JP4770428B2 - High strength hot dip galvanized steel sheet manufacturing method and hot dip galvanized steel sheet manufacturing equipment - Google Patents

High strength hot dip galvanized steel sheet manufacturing method and hot dip galvanized steel sheet manufacturing equipment Download PDF

Info

Publication number
JP4770428B2
JP4770428B2 JP2005343165A JP2005343165A JP4770428B2 JP 4770428 B2 JP4770428 B2 JP 4770428B2 JP 2005343165 A JP2005343165 A JP 2005343165A JP 2005343165 A JP2005343165 A JP 2005343165A JP 4770428 B2 JP4770428 B2 JP 4770428B2
Authority
JP
Japan
Prior art keywords
zone
steel sheet
reduction
reduction zone
direct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005343165A
Other languages
Japanese (ja)
Other versions
JP2007146241A (en
Inventor
善道 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005343165A priority Critical patent/JP4770428B2/en
Publication of JP2007146241A publication Critical patent/JP2007146241A/en
Application granted granted Critical
Publication of JP4770428B2 publication Critical patent/JP4770428B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

本発明は、直火加熱方式の直火帯と竪型還元帯を備える焼鈍炉で熱処理したのち溶融亜鉛めっきを施して製造する高強度溶融亜鉛めっき鋼板の製造方法に関する。また、本発明は高強度鋼板の製造に好適な溶融亜鉛めっき鋼板の製造設備に関する。   The present invention relates to a method for manufacturing a high-strength hot-dip galvanized steel sheet that is manufactured by performing hot-dip galvanization after heat treatment in an annealing furnace having a direct-fired heating zone and a vertical reduction zone. Moreover, this invention relates to the manufacturing equipment of the hot dip galvanized steel plate suitable for manufacture of a high strength steel plate.

鋼板は安価な金属材料であるため、自動車、家電、建材等の分野において広く用いられている。近年、自動車業界においては、耐久性の向上に加えて、燃費向上および排出ガス削減の観点から自動車の軽量化が進んでおり、高強度溶融亜鉛めっき鋼板の使用が急増している。高強度溶融亜鉛めっき鋼板は鋼中元素としてSi、Mn等が添加され、通常連続溶融亜鉛めっき設備を用いて製造される。連続溶融亜鉛めっき設備を用いて、Si、Mnが多量に添加された鋼板を焼鈍した後溶融亜鉛めっきすると、鋼板表面のSiやMnの酸化物によってめっき不良が発生する問題がある。   Since steel plates are inexpensive metal materials, they are widely used in fields such as automobiles, home appliances, and building materials. In recent years, in the automobile industry, in addition to improving durability, the weight of automobiles has been reduced from the viewpoint of improving fuel efficiency and reducing exhaust gas, and the use of high-strength hot-dip galvanized steel sheets has increased rapidly. A high-strength hot-dip galvanized steel sheet is usually manufactured using continuous hot-dip galvanizing equipment, with Si, Mn, etc. added as elements in the steel. When a hot dip galvanizing is performed after annealing a steel sheet to which a large amount of Si and Mn are added using a continuous hot dip galvanizing facility, there is a problem in that plating defects occur due to Si and Mn oxides on the steel sheet surface.

SiやMnを多量に添加した高強度鋼板に溶融亜鉛めっきを施す場合、鋼板表面に一旦適正なFe酸化皮膜を形成し、その後Fe酸化皮膜厚をめっきを阻害しない程度に還元して溶融亜鉛めっきすると、めっき不良の発生防止に有効である。   When hot-dip galvanizing is applied to high-strength steel sheets containing a large amount of Si or Mn, an appropriate Fe oxide film is once formed on the steel sheet surface, and then the Fe oxide film thickness is reduced to a level that does not hinder plating. Then, it is effective in preventing the occurrence of defective plating.

例えば、特許文献1には、鋼板表面に適正なFe酸化皮膜を形成した後形成したFe酸化皮膜厚を還元する方法として、無酸化炉を有しない連続式溶融亜鉛めっき設備を用い、還元炉を2ゾーン以上に分割して各ゾーンの露点を調整、すなわち第1ゾーンでは炉内に水蒸気を導入して露点を調整して鋼板表面に適正なFe酸化皮膜を形成し、次いで第2ゾーンではFe酸化皮膜を還元するように露点を調整する方法が記載されている。   For example, in Patent Document 1, as a method of reducing the thickness of the Fe oxide film formed after forming an appropriate Fe oxide film on the steel sheet surface, a continuous hot dip galvanizing facility having no oxidation furnace is used, and a reduction furnace is provided. Divide into two or more zones to adjust the dew point of each zone. That is, in the first zone, water vapor is introduced into the furnace to adjust the dew point to form an appropriate Fe oxide film on the steel plate surface, and then in the second zone A method is described in which the dew point is adjusted to reduce the oxide film.

また、酸化膜を生成する方法として、直火還元を利用する方法が有効であることが、特許文献2に記載されている。また、直火還元を使用すれば、特許文献1よりもSiやMnを多量に添加した高強度鋼板に溶融亜鉛めっきを施すことができることが、特許文献3に示されている。ここで、直火還元とは、直火加熱方式の直火帯を使用して鋼板表面を酸化した後に、鋼板表面を還元する方法である。これは直火帯を複数の帯(ゾーン)に分け、先に鋼板が通過する帯を高空気比で燃焼して一旦表面を酸化させ、後ろの帯では空気比を低くして還元性を有する火炎で加熱しながら鋼板表面を還元することによって行われる。   Further, Patent Document 2 describes that a method using direct flame reduction is effective as a method for generating an oxide film. Further, Patent Document 3 shows that hot-dip galvanization can be performed on a high-strength steel sheet to which Si or Mn is added in a larger amount than Patent Document 1 if direct fire reduction is used. Here, the direct fire reduction is a method of reducing the steel plate surface after oxidizing the steel plate surface using a direct fire heating type direct flame. This divides the direct fire zone into multiple zones (zones), burns the zone through which the steel plate first passes at a high air ratio to oxidize the surface once, and lowers the air ratio in the rear zone to have reducibility This is done by reducing the steel sheet surface while heating with a flame.

図1は、直火加熱方式の直火帯で直火還元を利用して酸化膜を生成した後、この酸化膜を還元し、しかる後亜鉛めっきを行う溶融亜鉛亜鉛めっき鋼板の製造設備の要部構成例を示す概略側面図である。   FIG. 1 shows an important point of a hot-dip galvanized steel sheet manufacturing facility in which an oxide film is generated using direct-fire reduction in a direct-fire heating type direct-fire zone, and then this oxide film is reduced and then galvanized. It is a schematic side view which shows the example of a part structure.

図1において、1は鋼板、2は直火加熱方式の直火帯(以下、単に「直火加熱帯」とも記載する。)、3は竪型還元帯(以下、単に「還元帯」とも記載する。)、4は冷却帯、5はスナウト、6は溶融めっき槽、7はガスワイピング装置である。直火加熱帯2と竪型還元帯3が連接されている。溶融めっき槽6にはめっき金属である溶融亜鉛が保持されている。   In FIG. 1, 1 is a steel plate, 2 is a direct-fired heating zone (hereinafter also simply referred to as “direct-fired heating zone”), and 3 is a vertical reduction zone (hereinafter simply referred to as “reducing zone”). 4) is a cooling zone, 5 is a snout, 6 is a hot dipping bath, and 7 is a gas wiping device. The direct fire heating zone 2 and the vertical reduction zone 3 are connected. The hot dip plating tank 6 holds hot galvanized metal.

直火加熱帯は複数の加熱ゾーンに分割され、各々の加熱ゾーンには直火加熱バーナ103が配置され、燃料供給系統101から燃料ガス、空気供給系統102から燃焼用空気が供給される。各加熱ゾーンの燃料ガス流量、燃焼用空気流量及びその流量比は独立に制御可能である。   The direct fire heating zone is divided into a plurality of heating zones, and a direct fire heating burner 103 is disposed in each heating zone, and fuel gas is supplied from the fuel supply system 101 and combustion air is supplied from the air supply system 102. The fuel gas flow rate, the combustion air flow rate, and the flow rate ratio of each heating zone can be controlled independently.

還元帯3は、炉内の上部及び下部に所定の高さをもって配設された炉内ロールが所定間隔で複数設けられている。還元帯3内を走行する鋼板1は、上部炉内ロール9aと下部炉内ロール9bで支持されて鉛直方向に走行する。この鉛直方向の鋼板走行路を縦パスと記載する。複数の縦パスが存在し、隣り合う縦パスでは鋼板の走行方向が逆である。また還元帯3の縦パス間に鋼板に面してラジアントチューブバーナ8が配設されている。   The reduction zone 3 is provided with a plurality of in-furnace rolls arranged at a predetermined height at the upper and lower portions in the furnace. The steel plate 1 traveling in the reduction zone 3 is supported by the upper furnace roll 9a and the lower furnace roll 9b and travels in the vertical direction. This steel plate traveling path in the vertical direction is referred to as a vertical path. There are a plurality of longitudinal paths, and the traveling directions of the steel plates are opposite in adjacent longitudinal paths. A radiant tube burner 8 is disposed between the vertical passes of the reduction zone 3 so as to face the steel plate.

とNを含む低露点の還元性ガスがガス供給配管105から冷却帯4の複数箇所に供給され、供給されたガスは還元帯3入側に流れ、直火加熱帯2と還元帯3を接続する接続部16から直火加熱帯2に流出する。このガスによって、還元帯3の雰囲気は還元性に保持される。 A low dew point reducing gas containing H 2 and N 2 is supplied from the gas supply pipe 105 to a plurality of locations in the cooling zone 4, and the supplied gas flows to the inlet side of the reducing zone 3, and the direct fire heating zone 2 and the reducing zone 3 flows out from the connecting part 16 connecting the 3 to the direct fire heating zone 2. By this gas, the atmosphere of the reduction zone 3 is maintained in a reducing property.

図示されていない鋼板送り出し装置から送り出された鋼板は、直火加熱帯2の前段で燃料ガスを用いて直火加熱され、鋼板表面の圧延油が除去されるとともに、鋼板表面にFe酸化物(酸化皮膜)を形成する。直火での加熱であるので加熱速度が速く、鋼板温度が低くても、燃焼ガス温度が高く、燃焼ガス中のラジカルが鋼板に達して鋼板との反応に関与するので反応速度が速く、酸化膜が早く形成される、などの特徴がある。この特徴によって、直火による加熱では、直火以外の加熱の場合にSiやMnなどの易酸化性元素が優先的に酸化され、鋼板内を拡散して鋼板表層に濃化するのに較べて、Fe酸化物の生成が早く易酸化物の濃化が少ないことが利点となる。   A steel sheet fed from a steel sheet feeding device (not shown) is directly heated by using a fuel gas in the front stage of the direct fire heating zone 2 to remove the rolling oil on the surface of the steel sheet and to remove Fe oxide ( Oxide film). The heating rate is high because of direct flame heating, and even if the steel plate temperature is low, the combustion gas temperature is high, and the radicals in the combustion gas reach the steel plate and participate in the reaction with the steel plate, so the reaction rate is fast and oxidation There is a feature that the film is formed quickly. Due to this feature, in the case of heating by direct fire, oxidizable elements such as Si and Mn are preferentially oxidized in the case of heating other than direct fire, and compared with diffusion in the steel sheet and concentration in the steel sheet surface layer. It is advantageous that Fe oxide is generated quickly and the concentration of the easy oxide is small.

直火加熱帯の後段は燃焼の空気比を調節して還元を実施することで、易酸化物はそのままに、還元された純鉄層が表面に形成されて、めっきが容易になる。   In the latter stage of the direct heating heating zone, reduction is carried out by adjusting the combustion air ratio, so that the reduced pure iron layer is formed on the surface while leaving the easy oxide as it is, thereby facilitating plating.

次に鋼板は還元帯3に通板される。鋼板は、還元帯3を通板される間に、高温のラジアントチューブ8によって所定温度で所定時間に加熱焼鈍され、同時に鋼板表面の直火還元で残った酸化皮膜が還元される。還元は、還元性ガスを炉内に導入することで行われ、通常、還元性ガスとして、水素濃度が数%〜数十%(vol%)の水素と窒素の混合ガスを使用し、還元反応の進行は、炉内の温度パターンや通板速度、炉内ガスの水素濃度と供給量で決まる。還元帯で鋼板の還元が完了するように適宜の条件が選ばれる。   Next, the steel plate is passed through the reduction zone 3. The steel plate is heated and annealed at a predetermined temperature for a predetermined time by the high-temperature radiant tube 8 while the reduction zone 3 is passed through, and at the same time, the oxide film remaining on the surface of the steel plate is reduced. The reduction is performed by introducing a reducing gas into the furnace. Usually, a reducing reaction is performed using a mixed gas of hydrogen and nitrogen having a hydrogen concentration of several percent to several tens of percent (vol%) as the reducing gas. The progress of this is determined by the temperature pattern in the furnace, the plate passing speed, the hydrogen concentration of the furnace gas and the supply amount. Appropriate conditions are selected so that the reduction of the steel sheet is completed in the reduction zone.

酸化皮膜が還元された鋼板1は、冷却帯4で溶融めっき槽6に浸漬させるのに適した鋼板温度に調整されたのち溶融めっき槽6に浸漬めっきされ、溶融めっき浴槽6から引き上げられてガスワイピング装置7で所要のめっき付着量に調整され、さらにスパングル調整あるいは合金化処理が施された後冷却され、あるいは前記処理を施すことなく冷却され、所要の溶融亜鉛めっき鋼板となる。
特許第3014529号公報 特開平5−195084号公報 特許第2530939号公報
The steel plate 1 with the oxide film reduced is adjusted to a steel plate temperature suitable for being immersed in the hot dipping bath 6 in the cooling zone 4, and then dipped in the hot dipping bath 6, pulled up from the hot dipping bath 6, and gas. The wiping device 7 is adjusted to a required plating adhesion amount, further subjected to spangle adjustment or alloying treatment, and then cooled, or cooled without being subjected to the above treatment, to obtain a required hot dip galvanized steel sheet.
Japanese Patent No. 3014529 Japanese Patent Laid-Open No. 5-195084 Japanese Patent No. 2530939

Si濃度やMn濃度が高い鋼板を溶融亜鉛めっきする際に、直火加熱帯で形成するFe系酸化皮膜を厚くして、形成したFe系酸化皮膜が次の還元工程で十分に還元されれば、より高いSi濃度やMn濃度の鋼板のめっきが可能になるはずであるが、酸化皮膜が厚いと還元工程でFe系酸化皮膜の還元が不十分となり、還元されなかった酸化層が残留するために安定して良好なめっきが得られないという問題があった。   When hot-dip galvanizing a steel sheet with high Si or Mn concentration, if the Fe-based oxide film formed in the direct flame heating zone is thickened and the formed Fe-based oxide film is sufficiently reduced in the next reduction step However, it should be possible to plate steel sheets with higher Si and Mn concentrations, but if the oxide film is thick, the reduction of the Fe-based oxide film will be insufficient during the reduction process, leaving an unreduced oxide layer. Therefore, there is a problem in that good and stable plating cannot be obtained.

本発明の課題は、Si濃度及びMn濃度が高い鋼板を加熱焼鈍したのち溶融亜鉛めっきを施して高強度溶融亜鉛めっき鋼板を製造する際に、めっき性不良の発生を防止できる高強度溶融亜鉛めっき鋼板の製造方法を提供することである。   An object of the present invention is to provide a high-strength hot-dip galvanized plate that can prevent the occurrence of poor plating properties when a high-strength hot-dip galvanized steel plate is manufactured by heat-annealing a steel plate having a high Si concentration and Mn concentration. It is providing the manufacturing method of a steel plate.

また、本発明の課題は、Si濃度及びMn濃度が高い高強度溶融亜鉛めっき鋼板の製造に好適な溶融亜鉛めっき鋼板の製造設備を提供することである。   Moreover, the subject of this invention is providing the manufacturing equipment of the hot dip galvanized steel plate suitable for manufacture of the high intensity | strength hot dip galvanized steel plate with high Si density | concentration and Mn density | concentration.

上記課題を解決する本発明の要旨は次のとおりである。   The gist of the present invention for solving the above problems is as follows.

(1)質量%でSi:0.2〜3%及びMn:1〜3%のうちの1種以上を含有する鋼板を、直火加熱方式の直火帯で加熱し、さらに竪型還元帯において還元雰囲気中で表面の還元と焼鈍を行ったのち、溶融亜鉛めっき浴に浸漬させて亜鉛めっきを行う高強度溶融亜鉛めっき鋼板の製造方法において、竪型還元帯では、少なくとも入側領域において雰囲気ガスを鋼板進行方向と逆方向に流すようにすることを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。   (1) A steel sheet containing one or more of Si: 0.2 to 3% and Mn: 1 to 3% by mass% is heated in a direct flame heating type direct flame, and further a vertical reduction zone In the method of manufacturing a high-strength hot-dip galvanized steel sheet in which the surface is reduced and annealed in a reducing atmosphere and then immersed in a hot dip galvanizing bath and galvanized, in the vertical reduction zone, the atmosphere is at least in the entry region A method for producing a high-strength hot-dip galvanized steel sheet, characterized by causing a gas to flow in the direction opposite to the steel sheet traveling direction.

(2)直火帯と還元帯の接続部付近の還元帯の雰囲気ガスの露点を測定し、その測定値から直火帯の燃焼制御を行うことを特徴とする、(1)に記載の高強度溶融亜鉛めっき鋼板の製造方法。   (2) Measuring the dew point of the atmospheric gas in the reduction zone near the connection between the direct fire zone and the reduction zone, and performing combustion control in the direct flame zone from the measured value, A manufacturing method of high strength hot-dip galvanized steel sheet.

(3)直火帯と還元帯の接続部付近の還元帯の雰囲気ガスの露点と、還元帯出側の雰囲気ガスの露点を測定してその関係から、還元帯へ供給する雰囲気ガス流量を調整することを特徴とする、(1)または(2)に記載の高強度溶融亜鉛めっき鋼板の製造方法。   (3) Measure the dew point of the atmospheric gas in the reducing zone near the connection between the direct-fired zone and the reducing zone and the dew point of the atmospheric gas on the exit side of the reducing zone, and adjust the flow rate of the atmospheric gas supplied to the reducing zone from the relationship The manufacturing method of the high intensity | strength hot-dip galvanized steel plate as described in (1) or (2) characterized by the above-mentioned.

(4)直火加熱方式の直火帯と竪型還元帯を有する焼鈍炉と、その下流に溶融亜鉛めっき装置を備える溶融亜鉛めっき鋼板の製造設備において、竪型還元帯の少なくとも入側領域の隣り合う鋼帯の縦パスの間に、該縦パスの間の雰囲気ガスの流れの方向を鋼板進行方向と逆方向に規制する仕切りが設けられていることを特徴とする溶融亜鉛めっき鋼板の製造設備。   (4) In an annealing furnace having a direct-fire heating type direct-fired zone and a vertical reduction zone, and a hot-dip galvanized steel sheet manufacturing apparatus equipped with a hot-dip galvanizing apparatus downstream thereof, at least in the entrance region of the vertical reduction zone Production of hot-dip galvanized steel sheet, characterized in that a partition is provided between the vertical passes of adjacent steel strips to regulate the direction of the atmosphere gas flow between the vertical passes in the direction opposite to the steel plate traveling direction. Facility.

(5)仕切り設置後の開口面積率が、10%以下であることを特徴とする、(4)に記載の溶融亜鉛めっき鋼板の製造設備。   (5) The facility for manufacturing a hot-dip galvanized steel sheet according to (4), wherein an opening area ratio after partition installation is 10% or less.

(6)直火加熱方式の直火帯と竪型還元帯との接続部近傍の竪型還元帯の雰囲気ガスの露点を測定する露点計を竪型還元帯に備えることを特徴とする、(4)または(5)に記載の溶融亜鉛めっき鋼板の製造設備。   (6) The vertical reduction zone is provided with a dew point meter that measures the dew point of the atmospheric gas in the vertical reduction zone in the vicinity of the connection between the direct heating zone of the direct fire heating method and the vertical reduction zone. Equipment for producing the hot-dip galvanized steel sheet according to 4) or (5).

(7)さらに還元帯出側の雰囲気ガスの露点を測定する露点計を竪型還元帯に備えることを特徴とする、(6)に記載の溶融亜鉛めっき鋼板の製造設備。   (7) The hot-dip galvanized steel sheet manufacturing equipment according to (6), further comprising a dew point meter for measuring the dew point of the atmospheric gas on the reduction zone outlet side in the vertical reduction zone.

本発明によれば、還元帯内の還元性ガスの流れの方向が鋼板の進行方向と逆方向になるような流路が構成されることで、鋼板に随伴して直火加熱帯から還元帯に流れるガス流れを抑止する効果がある。また、還元帯内では、酸化皮膜の還元により発生した高露点ガスは、該高露点ガスの発生位置から、鋼板進行方向とは逆方向の直火加熱帯側に流れる。この高露点ガスは還元を終えた鋼板進行方向に流れることがないため、還元された鋼板がこの高露点ガスによって再度酸化されることがない。還元帯で発生した高露点のガスは、鋼板の進行方向とは逆方向に集積していくので、還元帯入口から還元帯出口に向けて徐々に還元性が増すような雰囲気の分布が確保され、還元帯出口付近で最大の還元力が確保できる。その結果、酸化膜の還元反応が安定し、Si濃度及びMn濃度が高い鋼板であっても、還元帯において安定して良好な還元作用が発現されることで、安定して良好なめっき性が発現される。   According to the present invention, the flow path in which the flow direction of the reducing gas in the reduction zone is opposite to the traveling direction of the steel plate is configured, so that the direct heating heating zone and the reduction zone are accompanied by the steel plate. It has the effect of suppressing the gas flow that flows through. Further, in the reduction zone, the high dew point gas generated by the reduction of the oxide film flows from the generation position of the high dew point gas to the direct fire heating zone side in the direction opposite to the steel plate traveling direction. Since the high dew point gas does not flow in the traveling direction of the steel plate after the reduction, the reduced steel plate is not oxidized again by the high dew point gas. The gas with a high dew point generated in the reduction zone accumulates in the direction opposite to the direction of travel of the steel sheet, ensuring an atmosphere distribution that gradually reduces the reducibility from the reduction zone inlet to the reduction zone outlet. The maximum reduction power can be secured near the reduction zone exit. As a result, the reduction reaction of the oxide film is stable, and even with a steel sheet having a high Si concentration and Mn concentration, a good reduction action is stably produced in the reduction zone. Expressed.

本発明者らは、Si濃度及びMn濃度が高い鋼板を直火加熱方式の直火帯と竪型還元帯を備える熱処理炉で熱処理したのち溶融亜鉛めっきを施して高強度溶融亜鉛めっき鋼板を製造する際に、安定して良好なめっき性を得る方法について種々検討した。その結果、還元帯内における雰囲気ガスの流れ方向を鋼板進行方向と逆方向とするような流路を形成することで、安定して良好なめっき性がえられることを見出した。本発明はこの知見に基づきなされた。   The inventors manufactured a high-strength hot-dip galvanized steel sheet by heat-treating a steel sheet with a high Si concentration and Mn concentration in a heat treatment furnace equipped with a direct-fire heating type direct-fired zone and a vertical reduction zone, followed by hot-dip galvanizing. In doing so, various methods for stably obtaining good plating properties were studied. As a result, it has been found that by forming a flow path in which the flow direction of the atmospheric gas in the reduction zone is opposite to the steel plate traveling direction, good plating properties can be obtained stably. The present invention has been made based on this finding.

以下、本発明について従来技術と対比して説明する。   The present invention will be described below in comparison with the prior art.

図1の溶融亜鉛めっき鋼板の製造設備において、従来技術の還元帯3の構造と雰囲気ガスの流れを図2を用いて説明する。図2において、冷却帯4から還元帯3に流れた低露点の還元性ガスは還元帯3出側から入側に向かって流れ、さらに直火加熱帯2へ流出する。還元帯3において、鋼板は、鋼板の縦パス間に多数配置されたラジアンチューブバーナ8によって加熱されるが、炉壁はそれらを内部に納めた大きな箱のような構造になっているため、還元帯3内のガスは自由に流れる。そのため、次のような問題点がある。   The structure of the prior art reduction zone 3 and the flow of atmospheric gas in the hot dip galvanized steel sheet manufacturing facility of FIG. 1 will be described with reference to FIG. In FIG. 2, the low dew point reducing gas that has flowed from the cooling zone 4 to the reduction zone 3 flows from the outlet side of the reducing zone 3 toward the inlet side, and further flows out to the direct fire heating zone 2. In the reduction zone 3, the steel plates are heated by a large number of radiant tube burners 8 arranged between the vertical passes of the steel plates, but the furnace wall has a structure like a large box in which they are stored. The gas in the belt 3 flows freely. Therefore, there are the following problems.

酸化皮膜の還元で発生した高露点のガスは、図2中の矢印で示すように、炉内に拡散してしまい、高露点のガスを直火加熱帯2に効率的に排出できない。   The high dew point gas generated by the reduction of the oxide film diffuses into the furnace as indicated by the arrows in FIG. 2, and the high dew point gas cannot be efficiently discharged to the direct heating zone 2.

また、直火加熱帯2の雰囲気は燃料ガスの燃焼成分であるので多量の水分を含有し高露点であるが、この直火加熱帯2内の高露点のガスが鋼板1に随伴して還元帯3内に侵入し、それが還元帯3内に拡散することで、還元帯3内の雰囲気ガスの還元能力が不安定化する。   Further, since the atmosphere in the direct fire heating zone 2 is a combustion component of fuel gas, it contains a large amount of moisture and has a high dew point. However, the high dew point gas in the direct fire heating zone 2 is reduced along with the steel plate 1. By entering the zone 3 and diffusing into the reduction zone 3, the reducing ability of the atmospheric gas in the reduction zone 3 becomes unstable.

また、直火加熱帯2で鋼板表面に形成する酸化皮膜を厚くすると、還元帯3でその酸化皮膜を還元することによって還元帯3内の露点が上昇するが、露点上昇した雰囲気が還元炉3内を拡散して還元能力を阻害する。   Further, when the oxide film formed on the surface of the steel sheet is thickened in the direct heating zone 2, the dew point in the reduction zone 3 is increased by reducing the oxide film in the reduction zone 3, but the atmosphere with the increased dew point is reduced in the reducing furnace 3. It diffuses inside and inhibits the reducing ability.

また、Si及びMnを多量に含有しない通常の溶融亜鉛めっき鋼板を製造している途中で、Si及びMnを多量に含有した高強度溶融亜鉛めっき鋼板を製造すると、還元帯3の還元能力が経時的変化して鋼板の還元が不安定となり安定しためっきを行えない。   Further, when a high-strength hot-dip galvanized steel sheet containing a large amount of Si and Mn is produced in the course of manufacturing a normal hot-dip galvanized steel sheet that does not contain a large amount of Si and Mn, the reducing ability of the reduction zone 3 is reduced over time. The steel plate becomes unstable and the reduction of the steel plate becomes unstable, and stable plating cannot be performed.

このように、図2の従来装置では、還元帯3における雰囲気ガスの還元作用が低下する問題があるため、Si濃度及びMn濃度が高い鋼板では、還元能力が低下したり、不安定になったりする問題があり、めっき性不良の発生を確実に防止できなかった。   As described above, the conventional apparatus of FIG. 2 has a problem that the reducing action of the atmospheric gas in the reduction zone 3 is lowered. Therefore, in the steel plate having a high Si concentration and Mn concentration, the reducing ability is lowered or becomes unstable. Therefore, it was not possible to reliably prevent the occurrence of poor plating properties.

図3は、本発明の実施の形態に係る溶融亜鉛めっき鋼板の製造設備の焼鈍炉の還元帯の構成例を示す概略側面図である。図3の装置では、図2の装置に対して、還元帯3の隣り合う縦パス間に仕切り11が付加され、さらに露点計13および14が各々直火加熱帯2と還元帯3の接続部付近の還元帯側および還元帯出側(還元帯3と冷却帯4の接続部付近の還元帯3)に付加されている。図4は、図3の還元炉3内の雰囲気ガスの流れを説明する模式図である。   FIG. 3 is a schematic side view showing a configuration example of the reduction zone of the annealing furnace of the hot dip galvanized steel sheet manufacturing facility according to the embodiment of the present invention. In the apparatus of FIG. 3, a partition 11 is added between adjacent vertical paths of the reduction zone 3, and dew point meters 13 and 14 are connected to the direct heating zone 2 and the reduction zone 3, respectively. It is added to the nearby reduction zone side and the reduction zone exit side (reduction zone 3 near the connection between the reduction zone 3 and the cooling zone 4). FIG. 4 is a schematic diagram for explaining the flow of the atmospheric gas in the reduction furnace 3 of FIG.

図3では、仕切り11は隣り合う縦パス同士の間に鋼帯に面して設けられているので、鋼帯パス面に対して直交する方向への雰囲気ガスの流れが規制される。その結果、冷却帯から還元帯へ流入した還元作用の高いガスの流路が、鋼板通板方向と逆方向となる流路が形成される。この鋼板通板方向と逆方向となる流れは、鋼板に随伴した直火加熱帯から還元帯へのガス流れを抑止する効果がある。   In FIG. 3, since the partition 11 is provided between adjacent vertical paths so as to face the steel strip, the flow of atmospheric gas in the direction orthogonal to the steel strip path surface is restricted. As a result, a flow path is formed in which the flow path of the gas having a high reducing action flowing from the cooling zone into the reduction zone is in the direction opposite to the steel plate passing direction. This flow in the direction opposite to the steel sheet passing direction has an effect of suppressing the gas flow from the direct heating heating zone to the reduction zone accompanying the steel plate.

また、還元帯内では、酸化皮膜が還元されることで雰囲気ガスの露点が上昇する。この露点が上昇した雰囲気ガスは、図4中の矢印で示すように、鋼板走行方向と逆方向に還元帯入側に向かってに流れるため、表面の酸化皮膜が還元された鋼板を再度酸化させるおそれがない。直火加熱帯で厚く形成された酸化皮膜が還元帯で還元されて露点が上昇しても、露点が上昇したガスは還元帯入側に向かって流れるので、鋼板進行方向下流の露点を上昇させることがない。   In the reduction zone, the dew point of the atmospheric gas increases due to the reduction of the oxide film. Since the atmospheric gas having an increased dew point flows toward the reduction zone in the direction opposite to the traveling direction of the steel sheet, as indicated by the arrow in FIG. 4, the steel sheet whose surface oxide film has been reduced is oxidized again. There is no fear. Even if the oxide film formed thick in the direct-fired heating zone is reduced in the reduction zone and the dew point rises, the gas with the increased dew point flows toward the reduction zone entry side, so the dew point downstream of the steel plate travel direction is raised. There is nothing.

また、還元帯で高露点となったガスは、鋼板進行方向とは逆方向の還元帯入側に集積していき、還元帯入口から還元帯出口に向けて徐々に還元作用が増加するような雰囲気ガスの分布を確保し、還元帯出口付近で最大の還元力が確保できる。そのため、還元帯は良好な還元力を維持できる。   Also, the gas with a high dew point in the reduction zone accumulates on the inlet side of the reduction zone in the direction opposite to the steel plate traveling direction, and the reduction action gradually increases from the reduction zone inlet toward the reduction zone outlet. The distribution of the atmospheric gas is secured, and the maximum reducing power can be secured near the reduction zone outlet. Therefore, the reduction zone can maintain a good reducing power.

図3に示した構造の還元帯では、前記のような還元力の分布となるので、還元帯において安定して良好な還元作用が発現され、Si濃度及びMn濃度が高い鋼板であっても安定して良好なめっき性が発現される。   In the reduction zone having the structure shown in FIG. 3, the reduction force distribution as described above is obtained, so that a good reduction action is stably expressed in the reduction zone, and even a steel plate having a high Si concentration and Mn concentration is stable. As a result, good plating properties are exhibited.

還元帯3におけるガスの流れ方向を規定して還元帯における還元性を良好にする点から、還元帯3の全領域において隣り合う縦パス間に仕切り11を設けることが好ましいが、還元性に支障がない場合は、還元帯3の一部領域にだけ仕切り11を設けてもよい。この場合、酸化物が最も多く、鋼板温度が上昇して、還元が最も進行するのは、還元帯3の入側領域(還元帯中央から上流側に相当する領域)であるため、仕切り11は、少なくとも還元帯3の入側領域の縦パス間に設けることが好ましい。   In order to improve the reducibility in the reduction zone by defining the gas flow direction in the reduction zone 3, it is preferable to provide a partition 11 between adjacent vertical paths in the entire region of the reduction zone 3. If there is no partition, the partition 11 may be provided only in a partial region of the reduction zone 3. In this case, the oxide is the most, the steel plate temperature rises, and the reduction proceeds most in the entrance region of the reduction zone 3 (region corresponding to the upstream side from the reduction zone center). It is preferable to provide at least between the vertical paths of the entrance side region of the reduction zone 3.

仕切り11は、隣り合う縦パス間を完全に隔離する構造でなく、一部開口部分を有していてもよい。通常の竪型還元帯は、図3に示すように、鋼板の縦パス間にラジアントチューブバーナ8を設置するような構造になっている。このような場合、図3に示すように、仕切り11は、隣り合う縦パス間の炉壁と、該炉壁に対向する炉内ロールの鋼板が巻きかけられていない側のロール下端部との間、ロール上端部との間(下部炉壁3bと上部炉内ロール9a下端部、上部炉壁3aと下部炉内ロール9b上端部)に、ラジアントチューブバーナ8を跨いで略鉛直に設けることで、ガスの流れ方向を鋼板進行方向と逆方向に規制することができる。仕切り11は、その一端が還元帯の下部炉壁3bまたは上部炉壁3aに接するように設け、もう一端は炉内ロール9aまたは9bに近接して設けることが好ましく、また、熱歪み等を考慮してラジアントチューブバーナ8との間に若干間隔をあけて設けてもよい。   The partition 11 does not have a structure that completely separates adjacent vertical paths, and may have a partial opening. As shown in FIG. 3, the normal saddle-type reduction zone has a structure in which a radiant tube burner 8 is installed between vertical paths of a steel plate. In such a case, as shown in FIG. 3, the partition 11 includes a furnace wall between adjacent vertical paths and a roll lower end on the side where the steel plate of the in-furnace roll facing the furnace wall is not wound. Between the upper end portion of the roll and the upper end portion of the lower furnace wall 3b and the upper in-furnace roll 9a, and the upper end portion of the upper furnace wall 3a and the lower in-furnace roll 9b. The gas flow direction can be regulated in the direction opposite to the steel plate traveling direction. The partition 11 is preferably provided so that one end thereof is in contact with the lower furnace wall 3b or the upper furnace wall 3a of the reduction zone, and the other end is provided close to the in-furnace roll 9a or 9b. Then, it may be provided with a slight gap between the radiant tube burner 8.

仕切り11が設けられていない部分(開口部分)が大きくなると、この開口部分を通ってガスが移動し、ガスの流れの方向を鋼板走行方向と逆方向に規制する作用が低下する。仕切り設置部分の開口面積率が25%以下であればガスの流れの方向を鋼板走行方向と逆方向に規制する作用によって還元性を向上させる効果が確認されたが、ガスの流れの方向を鋼板走行方向と逆方向に規制する効果をより確実に発現させるためには、仕切り板11は、仕切り設置後の開口面積率が10%以下となるように設けることがより好ましい。   If the part (opening part) in which the partition 11 is not provided becomes large, the gas moves through the opening part, and the action of regulating the gas flow direction in the direction opposite to the steel plate traveling direction is reduced. If the opening area ratio of the partition installation portion is 25% or less, the effect of improving the reduction by the action of restricting the gas flow direction to the direction opposite to the steel plate traveling direction has been confirmed. In order to exhibit the effect of regulating in the direction opposite to the traveling direction more reliably, it is more preferable that the partition plate 11 is provided so that the opening area ratio after the partition installation is 10% or less.

ここで、仕切り設置部分の開口面積率とは、仕切り設置部分における鉛直方向炉断面の炉内面積に対する、該断面部分において該断面と直角方向へのガスの流れを規制するものが存在していない部分の面積の比率である。言い換えれば、相対する鋼板の間の空間を分離できていない割合である。   Here, the opening area ratio of the partition installation part means that there is no thing that regulates the gas flow in the direction perpendicular to the cross section in the cross section with respect to the area in the furnace of the vertical furnace cross section in the partition installation part. It is the ratio of the area of the part. In other words, it is the ratio that the space between the opposing steel plates cannot be separated.

図3に示すように、隣接し相反する方向に進行する鋼板1と鋼板1の間の空間を、ほぼ二分するように、仕切り11とラジアントチューブバーナ8とで分断する場合、該部分の鉛直方向断面の炉内面積をS0、仕切り11の面積をS1、ラジアントチューブバーナ8の断面積をS2としたとき、開口面積率S=(S0−(S1+S2))/S0×100(%)である。   As shown in FIG. 3, when dividing the space between the steel plate 1 and the steel plate 1, which are adjacent to each other in the opposite direction, by the partition 11 and the radiant tube burner 8 so as to be substantially divided into two, the vertical direction of the portion When the sectional area in the furnace is S0, the area of the partition 11 is S1, and the sectional area of the radiant tube burner 8 is S2, the opening area ratio S = (S0− (S1 + S2)) / S0 × 100 (%).

仕切りは、使用される温度域における耐熱性と、操業で破損しない強度を備え、実質的にガスを遮断できるものであればよく、例えばセラミックボード等,公知の耐熱材料が使用される。   Any partition may be used as long as it has heat resistance in the temperature range to be used and strength that does not break during operation, and can substantially block gas. For example, a known heat-resistant material such as a ceramic board is used.

本発明は、質量%でSi0.2〜3%及びMn1〜3%を含有する鋼板を対象とする。鋼成分組成の限定理由について説明する。   The present invention is directed to a steel sheet containing 0.2 to 3% Si and 1 to 3% Mn by mass%. The reason for limiting the steel component composition will be described.

Si:0.2〜3質量%
Siが0.2%未満では強度の向上効果が小さく、3%を超えると本発明法でも良好なめっき性を確保できなくなる。
Si: 0.2-3 mass%
If Si is less than 0.2%, the effect of improving the strength is small, and if it exceeds 3%, good plating properties cannot be ensured even by the method of the present invention.

Mn:1〜3質量%
Mnが1%未満では強度の向上効果が小さく、3%を超えると本発明法でも良好なめっき性が確保できなくなる。
Mn: 1-3 mass%
If Mn is less than 1%, the effect of improving the strength is small, and if it exceeds 3%, good plating properties cannot be ensured even by the method of the present invention.

Si、Mn以外の鋼成分は特に限定されない。高強度薄鋼板の製造に用いられる成分組成のものを使用できる。   Steel components other than Si and Mn are not particularly limited. The thing of the component composition used for manufacture of a high intensity | strength thin steel plate can be used.

図1の設備において、還元帯3を図3の構造とした溶融亜鉛めっき鋼板の製造装置を用いて、次のようにして高強度溶融亜鉛めっき鋼板が製造される。   In the facility shown in FIG. 1, a high-strength hot-dip galvanized steel sheet is manufactured as follows using a hot-dip galvanized steel sheet manufacturing apparatus in which the reduction zone 3 has the structure shown in FIG.

図示されていない鋼板送り出し装置から送り出された本発明で規定する成分組成を有する鋼板は、直火加熱帯2で鋼板成分組成、材質規格に対応して設定されたヒートパターンに沿って所定温度に加熱昇温され、同時に鋼板表面の圧延油が除去されるとともに、鋼板表面に酸化皮膜が形成される。直火加熱帯では、酸化皮膜が後の還元によって、めっき性が十分確保できる量生成するようにする。本発明が対象とする鋼板では、酸化皮膜はその厚さが0.01〜1μmとなるように形成することが好ましい。また、総じてSi、Mnの量が多ければ酸化膜厚は厚い方が良い。直火加熱は、Fe酸化物が早く生成されることで、SiやMnなどの易酸化性元素の選択的酸化が抑制される。直火加熱帯での操業条件は、直火加熱帯出側ゾーンの鋼板温度をSi、Mnが低い鋼板に対して高めに設定し、燃焼時に使用する空気比を理論空燃比よりも高めにして燃焼ガスの余剰酸素が多くなるように燃焼制御を行う。前述の酸化皮膜厚が確保された後に直火還元を行う余地があれば、還元を行ってもよいが、通常の直火加熱帯の長さでは、形成した酸化皮膜を完全に還元することができないので、還元が不十分なままに直火加熱帯を通過する。   A steel plate having a component composition defined by the present invention fed from a steel plate feeding device not shown in the drawing is heated to a predetermined temperature along a heat pattern set in accordance with the steel plate component composition and material standards in the direct flame heating zone 2. The temperature is raised by heating, and at the same time, the rolling oil on the surface of the steel sheet is removed, and an oxide film is formed on the surface of the steel sheet. In the direct-fired heating zone, the oxide film is generated in an amount that can sufficiently ensure the plating property by subsequent reduction. In the steel plate targeted by the present invention, the oxide film is preferably formed so that its thickness is 0.01 to 1 μm. In addition, the larger the amount of Si and Mn, the better the oxide film thickness. In direct flame heating, selective oxidation of easily oxidizable elements such as Si and Mn is suppressed by early generation of Fe oxide. The operating conditions in the direct-fired heating zone are as follows: the steel plate temperature in the direct-fired heating zone outlet side zone is set higher than that for steel plates with low Si and Mn, and the air ratio used during combustion is set higher than the stoichiometric air-fuel ratio. Combustion control is performed so that excess oxygen in the gas increases. If there is room for direct flame reduction after the above-mentioned oxide film thickness is secured, reduction may be performed, but with the length of a normal direct flame heating zone, the formed oxide film may be completely reduced. Since it is not possible, it passes through a direct flame heating zone with insufficient reduction.

次に鋼板は還元帯3に通板される。鋼板は、還元帯3を通板される間に、鋼板成分組成、材質規格に対応して設定されたヒートパターンに従って、高温のラジアントチューブバーナ8によって所定温度で所定時間に加熱焼鈍されるとともに、鋼板進行方向と逆方向に流れる還元性雰囲気ガスによって、鋼板表面の酸化皮膜が還元される。還元は、十分に生成したFe酸化物がFeとして還元されるまで行う。還元速度は、還元帯の温度と水素量で依存する。還元帯の温度は焼鈍条件で決まるが、焼鈍温度は大きく変えられないため、還元の調整は主に水素量の調節、具体的には炉内に供給する還元性ガスの流量及び/または水素ガス濃度を適宜の条件に調整して行う。   Next, the steel plate is passed through the reduction zone 3. While the steel sheet is passed through the reduction zone 3, the steel sheet is heat-annealed at a predetermined temperature and at a predetermined time by a high-temperature radiant tube burner 8 according to a heat pattern set in accordance with the steel sheet component composition and material standards. The oxide film on the surface of the steel sheet is reduced by the reducing atmosphere gas flowing in the direction opposite to the traveling direction of the steel sheet. The reduction is performed until the sufficiently generated Fe oxide is reduced as Fe. The reduction rate depends on the temperature of the reduction zone and the amount of hydrogen. Although the temperature of the reduction zone is determined by the annealing conditions, the annealing temperature cannot be changed greatly. Therefore, the adjustment of reduction is mainly the adjustment of the amount of hydrogen, specifically the flow rate of reducing gas supplied into the furnace and / or hydrogen gas. The concentration is adjusted to an appropriate condition.

酸化膜が還元された鋼板1は、常法に従い、冷却帯4で溶融めっき槽6に浸漬させるのに適した鋼板温度に調整されたのち溶融めっき槽6に浸漬めっきされ、溶融めっき浴槽6から引き上げられてガスワイピング装置7で所要のめっき付着量に調整され、さらにスパングル調整あるいは合金化処理が施された後冷却され、あるいは前記処理を施すことなく冷却され、所要の溶融亜鉛めっき鋼板となる。   The steel plate 1 with the oxide film reduced is adjusted to a steel plate temperature suitable for immersing in the hot dipping bath 6 in the cooling zone 4 according to a conventional method, and is then dip plated in the hot dipping bath 6, from the hot dipping bath 6. The steel sheet is pulled up and adjusted to the required coating amount by the gas wiping device 7 and further cooled after being subjected to spangle adjustment or alloying treatment, or cooled without being subjected to the above-described treatment, to obtain a required hot-dip galvanized steel sheet. .

直火加熱帯2でSiやMnなどの易酸化性元素の過度な酸化が抑制されており、還元帯3でFe酸化物が十分に還元されることで、前記で製造された溶融亜鉛めっき鋼板では、安定して良好なめっき性が発現される。   The hot-dip galvanized steel sheet manufactured as described above, in which excessive oxidation of easily oxidizable elements such as Si and Mn is suppressed in the direct heating zone 2 and the Fe oxide is sufficiently reduced in the reduction zone 3 Then, stable and good plating properties are exhibited.

図3に示す構造の還元帯では、雰囲気ガスは、鋼板通板方向と逆方向に還元帯出側から入側に流れることで、還元帯内の各場所での露点が安定する。したがって、露点を測定することで、直火加熱帯の酸化状態や還元帯の還元状態を評価でき、またこれらを容易に制御することができる。   In the reduction zone having the structure shown in FIG. 3, the atmospheric gas flows from the reduction zone exit side to the entry side in the direction opposite to the sheet passing direction, so that the dew point at each location in the reduction zone is stabilized. Therefore, by measuring the dew point, the oxidation state of the direct flame heating zone and the reduction state of the reduction zone can be evaluated, and these can be easily controlled.

直火加熱帯の酸化皮膜厚が厚いと還元帯における還元反応の負荷が大きくなり、還元帯との接続部付近の還元帯の雰囲気ガスの露点が高くなる。従って、直火加熱帯と還元帯の接続部付近の還元帯の雰囲気ガスの露点を測定することで、直火加熱帯の酸化程度(酸化皮膜厚さ)を評価することができる。また、直火加熱帯で鋼板を直火加熱するガスの燃焼条件を制御することで、直火加熱帯で形成される酸化皮膜厚を制御することができる。従って、直火加熱帯と還元帯の接続部付近の還元帯の雰囲気ガスの露点の測定結果に基いて直火加熱帯のガスの燃焼制御、特に空燃比制御を行い、直火加熱帯で形成される酸化皮膜厚を制御することができる。   If the thickness of the oxide film in the direct heating zone is thick, the reduction reaction load in the reduction zone increases, and the dew point of the atmospheric gas in the reduction zone near the connection with the reduction zone increases. Therefore, by measuring the dew point of the atmospheric gas in the reduction zone near the connection between the direct heating zone and the reduction zone, the degree of oxidation (oxide film thickness) in the direct flame heating zone can be evaluated. Moreover, the thickness of the oxide film formed in the direct fire heating zone can be controlled by controlling the combustion conditions of the gas for directly heating the steel plate in the direct fire heating zone. Therefore, based on the measurement results of the dew point of the atmospheric gas in the reduction zone near the connection between the direct heating zone and the reduction zone, the combustion control of the gas in the direct heating zone, especially the air-fuel ratio control, is performed, and the direct flame heating zone is formed. It is possible to control the oxide film thickness.

また、還元帯出側の雰囲気ガスの露点から、酸化皮膜の還元帯での還元状態を評価できる。炉内に供給する還元性ガスの水素量(ガス供給量または水素濃度)を調整することで還元帯における酸化皮膜の還元程度を調整することができる。従って、還元帯出側の雰囲気ガスの露点の測定結果に基いて炉内に供給する還元性ガスの水素量を調整し、還元帯における酸化皮膜の還元程度を制御することができる。   Moreover, the reduction state in the reduction zone of the oxide film can be evaluated from the dew point of the atmosphere gas on the reduction zone exit side. The degree of reduction of the oxide film in the reduction zone can be adjusted by adjusting the hydrogen amount (gas supply amount or hydrogen concentration) of the reducing gas supplied into the furnace. Therefore, it is possible to control the degree of reduction of the oxide film in the reduction zone by adjusting the hydrogen amount of the reducing gas supplied into the furnace based on the measurement result of the dew point of the atmospheric gas on the reduction zone exit side.

例えば、直火加熱帯で適正な酸化膜厚が形成され、還元帯でこの酸化膜が十分に還元されて良好なめっき性が得られ、そのときの直火加熱帯と還元帯の接続部付近の還元帯の雰囲気ガスの露点(以下DP1)がDP1m、還元帯出側の雰囲気ガスの露点(以下DP2)がDP2mであった場合、直火加熱帯で形成された酸化皮膜厚、還元帯での還元程度、めっき性と、直火加熱帯と還元帯の接続部付近の還元帯の雰囲気ガスの露点DP1、還元帯出側近傍の雰囲気ガスの露点DP2は、上記露点DP1m、DP2mと表1に示すような対応関係がある。   For example, an appropriate oxide film thickness is formed in the direct fire heating zone, and this oxide film is sufficiently reduced in the reduction zone to obtain good plating properties. In the vicinity of the connection portion between the direct fire heating zone and the reduction zone When the dew point of the atmospheric gas in the reduction zone (DP1) is DP1m and the dew point of the atmospheric gas on the exit side of the reduction zone (DP2) is DP2m, the thickness of the oxide film formed in the direct flame heating zone, Table 1 shows the degree of reduction, the plating property, and the dew point DP1 of the atmosphere gas in the reduction zone near the connection between the direct heating zone and the reduction zone, and the dew point DP2 of the atmosphere gas in the vicinity of the reduction zone exit side. There is a corresponding relationship.

例えば、Aは適正条件Cに対して酸化皮膜厚が過大であったが、この酸化膜が十分に還元された結果良好なめっきが得られた場合である。この場合、還元帯における酸化皮膜の還元量が多くなるため露点DP1は適正条件Cの露点DP1mより高くなる。また、還元帯通板中に酸化皮膜が十分に還元されたことで還元帯出側近傍では還元反応が進行しなくなるため、露点DP2は適正条件Cの露点DP2mより低くなる。したがって、前記の各露点の測定結果に基づいて、表1の制御方法に記載されるような制御を行うことで、直火加熱帯でより適正な酸化被膜形成、還元帯でより適正な還元を行うことが可能になり、もってより良好なめっき性が得られるようになる。   For example, A is a case where the oxide film thickness is excessive with respect to the appropriate condition C, but a good plating is obtained as a result of sufficient reduction of the oxide film. In this case, the dew point DP1 is higher than the dew point DP1m of the appropriate condition C because the amount of reduction of the oxide film in the reduction zone increases. In addition, since the oxide film is sufficiently reduced in the reduction zone passage plate, the reduction reaction does not proceed near the reduction zone exit side, so that the dew point DP2 is lower than the dew point DP2m of the appropriate condition C. Therefore, by performing the control as described in the control method of Table 1 based on the measurement results of each dew point, more appropriate oxide film formation can be achieved in the direct flame heating zone, and more appropriate reduction can be achieved in the reduction zone. This makes it possible to obtain better plating properties.

また、例えば、前述Aの場合のように、露点DP1が高く、露点DP2が低い場合、酸化皮膜が過大に形成されているもののこの酸化皮膜が十分に還元されていると判断されるので、直火加熱帯では酸化皮膜厚を薄くするように燃焼制御し、酸化皮膜厚が薄くなるように燃焼制御し、それに対応して、還元帯では還元性を弱めるような制御をすることで、良好なめっきを確保しながら効率的な操業が可能になる。   Further, for example, as in the case of A described above, when the dew point DP1 is high and the dew point DP2 is low, it is determined that the oxide film is sufficiently reduced although the oxide film is excessively formed. Combustion control is performed to reduce the oxide film thickness in the fire heating zone, combustion control is performed to reduce the oxide film thickness, and in response to this, control is performed to reduce the reducing property in the reduction zone. Efficient operation is possible while securing plating.

なお、表1において、「↓」(下向き矢印)は酸化程度または還元程度を緩くする条件に変えること、「↑」(上向き矢印)は酸化程度または還元程度を強くする条件に変えること、「→」(横向き矢印)は酸化程度または還元程度を変えないことを示している。   In Table 1, “↓” (downward arrow) is changed to a condition for loosening the degree of oxidation or reduction, “↑” (upward arrow) is changed to a condition for increasing the degree of oxidation or reduction, “→ "(Horizontal arrow) indicates that the degree of oxidation or reduction is not changed.

Figure 0004770428
Figure 0004770428

また、直火加熱帯での適正な酸化状態に対応する露点DP1、還元帯での適正な還元状態に対応する露点DP2が分かっていない成分組成、材質規格の鋼板でスケール残りによるめっき不良が発生した場合でも、直火加熱帯での酸化程度を強くする(又は酸化程度を弱くする)ように燃焼条件を変更し、また還元帯で還元程度を強くする(又は還元程度を弱くする)ように雰囲気ガスの供給条件を変更し、各露点DP1、DP2が条件変更前の各露点に対して低下するか上昇するかの変化傾向を把握することで、良好なめっきが得られる条件への変更指針を得ることができる。   In addition, dew point DP1 corresponding to the proper oxidation state in the direct fire heating zone, dew point DP2 corresponding to the proper reduction state in the reduction zone, component composition that does not know the proper degeneration point, plating failure due to scale residue occurs in steel sheets of material standards Even if it does, change the combustion conditions to increase the degree of oxidation in the direct-fired heating zone (or weaken the degree of oxidation) and increase the degree of reduction (or reduce the degree of reduction) in the reduction zone. Guidelines for changing to conditions where good plating can be obtained by changing the atmospheric gas supply conditions and grasping the changing tendency of each dew point DP1, DP2 to decrease or increase with respect to each dew point before the condition change Can be obtained.

例えば、露点DP1、DP2がいずれも高くなった場合、酸化皮膜がより厚くなり、これによって露点DP2が高くなったと判断し、直火加熱帯の燃焼制御を酸化皮膜厚を薄くする方向に変更すればよい。そしてこの条件に変更後の各露点の変化傾向を再度把握し、より適切な条件に変更すればよい。   For example, if the dew points DP1 and DP2 are both high, the oxide film becomes thicker, so that it is determined that the dew point DP2 has increased, and the combustion control in the direct heating heating zone is changed to a direction in which the oxide film thickness is reduced. That's fine. And what is necessary is just to grasp | ascertain again the change tendency of each dew point after changing to this condition, and to change into more suitable conditions.

炉内に供給する還元性ガスが冷却帯だけでなく、還元帯に供給してもよく、この場合も前記と同様の制御をすることができる。   The reducing gas supplied into the furnace may be supplied not only to the cooling zone but also to the reduction zone. In this case, the same control as described above can be performed.

表2に示す成分組成と残部Fe及び不可避不純物からなる鋼を熱間圧延、酸洗、冷間圧延し、厚さ1mm×幅1mのめっき原板を作製した。この鋼板を直火加熱帯、還元帯(竪型還元帯)、冷却帯を備える焼鈍炉で焼鈍し、引き続き溶融亜鉛めっき槽で溶融亜鉛めっきし、ガスワイピング装置でめっき付着量を片面当たり40g/mに調整した。直火加熱帯は、直火予熱帯、直火酸化帯、直火還元帯を備える。還元帯には、図3に示すように、還元帯の全縦パス間にセラミックボード製の仕切り板を設け、仕切り板の開口部分の面積率を変える実験を行った。仕切り板は、整流化を考慮して全体が翼状になるような構造とした。 Steel composed of the composition shown in Table 2, the balance Fe and inevitable impurities was hot-rolled, pickled, and cold-rolled to produce a plating original plate having a thickness of 1 mm and a width of 1 m. This steel sheet is annealed in an annealing furnace equipped with a direct-fired heating zone, a reduction zone (a vertical reduction zone), and a cooling zone, followed by hot dip galvanization in a hot dip galvanizing tank, and a coating amount of 40 g / per side on a gas wiping device. It was adjusted to m 2. The direct fire heating zone includes a direct fire pre-tropical zone, a direct fire oxidation zone, and a direct fire reduction zone. As shown in FIG. 3, the reduction zone was provided with a partition plate made of ceramic board between all the longitudinal paths of the reduction zone, and an experiment was conducted to change the area ratio of the opening portion of the partition plate. The partition plate was structured in a wing shape as a whole in consideration of rectification.

製造条件は次のとおりである。
・ライン速度:80mpm
・直火加熱帯:
直火予熱帯で予熱後、直火酸化帯で鋼板を直火加熱して酸化し、次に直火還元帯では直火還元後鋼板温度が600〜630℃となるように直火還元した。直火酸化帯の空気比、直火還元帯の空気比を表3に示す。
・還元帯:
焼鈍条件;鋼板加熱温度を800℃とした。
・溶融亜鉛めっき:
浴温;470℃
・雰囲気ガス:H:8vol%−N:92vol%(露点:−50℃程度)、流量1000Nm/H
このようにして作製した溶融亜鉛めっき鋼板の外観を目視観察し、不めっきの有無を評価した。評価結果を表3に示す。
The manufacturing conditions are as follows.
・ Line speed: 80 mpm
・ Direct fire heating zone:
After preheating in the direct fire pre-tropical zone, the steel plate was directly heated and oxidized in the direct fire oxidation zone, and then directly reduced in the direct fire reduction zone so that the steel plate temperature was 600-630 ° C. after direct fire reduction. Table 3 shows the air ratio in the direct-fire oxidation zone and the air ratio in the direct-fire reduction zone.
・ Reduction zone:
Annealing conditions: Steel plate heating temperature was 800 ° C.
・ Hot galvanizing:
Bath temperature: 470 ° C
Atmosphere Gas: H 2: 8vol% -N 2 : 92vol% ( dew point: about -50 ° C.), flow rate 1000 Nm 3 / H
The appearance of the hot-dip galvanized steel sheet thus produced was visually observed and the presence or absence of non-plating was evaluated. The evaluation results are shown in Table 3.

Figure 0004770428
Figure 0004770428

Figure 0004770428
Figure 0004770428

表3に示すように、仕切りの開口面積率が10%以下とすることで良好なめっき性が示された。従来装置では、ラジアントチューブそのものはガスを通さないため、鋼板間面積の70%を塞いでいる(開口面積率=30%)が、ガスに対して流れを乱し、鋼板間を横切るような流れを生じる形状であるため、不めっきを生じていたと考えられる。従来装置では、直火加熱帯の空気比を上げても不めっきの改善が認められないのに対し、仕切り板を設けて開口部面積率を5%減少した本発明装置の例(No.4)では、不めっきが改善された。開口面積率を減ずるとともに不めっきが改善されており、特に開口面積率が10%以下で顕著な効果があった。   As shown in Table 3, good plating properties were exhibited when the opening area ratio of the partition was 10% or less. In the conventional apparatus, the radiant tube itself does not allow gas to pass, so 70% of the area between the steel plates is blocked (open area ratio = 30%), but the flow is disturbed against the gas and flows between the steel plates. It is considered that non-plating had occurred because of the shape that caused In the conventional apparatus, improvement of non-plating is not recognized even when the air ratio in the direct-fired heating zone is increased, whereas an example of the present invention apparatus (No. 4) in which the partition plate is provided to reduce the opening area ratio by 5%. ) Improved non-plating. The open area ratio was reduced and non-plating was improved, and there was a remarkable effect especially when the open area ratio was 10% or less.

本発明の高強度溶融亜鉛めっき鋼板の製造方法は、めっき性不良の発生のない、質量%でSi0.2〜3%及びMn1〜3%を含有する高強度溶融亜鉛めっき鋼板を製造する方法として利用することができる。   The method for producing a high-strength hot-dip galvanized steel sheet according to the present invention is a method for producing a high-strength hot-dip galvanized steel sheet containing Si 0.2 to 3% and Mn 1 to 3% by mass% without causing poor plating properties. Can be used.

本発明の溶融亜鉛めっき鋼板の製造設備は、質量%でSi0.2〜3%及びMn1〜3%を含有する高強度溶融亜鉛めっき鋼板を製造する装置として利用することができる。   The equipment for producing a hot-dip galvanized steel sheet of the present invention can be used as an apparatus for producing a high-strength hot-dip galvanized steel sheet containing 0.2 to 3% Si and 1 to 3% Mn by mass%.

溶融亜鉛めっき鋼板の製造設備の要部構成例を示す概略側面図である。It is a schematic side view which shows the principal part structural example of the manufacturing equipment of a hot dip galvanized steel plate. 従来の溶融亜鉛めっき鋼板の製造設備における還元帯の概略構造と還元炉内の雰囲気ガスの流れを説明する模式図である。It is a schematic diagram explaining the schematic structure of the reduction zone in the conventional galvanized steel sheet manufacturing equipment and the flow of the atmospheric gas in the reduction furnace. 本発明の実施の形態に係る溶融亜鉛めっき鋼板の製造設備の焼鈍炉の還元帯の構成例を示す概略側面図である。It is a schematic side view which shows the structural example of the reduction zone of the annealing furnace of the manufacturing equipment of the hot dip galvanized steel plate which concerns on embodiment of this invention. 図3の還元帯内の雰囲気ガスの流れを説明する模式図である。It is a schematic diagram explaining the flow of the atmospheric gas in the reduction zone of FIG.

符号の説明Explanation of symbols

1 鋼板
2 直火加熱方式の直火帯(直火加熱帯)
3 竪型還元帯(還元帯)
4 冷却帯
5 スナウト
6 溶融めっき槽
7 ガスワイピング装置
8 ラジアントチューブバーナ
9a、9b 炉内ロール
11 仕切り
13、14 露点計
16 直火加熱帯と還元帯の接続部
101 燃料供給系統
102 空気供給系統
103 直火加熱バーナ
105 ガス供給配管
1 Steel plate 2 Direct flame heating type (direct flame heating zone)
3 Vertical type reduction zone (reduction zone)
4 Cooling zone 5 Snout 6 Hot dipping bath 7 Gas wiping device 8 Radiant tube burner 9a, 9b In-furnace roll 11 Partition 13, 14 Dew point meter 16 Direct flame heating zone and reduction zone connection 101 Fuel supply system 102 Air supply system 103 Direct fire heating burner 105 Gas supply piping

Claims (7)

質量%でSi:0.2〜3%及びMn:1〜3%のうちの1種以上を含有する鋼板を、直火加熱方式の直火帯で加熱し、さらに竪型還元帯において還元雰囲気中で表面の還元と焼鈍を行ったのち、溶融亜鉛めっき浴に浸漬させて亜鉛めっきを行う高強度溶融亜鉛めっき鋼板の製造方法において、竪型還元帯では、少なくとも入側領域において雰囲気ガスを鋼板進行方向と逆方向に流すようにすることを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。 A steel sheet containing at least one of Si: 0.2 to 3% and Mn: 1 to 3% by mass% is heated in a direct-fired heating zone and further reduced in a vertical reduction zone. In the method of manufacturing a high-strength hot-dip galvanized steel sheet that is subjected to surface reduction and annealing in the hot-dip galvanizing bath and then galvanized, in the vertical reduction zone, the atmosphere gas is removed at least in the entry region. A method for producing a high-strength hot-dip galvanized steel sheet characterized by flowing in a direction opposite to the traveling direction. 直火帯と還元帯の接続部付近の還元帯の雰囲気ガスの露点を測定し、その測定値から直火帯の燃焼制御を行うことを特徴とする、請求項1に記載の高強度溶融亜鉛めっき鋼板の製造方法。 The high-strength molten zinc according to claim 1, wherein the dew point of the atmospheric gas in the reduction zone near the connection between the direct-fire zone and the reduction zone is measured, and the combustion control in the direct-fire zone is performed from the measured value. Manufacturing method of plated steel sheet. 直火帯と還元帯の接続部付近の還元帯の雰囲気ガスの露点と、還元帯出側の雰囲気ガスの露点を測定してその関係から、還元帯へ供給する雰囲気ガス流量を調整することを特徴とする、請求項1または2に記載の高強度溶融亜鉛めっき鋼板の製造方法。 Measure the dew point of the atmospheric gas in the reducing zone near the connection between the direct fire zone and the reducing zone and the dew point of the atmospheric gas on the outlet side of the reducing zone, and adjust the flow rate of the atmospheric gas supplied to the reducing zone from the relationship The method for producing a high-strength hot-dip galvanized steel sheet according to claim 1 or 2. 直火加熱方式の直火帯と竪型還元帯を有する焼鈍炉と、その下流に溶融亜鉛めっき装置を備える溶融亜鉛めっき鋼板の製造設備において、竪型還元帯の少なくとも入側領域の隣り合う鋼帯の縦パスの間に、該縦パスの間の雰囲気ガスの流れの方向を鋼板進行方向と逆方向に規制する仕切りが設けられていることを特徴とする溶融亜鉛めっき鋼板の製造設備。 In an annealing furnace having a direct flame heating zone and a vertical reduction zone and a hot dip galvanized steel sheet equipped with a hot dip galvanizing device downstream of the direct heating system, steel adjacent to at least the entrance region of the vertical reduction zone A facility for manufacturing a hot dip galvanized steel sheet, characterized in that a partition is provided between the vertical passes of the belt to restrict the direction of the flow of the atmospheric gas between the vertical passes in the direction opposite to the traveling direction of the steel plate. 仕切り設置後の開口面積率が、10%以下であることを特徴とする、請求項4に記載の溶融亜鉛めっき鋼板の製造設備。 The facility for manufacturing a hot dip galvanized steel sheet according to claim 4, wherein an opening area ratio after partition installation is 10% or less. 直火加熱方式の直火帯と竪型還元帯との接続部近傍の竪型還元帯の雰囲気ガスの露点を測定する露点計を竪型還元帯に備えることを特徴とする、請求項4または5に記載の溶融亜鉛めっき鋼板の製造設備。 The vertical reduction zone is provided with a dew point meter that measures the dew point of the atmospheric gas in the vertical reduction zone in the vicinity of the connection between the direct heating zone and the vertical reduction zone of the direct fire heating system. 5. Manufacturing equipment for hot-dip galvanized steel sheet according to 5. さらに還元帯出側の雰囲気ガスの露点を測定する露点計を竪型還元帯に備えることを特徴とする、請求項6に記載の溶融亜鉛めっき鋼板の製造設備。 The hot-dip galvanized steel sheet manufacturing equipment according to claim 6, further comprising a dew point meter for measuring the dew point of the atmospheric gas on the reduction zone outlet side in the vertical reduction zone.
JP2005343165A 2005-11-29 2005-11-29 High strength hot dip galvanized steel sheet manufacturing method and hot dip galvanized steel sheet manufacturing equipment Expired - Fee Related JP4770428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005343165A JP4770428B2 (en) 2005-11-29 2005-11-29 High strength hot dip galvanized steel sheet manufacturing method and hot dip galvanized steel sheet manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005343165A JP4770428B2 (en) 2005-11-29 2005-11-29 High strength hot dip galvanized steel sheet manufacturing method and hot dip galvanized steel sheet manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2007146241A JP2007146241A (en) 2007-06-14
JP4770428B2 true JP4770428B2 (en) 2011-09-14

Family

ID=38207999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005343165A Expired - Fee Related JP4770428B2 (en) 2005-11-29 2005-11-29 High strength hot dip galvanized steel sheet manufacturing method and hot dip galvanized steel sheet manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4770428B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2920439B1 (en) * 2007-09-03 2009-11-13 Siemens Vai Metals Tech Sas METHOD AND DEVICE FOR THE CONTROLLED OXIDATION / REDUCTION OF THE SURFACE OF A CONTINUOUSLY STRAY STEEL BAND IN A RADIANT TUBE OVEN FOR ITS GALVANIZATION
JP5200463B2 (en) * 2007-09-11 2013-06-05 Jfeスチール株式会社 Method for producing hot-dip galvanized steel sheet
JP5338087B2 (en) * 2008-03-03 2013-11-13 Jfeスチール株式会社 Method for producing hot-dip galvanized steel sheet with excellent plating properties and continuous hot-dip galvanizing equipment
JP5434960B2 (en) * 2010-05-31 2014-03-05 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in bendability and weldability and method for producing the same
WO2012111185A1 (en) * 2011-02-15 2012-08-23 三菱電線工業株式会社 Solder-plated copper wire and method for producing same
JP2012233238A (en) * 2011-05-02 2012-11-29 Ihi Corp Continuous heating furnace
JP5863464B2 (en) * 2012-01-11 2016-02-16 株式会社神戸製鋼所 Annealing furnace of hot dip galvanizing equipment and operation method in the annealing furnace
KR101642632B1 (en) * 2012-06-13 2016-07-25 제이에프이 스틸 가부시키가이샤 Method for continuously annealing steel strip, apparatus for continuously annealing steel strip, method for manufacturing hot-dip galvanized steel strip, and apparatus for manufacturing hot-dip galvanized steel strip
JP5655956B2 (en) * 2012-06-13 2015-01-21 Jfeスチール株式会社 Method for continuous annealing of steel strip and method for producing hot dip galvanized steel strip
JP7073162B2 (en) * 2018-03-29 2022-05-23 株式会社神戸製鋼所 Vertical continuous annealing furnace and annealing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247529A (en) * 1988-03-30 1989-10-03 Sumitomo Metal Ind Ltd Method for controlling direct firing type nonoxidized furnace
JP3014530B2 (en) * 1992-03-30 2000-02-28 新日本製鐵株式会社 Manufacturing method of high strength galvanized steel sheet
JPH0797670A (en) * 1993-09-30 1995-04-11 Sumitomo Metal Ind Ltd Galvanizing method for silicon-containing steel sheet
JP3176843B2 (en) * 1996-06-05 2001-06-18 川崎製鉄株式会社 Manufacturing method and manufacturing equipment for hot-dip galvanized steel sheet
JP2000290762A (en) * 1999-04-07 2000-10-17 Kawasaki Steel Corp Production of hot dip metal coated steel sheet
JP3449317B2 (en) * 1999-10-05 2003-09-22 住友金属工業株式会社 Continuous hot-dip Al-Zn alloy plating equipment

Also Published As

Publication number Publication date
JP2007146241A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP4770428B2 (en) High strength hot dip galvanized steel sheet manufacturing method and hot dip galvanized steel sheet manufacturing equipment
JP6455544B2 (en) Method for producing hot-dip galvanized steel sheet
JP4791482B2 (en) Continuous annealing hot dip plating method and continuous annealing hot dip plating apparatus for steel sheet containing Si
JP6020605B2 (en) Method for producing galvannealed steel sheet
JP6131919B2 (en) Method for producing galvannealed steel sheet
US20080023111A1 (en) Method and Facility for Hot Dip Zinc Plating
JP5338087B2 (en) Method for producing hot-dip galvanized steel sheet with excellent plating properties and continuous hot-dip galvanizing equipment
JP5510495B2 (en) Continuous annealing furnace for steel strip, continuous annealing method, continuous hot dip galvanizing equipment and manufacturing method of hot dip galvanized steel strip
JP4797601B2 (en) High strength hot dip galvanized steel sheet manufacturing method and hot dip galvanized steel sheet manufacturing equipment
JP6607339B1 (en) Method for producing hot dip galvanized steel sheet and continuous hot dip galvanizing apparatus
JP4912684B2 (en) High-strength hot-dip galvanized steel sheet, production apparatus therefor, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JP6439654B2 (en) Method for producing hot-dip galvanized steel sheet
JP5915569B2 (en) Method for producing hot dip galvanized steel sheet and continuous hot dip galvanizing apparatus
US10106867B2 (en) Method for continuously annealing steel strip and method for manufacturing galvanized steel strip
JP2019189894A (en) Method for manufacturing continuous hot-dip galvanized steel sheet
JP6740973B2 (en) Method for manufacturing hot-dip galvanized steel sheet
JP6128068B2 (en) Method for producing galvannealed steel sheet
JP3889019B2 (en) Method for producing hot-dip galvanized steel sheet
JP5729008B2 (en) Method for producing hot-dip galvanized steel sheet
JP5863464B2 (en) Annealing furnace of hot dip galvanizing equipment and operation method in the annealing furnace
WO2024014372A1 (en) Method for heating steel plate, method for producing plated steel plate, direct-fired heating furnace, and continuous hot-dip galvanizing equipment
JP2019147999A (en) Steel sheet production equipment, steel sheet production method and dew point control method
JP6696495B2 (en) Method for manufacturing hot dip galvanized steel sheet
JP6908062B2 (en) Manufacturing method of hot-dip galvanized steel sheet
CN117616146A (en) Method for producing hot dip galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees