be described.

Si:0.2〜3質量%
Siが0.2%未満では強度の向上効果が小さく、3%を超えると本発明法でも良好なめっき性を確保できなくなる。
Si: 0.2-3 mass%
If Si is less than 0.2%, the effect of improving the strength is small, and if it exceeds 3%, good plating properties cannot be ensured even by the method of the present invention.

Mn:1〜3質量%
Mnが1%未満では強度の向上効果が小さく、3%を超えると本発明法でも良好なめっき性が確保できなくなる。
Mn: 1-3 mass%
If Mn is less than 1%, the effect of improving the strength is small, and if it exceeds 3%, good plating properties cannot be ensured even by the method of the present invention.

Si、Mn以外の鋼成分は特に限定されない。高強度鋼板の製造に用いられる成分組成のものを使用できる。   Steel components other than Si and Mn are not particularly limited. The thing of the component composition used for manufacture of a high strength steel plate can be used.

図1の装置において、直火加熱帯2と還元帯3の連接部9を図2の構造とした本発明の実施の形態にかかる溶融亜鉛めっき鋼板の製造装置を用いて、次のようにして高強度溶融亜鉛めっき鋼板が製造される。   In the apparatus of FIG. 1, the apparatus for manufacturing a hot dip galvanized steel sheet according to the embodiment of the present invention in which the connecting portion 9 of the direct heating zone 2 and the reduction zone 3 has the structure of FIG. 2 is used as follows. A high-strength hot-dip galvanized steel sheet is produced.

図示されていない鋼板送り出し装置から送り出された本発明で規定する成分組成を有する鋼板は、直火加熱帯2で燃料ガスを用いて直火加熱によって、鋼板成分組成、材質規格に対応して設定されたヒートパターンに応じて所定温度に加熱昇温され、同時に鋼板表面の圧延油が除去されるとともに、鋼板表面に酸化皮膜が形成される。直火加熱帯では、酸化皮膜が後の還元によって、めっき性が十分確保できる量生成するように操業する。本発明が対象とする鋼板では、酸化皮膜はその厚さが0.01〜1μmとなるように形成することが好ましい。直火加熱は、Fe酸化物が早く生成されることで、SiやMnなどの易酸化性元素の酸化が抑制される。直火加熱帯での操業条件は、直火加熱帯出側ゾーンの鋼板温度を通常の鋼板の場合に比較して高めに設定し、燃焼時に使用する空気量を理論空気比より多めにして温度、酸素分圧が高くなるように燃焼制御を行う。   A steel sheet having a composition defined by the present invention sent from a steel sheet feeding device not shown is set according to the steel composition composition and material standards by direct fire heating using a fuel gas in the direct fire heating zone 2. The heating temperature is raised to a predetermined temperature in accordance with the heat pattern, and at the same time, the rolling oil on the steel sheet surface is removed and an oxide film is formed on the steel sheet surface. In the direct-fired heating zone, the oxide film is operated so as to generate an amount capable of sufficiently securing the plating property by subsequent reduction. In the steel plate targeted by the present invention, the oxide film is preferably formed so that its thickness is 0.01 to 1 μm. Direct-fire heating suppresses the oxidation of easily oxidizable elements such as Si and Mn because Fe oxide is generated quickly. The operating conditions in the direct-fired heating zone are set to a higher temperature than the normal steel plate temperature in the direct-fired heating zone outlet side zone, and the amount of air used during combustion is higher than the theoretical air ratio. Combustion control is performed so that the oxygen partial pressure increases.

次に鋼板は還元帯3に通板される。通常、還元性ガスとして、水素濃度が数%〜数十%(vol%)で低露点の水素と窒素の混合ガスがガス供給配管105から冷却帯4及び還元帯3の複数箇所に供給される。このガスによって、還元帯3の雰囲気は還元性に保持される。鋼板は、還元帯3を通板される間に、鋼板成分組成、材質規格に対応して設定されたヒートパターンに従って、高温のラジアントチューブバーナ8によって所定温度で所定時間に加熱焼鈍されるとともに、還元性雰囲気ガスによって、鋼板表面の酸化皮膜が還元される。還元は、十分に生成したFe酸化物がFeとして還元されるまで行う。還元速度は、還元帯の温度と水素量で依存する。還元帯の温度は焼鈍条件で決まるが、焼鈍温度は大きく変えられないため、還元の調整は主に水素量の調節、具体的には炉内に供給する還元性ガスの流量及び/または水素ガス濃度を適宜の条件に調整して行う。   Next, the steel plate is passed through the reduction zone 3. Usually, as a reducing gas, a mixed gas of hydrogen and nitrogen having a hydrogen concentration of several percent to several tens of percent (vol%) and a low dew point is supplied from the gas supply pipe 105 to a plurality of locations in the cooling zone 4 and the reduction zone 3. . By this gas, the atmosphere of the reduction zone 3 is maintained in a reducing property. While the steel sheet is passed through the reduction zone 3, the steel sheet is heat-annealed at a predetermined temperature and at a predetermined time by a high-temperature radiant tube burner 8 according to a heat pattern set in accordance with the steel sheet component composition and material standards. The oxide film on the steel sheet surface is reduced by the reducing atmosphere gas. The reduction is performed until the sufficiently generated Fe oxide is reduced as Fe. The reduction rate depends on the temperature of the reduction zone and the amount of hydrogen. Although the temperature of the reduction zone is determined by the annealing conditions, the annealing temperature cannot be changed greatly. Therefore, the adjustment of reduction is mainly the adjustment of the amount of hydrogen, specifically the flow rate of reducing gas supplied into the furnace and / or hydrogen gas. The concentration is adjusted to an appropriate condition.

また、直火加熱帯2と還元帯3の連接部9に設けられた煙道12から炉内のガスが排出される。煙道12からの炉内ガスの排気は、直火加熱帯2と還元帯3でのガス移動を防ぐだけでなく、直火加熱帯2および還元帯3のガスの流れを乱すことを防止することが好ましい。係る観点から、煙道12から炉外に排気するガス流量は、炉内に供給する還元性ガス流量を基準として該ガス流量の30%以上120%以下が好ましく、50%以上100%以下がより好ましい。ここで下限は直火加熱帯への影響によって規定され、上限は直火加熱帯のガスが逆流するのを防ぐことで規定される。   In addition, the gas in the furnace is discharged from the flue 12 provided in the connecting portion 9 of the direct fire heating zone 2 and the reduction zone 3. Exhaust of the gas in the furnace from the flue 12 not only prevents gas movement in the direct heating heating zone 2 and the reduction zone 3, but also prevents disturbance of the gas flow in the direct heating heating zone 2 and the reduction zone 3. It is preferable. From such a viewpoint, the gas flow rate exhausted from the flue 12 to the outside of the furnace is preferably 30% or more and 120% or less, more preferably 50% or more and 100% or less of the gas flow rate based on the reducing gas flow rate supplied into the furnace. preferable. Here, the lower limit is defined by the influence on the direct flame heating zone, and the upper limit is defined by preventing the gas in the direct flame heating zone from flowing backward.

酸化膜が還元された鋼板1は、常法に従い、冷却帯4で溶融めっき槽6に浸漬させるのに適した鋼板温度に調整されたのち溶融めっき槽6に浸漬めっきされ、溶融めっき浴槽6から引き上げられてガスワイピング装置7で所要のめっき付着量に調整され、さらにスパングル調整あるいは合金化処理が施された後冷却され、あるいは前記処理を施すことなく冷却され、所要の溶融亜鉛めっき鋼板となる。   The steel plate 1 with the oxide film reduced is adjusted to a steel plate temperature suitable for immersing in the hot dipping bath 6 in the cooling zone 4 according to a conventional method, and is then dip plated in the hot dipping bath 6, from the hot dipping bath 6. The steel sheet is pulled up and adjusted to the required coating amount by the gas wiping device 7 and further cooled after being subjected to spangle adjustment or alloying treatment, or cooled without being subjected to the above-described treatment, to obtain a required hot-dip galvanized steel sheet. .

直火加熱帯2でSiやMnなどの易酸化性元素の酸化が抑制されており、還元帯3でFe酸化物が十分に還元されることで、前記で製造された溶融亜鉛めっき鋼板では、良好なめっき性が発現される。   In the hot-dip galvanized steel sheet produced above, the oxidation of easily oxidizable elements such as Si and Mn is suppressed in the direct flame heating zone 2 and the Fe oxide is sufficiently reduced in the reduction zone 3. Good plating properties are exhibited.

前述の装置では、直火帯と還元帯の連接部に炉内のガスを排気する排気手段を設けたが、排気手段は、直火帯と還元帯の連接部近傍に設けても良い。また、還元帯は竪型還元帯であったが還元帯は水平型であってもよい。   In the above-described apparatus, the exhaust means for exhausting the gas in the furnace is provided at the connection portion between the direct fire zone and the reduction zone, but the exhaust means may be provided near the connection portion between the direct fire zone and the reduction zone. Further, although the reduction zone is a saddle type reduction zone, the reduction zone may be a horizontal type.

表1に示す成分組成と残部Fe及び不可避不純物からなる鋼を熱間圧延、酸洗、冷間圧延し、厚さ1mm×幅1mのめっき原板を作製した。この鋼板を直火加熱帯、還元帯、冷却帯を備え、直火加熱帯と還元帯の連接部に図2に示す構造のガス排気機構を備える焼鈍炉で焼鈍し、引き続き溶融亜鉛めっき槽で溶融亜鉛めっきし、ガスワイピング装置でめっき付着量を片面当たり40g/mに調整した。直火加熱帯は、直火予熱帯、直火酸化帯、直火還元帯を備える。 Steel composed of the composition shown in Table 1, the balance Fe and inevitable impurities was hot-rolled, pickled, and cold-rolled to prepare a plating original plate having a thickness of 1 mm and a width of 1 m. This steel plate is annealed in an annealing furnace equipped with a direct heat heating zone, a reduction zone, and a cooling zone, and provided with a gas exhaust mechanism having the structure shown in FIG. Hot dip galvanizing was performed, and the amount of plating adhered was adjusted to 40 g / m 2 per side with a gas wiping apparatus. The direct fire heating zone includes a direct fire pre-tropical zone, a direct fire oxidation zone, and a direct fire reduction zone.

製造条件は次のとおりである。
・ライン速度:80mpm
・直火加熱帯:
直火予熱帯で予熱後、直火酸化帯で鋼板を直火加熱して酸化し、次に直火還元帯では直火還元後鋼板温度が600〜630℃となるように直火還元した。直火酸化帯の空気比は1.30、直火還元帯の空気比は0.80とした。
・還元帯:
焼鈍条件;鋼板加熱温度を800℃とした。
・溶融亜鉛めっき:
浴温;470℃
・雰囲気ガス:H:8vol%−N:92vol%(露点:−50℃程度)、流量1000Nm/H
このようにして作製した溶融亜鉛めっき鋼板の外観を目視観察し、不めっきの有無を評価した。評価結果を表2に示す。
The manufacturing conditions are as follows.
・ Line speed: 80 mpm
・ Direct fire heating zone:
After preheating in the direct fire pre-tropical zone, the steel plate was directly heated and oxidized in the direct fire oxidation zone, and then directly reduced in the direct fire reduction zone so that the steel plate temperature was 600-630 ° C. after direct fire reduction. The air ratio in the direct fire oxidation zone was 1.30, and the air ratio in the direct fire reduction zone was 0.80.
・ Reduction zone:
Annealing conditions: Steel plate heating temperature was 800 ° C.
・ Hot galvanizing:
Bath temperature: 470 ° C
Atmosphere Gas: H 2: 8vol% -N 2 : 92vol% ( dew point: about -50 ° C.), flow rate 1000 Nm 3 / H
The appearance of the hot-dip galvanized steel sheet thus produced was visually observed and the presence or absence of non-plating was evaluated. The evaluation results are shown in Table 2.

Figure 0004797601
Figure 0004797601

Figure 0004797601
Figure 0004797601

表2に示すように、直火加熱帯と還元帯の連接部からガスを排気することで、該連接部からガスを排出しない従来例に比べて不めっきの発生が軽減されており、排気が50%以上でその効果がより優れている。   As shown in Table 2, by exhausting the gas from the connection portion of the direct heating heating zone and the reduction zone, the occurrence of non-plating is reduced compared to the conventional example in which the gas is not discharged from the connection portion. The effect is more excellent at 50% or more.

本発明の高強度溶融亜鉛めっき鋼板の製造方法は、めっき性不良の発生のない、質量%でSi0.2〜3%及びMn1〜3%を含有する高強度溶融亜鉛めっき鋼板を製造する方法として利用することができる。   The method for producing a high-strength hot-dip galvanized steel sheet according to the present invention is a method for producing a high-strength hot-dip galvanized steel sheet containing Si 0.2 to 3% and Mn 1 to 3% by mass% without causing poor plating properties. Can be used.

本発明の溶融亜鉛めっき鋼板の製造設備は、質量%でSi0.2〜3%及びMn1〜3%を含有する高強度溶融亜鉛めっき鋼板を製造する装置として利用することができる。   The equipment for producing a hot-dip galvanized steel sheet of the present invention can be used as an apparatus for producing a high-strength hot-dip galvanized steel sheet containing 0.2 to 3% Si and 1 to 3% Mn by mass%.

溶融亜鉛めっき鋼板の製造設備の要部構成例を示す概略側面図である。It is a schematic side view which shows the principal part structural example of the manufacturing equipment of a hot dip galvanized steel plate. 本発明の実施の形態に係る溶融亜鉛めっき鋼板の製造設備の直火加熱帯と還元帯の連接部の構造を示す概略側面図である。It is a schematic side view which shows the structure of the connection part of the direct-fired heating zone and reduction zone of the manufacturing equipment of the hot dip galvanized steel plate which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 鋼板
2 直火加熱方式の直火帯(直火加熱帯)
3 竪型還元帯(還元帯)
4 冷却帯
5 スナウト
6 溶融めっき槽
7 ガスワイピング装置
8 ラジアントチューブバーナ
9 直火加熱帯と還元帯の連接部
10、11 シールロール
12 煙道
13 排気口
14 排気量調整手段(ダンパー)
101 燃料供給系統
102 空気供給系統
103 直火加熱バーナ
105 ガス供給配管
1 Steel plate 2 Direct flame heating type (direct flame heating zone)
3 Vertical type reduction zone (reduction zone)
4 Cooling zone 5 Snout 6 Hot dipping bath 7 Gas wiping device 8 Radiant tube burner 9 Direct heating heating zone and reduction zone connecting part 10, 11 Seal roll 12 Flue 13 Exhaust port 14 Exhaust amount adjustment means (damper)
DESCRIPTION OF SYMBOLS 101 Fuel supply system 102 Air supply system 103 Direct fire heating burner 105 Gas supply piping

Claims (4)

質量%でSi:0.2〜3%及びMn:1〜3%のうちの1種以上を含有する鋼板を、直火加熱方式の直火帯で加熱し、さらに還元帯において還元雰囲気中で表面の還元と焼鈍を行ったのち、溶融亜鉛めっき浴に浸漬させて亜鉛めっきを行う高強度溶融亜鉛めっき鋼板の製造方法において、直火帯と還元帯の連接部から炉内のガスを炉外に排気することを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。 A steel sheet containing at least one of Si: 0.2 to 3% and Mn: 1 to 3% by mass% is heated in a direct flame heating type direct flame, and further in a reducing atmosphere in the reduction zone. After performing the reduction and annealing of the surface, high in strength method for manufacturing a galvanized steel sheet, the furnace gas of the connecting portion or et furnace reduction zone with an open flame zone to perform the allowed galvanized immersed in the molten zinc plating bath A method for producing a high-strength hot-dip galvanized steel sheet, characterized by exhausting outside . 直火帯と還元帯の連接部から炉外に排気するガス流量は、炉内に供給する還元性ガス流量の30%以上120%以下であることを特徴とする請求項1記載の高強度溶融亜鉛めっき鋼板の製造方法。2. The high-strength melting according to claim 1, wherein the gas flow rate exhausted outside the furnace from the joint of the direct flame zone and the reduction zone is 30% or more and 120% or less of the flow rate of the reducing gas supplied into the furnace. Manufacturing method of galvanized steel sheet. 直火加熱方式の直火帯と還元帯を有する焼鈍炉と、その下流に溶融亜鉛めっき装置を備える溶融亜鉛めっき鋼板の製造設備において、直火帯と還元帯の連接部に炉内のガスを炉外に排気する排気手段を有することを特徴とする溶融亜鉛めっき鋼板の製造設備。 In an annealing furnace having a direct-fired heating zone and a reduction zone, and a hot-dip galvanized steel sheet manufacturing facility equipped with a hot-dip galvanizing device downstream of it, the gas in the furnace is connected to the joint between the direct-fire zone and the reduction zone. A facility for producing a hot-dip galvanized steel sheet, characterized by having exhaust means for exhausting outside the furnace . 前記排気手段は、炉外に排気するガス量を調整する排気量調整手段を備えることを特徴とする請求項3記載の溶融亜鉛めっき鋼板の製造設備。The said exhaust means is equipped with the exhaust amount adjustment means which adjusts the gas amount exhausted outside a furnace, The manufacturing equipment of the hot dip galvanized steel sheet of Claim 3 characterized by the above-mentioned.
JP2005343166A 2005-11-29 2005-11-29 High strength hot dip galvanized steel sheet manufacturing method and hot dip galvanized steel sheet manufacturing equipment Expired - Fee Related JP4797601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005343166A JP4797601B2 (en) 2005-11-29 2005-11-29 High strength hot dip galvanized steel sheet manufacturing method and hot dip galvanized steel sheet manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005343166A JP4797601B2 (en) 2005-11-29 2005-11-29 High strength hot dip galvanized steel sheet manufacturing method and hot dip galvanized steel sheet manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2007146242A JP2007146242A (en) 2007-06-14
JP4797601B2 true JP4797601B2 (en) 2011-10-19

Family

ID=38208000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005343166A Expired - Fee Related JP4797601B2 (en) 2005-11-29 2005-11-29 High strength hot dip galvanized steel sheet manufacturing method and hot dip galvanized steel sheet manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4797601B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT505289B1 (en) * 2007-07-18 2008-12-15 Ebner Instrieofenbau Ges M B H METHOD FOR HEAT TREATMENT OF A METAL STRIP
JP5206705B2 (en) * 2009-03-31 2013-06-12 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5581615B2 (en) * 2009-06-26 2014-09-03 Jfeスチール株式会社 Steel plate manufacturing method and manufacturing equipment
JP5099265B2 (en) * 2009-10-01 2012-12-19 新日鐵住金株式会社 Combined equipment for continuous hot dipping and continuous annealing
JP5863464B2 (en) * 2012-01-11 2016-02-16 株式会社神戸製鋼所 Annealing furnace of hot dip galvanizing equipment and operation method in the annealing furnace
JP6822934B2 (en) * 2017-10-26 2021-01-27 株式会社神戸製鋼所 Manufacturing method of hot-dip galvanized steel sheet
JP6908062B2 (en) * 2019-01-31 2021-07-21 Jfeスチール株式会社 Manufacturing method of hot-dip galvanized steel sheet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137009A (en) * 1977-05-04 1978-11-30 Nippon Steel Corp Non-oxidation furnace of direct firing type
JP3415191B2 (en) * 1993-04-26 2003-06-09 Jfeスチール株式会社 Manufacturing method of high-strength hot-dip galvanized steel sheet
JPH09118931A (en) * 1995-10-20 1997-05-06 Daido Steel Co Ltd Combustion control device of strip continuous heat treatment furnace
JPH09324210A (en) * 1996-06-07 1997-12-16 Kawasaki Steel Corp Production of hot dip galvanized steel sheet and equipment therefor
JPH10176225A (en) * 1996-12-13 1998-06-30 Daido Steel Co Ltd Continuous annealing furnace of metallic strip
JP4168667B2 (en) * 2002-05-30 2008-10-22 Jfeスチール株式会社 In-line annealing furnace for continuous hot dip galvanizing

Also Published As

Publication number Publication date
JP2007146242A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
KR101011897B1 (en) Method of continous annealing/hot-dipping of steel sheet containing silicon and apparatus for continuous annealing/hot-dipping
JP5071551B2 (en) Continuous annealing method for steel strip, hot dip galvanizing method
US8491734B2 (en) Process of production and production system of high strength galvannealed steel sheet
JP4770428B2 (en) High strength hot dip galvanized steel sheet manufacturing method and hot dip galvanized steel sheet manufacturing equipment
JP4797601B2 (en) High strength hot dip galvanized steel sheet manufacturing method and hot dip galvanized steel sheet manufacturing equipment
JP5720084B2 (en) Continuous hot dip galvanizing apparatus and method for producing hot dip galvanized steel sheet
JP5338087B2 (en) Method for producing hot-dip galvanized steel sheet with excellent plating properties and continuous hot-dip galvanizing equipment
JP2010538163A (en) Method and apparatus for controlling and oxidizing the surface of a continuously running steel strip with a radiant tube furnace for galvanizing
WO2013187039A1 (en) Method of continuous annealing of steel strip, device for continuous annealing of steel strip, method of manufacturing hot-dip galvanized steel strip, and device for manufacturing hot-dip galvanized steel strip
JP2016125131A (en) Method for manufacturing alloyed hot-dip galvanized steel sheet
JP4912684B2 (en) High-strength hot-dip galvanized steel sheet, production apparatus therefor, and method for producing high-strength alloyed hot-dip galvanized steel sheet
US10106867B2 (en) Method for continuously annealing steel strip and method for manufacturing galvanized steel strip
JP7243668B2 (en) Method for manufacturing cold-rolled steel sheet and hot-dip galvanized steel sheet
JP7111059B2 (en) Dew point control method for reducing atmosphere furnace, reducing atmosphere furnace, cold-rolled steel sheet manufacturing method, and hot-dip galvanized steel sheet manufacturing method
JP5915569B2 (en) Method for producing hot dip galvanized steel sheet and continuous hot dip galvanizing apparatus
JP6439654B2 (en) Method for producing hot-dip galvanized steel sheet
JP5444729B2 (en) Method for producing hot dip galvanized steel sheet and continuous hot dip galvanizing apparatus
JP4718381B2 (en) Hot dip galvanizing equipment
JP6128068B2 (en) Method for producing galvannealed steel sheet
JP6822934B2 (en) Manufacturing method of hot-dip galvanized steel sheet
JP5729008B2 (en) Method for producing hot-dip galvanized steel sheet
JP3889019B2 (en) Method for producing hot-dip galvanized steel sheet
JP6908062B2 (en) Manufacturing method of hot-dip galvanized steel sheet
JP5863464B2 (en) Annealing furnace of hot dip galvanizing equipment and operation method in the annealing furnace
JP6696495B2 (en) Method for manufacturing hot dip galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees